
Indexing Large, Mixed-
Language Codebases
Luke Zarko <zarko@google.com>

The Kythe project aims to establish
open data formats and protocols for

interoperable developer tools.

Outline

● Introduction
● System structure
● C++ support via Clang

○ What does Kythe get?
○ What does Kythe propose to give back?

● Future work

C++ C ObjC Java OCaml

Analysis

Mostly compatible to C++

Xrefs

Supported by Clang

Documentation

Curly braces?

Code review Code search

Programs are plaintext?

I use languages with property X and I’d like to do Y

S
queak

(image-based!)

I also use source code generator X, build system Y, repo Z

cmake

gmake

a bunch of shell scripts

mvn

ant?

omake

git

svn

cvs

company filer

local disk

someone’s :80?

protobuf

thrift

cap’n proto

yacc

antlr

jni?

C++ C ObjC Java OCaml

Documentation Xrefs Code review Code search Analysis

Kythe support Kythe support Kythe support Kythe support Kythe support

common
interchange format

Build systems

Language frontends

Other tools

common
interchange format

Xref servers Documentation
generators

Editor tools

I use tools that support Kythe data

Outline

● Introduction
● System structure
● C++ support via Clang

○ What does Kythe get?
○ What does Kythe propose to give back?

● Future work

A Kythe system
cmake Web browser

A Kythe system

● Extractors pull compilation
information from the build
system

cmake

C++ extractor
(Clang tool)

Web browser

compilation
database JSON

hermetic build
data

...

Hermetic build data

● Contains every dependency
the compiler needs for
semantic analysis

Compilation unit

Header text

Header text

Source file text

Compiler args

name

name

name

● Gives files identifiers that can
be used to locate them in
repositories

● Allows for distribution of
analysis tasks

A Kythe system

● Extractors pull compilation
information from the build
system

cmake

C++ extractor
(Clang tool)

Web browser

compilation
database JSON

hermetic build
data

A Kythe system

● Extractors pull compilation
information from the build
system

● Indexers use this information
to construct a persistent graph

cmake

C++ extractor
(Clang tool)

C++ indexer
(Clang tool) Graph store

Web browser

compilation
database JSON

hermetic build
data

Kythe graph nodes and edges

Indexer implementation

1. Load hermetic build data into memory with mapVirtualFile
2. First pass: recover parent relationships for naming

Nameless decls and shadowed names

● Clang omits parent edges in the AST
because it doesn’t need them

● As best we can, we want to give stable
names to any Decl we see referenced
at any point

● We also want to distinguish between
shadowed names

● Solution: build a map from AST nodes
to (parent, visitation-index)*

void foo() {

 int x;

 { int x; }

 { int x; }
}

 x:0:0:foo

 x:0:1:0:foo

 x:0:2:0:foo

Indexer implementation

1. Load hermetic build data into memory with mapVirtualFile
2. First pass: recover parent relationships for naming

Indexer implementation

1. Load hermetic build data into memory with mapVirtualFile
2. First pass: recover parent relationships for naming
3. Second pass: notify a GraphObserver about abstract program

relationships

The Kythe graph

All programs in Kythe are abstracted away to nodes and edges.

(some, unique, name)

/kythe/node/kind record

/your/own/fact some string

The Kythe graph

Nodes represent semantic information as well as syntactic information.

(some, unique, name)

/kythe/node/kind record

/your/own/fact some string (another, unique, name)

/kythe/node/kind anchor

... ...

the class C

“class C” in a particular file

/kythe/edge/defines

The Kythe schema

● We provide a base set of nodes and edges
● We also provide rules for naming certain kinds of nodes
● It is extensible: you’re free to use your own node and edge kinds
● “Be conservative in what you send, be liberal in what you accept”

○ some data may be missing
○ there may be more data than you can understand
○ others may produce incorrect data

The schema provides checked examples
@Enum

@Etor

Enumeration

Enumerator

defines

defines

childof

The GraphObserver is notified about program structure

● The GraphObserver interface sees an abstract view of a program
● There is not a 1:1 mapping between AST nodes and program

graph nodes

ClassTemplatePartialSpecializationDecl

Abs Record
childof

A Kythe system

● Extractors pull compilation
information from the build
system

● Indexers use this information
to construct a persistent graph

cmake

C++ extractor
(Clang tool)

C++ indexer
(Clang tool) Graph store

Web browser

compilation
database JSON

hermetic build
data

Kythe graph nodes and edges

A Kythe system

● Extractors pull compilation
information from the build
system

● Indexers use this information
to construct a persistent graph

● Services use the graph to
answer queries
○ code browsing
○ code review
○ documentation generation

cmake

C++ extractor
(Clang tool)

C++ indexer
(Clang tool)

Browse server

Graph store

Web browser

compilation
database JSON

hermetic build
data

Kythe graph nodes and edges

RPCs

GETs

This design is known to scale

● Small dataset (Chromium)
○ ~22,600 C++ compilations
○ ~31G of serving data

● Internal code search is much
larger
○ 100 million lines of code

● Other internal tools make use
of build data for analysis

Outline

● Introduction
● Rough system structure
● C++ support via Clang

○ What does Kythe get?
○ What does Kythe propose to give back?

● Future work

Clang made C++ tooling possible

● A tooling-friendly compiler leads to an ecosystem of software tools
○ ASan, TSan, MSan
○ clang-format, clang-tidy
○ Doxygen libclang integration

● Clang’s code is eminently hackable
○ The interface to the typed AST is clean
○ The preprocessor is easy to tool as well

Clang has excellent template support

template <typename T> class C
{ typename T::Foo foo; };

template <typename S> class C<S*>
{ typename S::Bar bar; };

template <> class C<int> { };

C<X> CX;
C<X*> CPX;
C<int> CI;

// ClassTemplateDecl (of CXXRecordDecl)

// ClassTemplatePartialSpecializationDecl

// ClassTemplateSpecializationDecl

// implicit ClassTemplateSpecializationDecl

Clang has excellent template support

template <typename T> class C
{ typename T::Foo foo; };

template <typename S> class C<S*>
{ typename S::Bar bar; };

C<X> CX;
C<X*> CPX;
C<int> CI;

= getSpecializedTemplate

= getSpecializedTemplateOrPartial

.getTemplateArgs
 => { X* }
 “template <X*=T> class C”
.getTemplateInstantiationArgs
 => { X }
 “template <X=S> class C<X*>”

#define M1(a,b) ((a) + (b))
int f() {

 int x = 0, y = 1;

 return M1(x, y);

}

#define M1(a,b) ((a) + (b))
int f() {

 int x = 0, y = 1;

 return M1(x, y);

}

Clang makes macros manageable

((x) + (y))

expands to

located at

| ...
`- DeclRefExpr(x)

| ...
`- DeclRefExpr(y)

Result AST

parses to

Clang supports other compilers’ extensions: GCC

● We want to index real world code!
● Just some of the GCC extensions clang supports:

○ indirect-goto (goto *bar;)
○ address-of-label (void *bar = &&foo;)
○ statement-expression

(string s("?"); ({for(;;); s;}).size();)
○ conditional expression without middle operand (f() ? : g())
○ case labels with ranges (case ‘A’ ... ‘Z’:)
○ ranges in array initializers

int a[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };

Clang can build extension-heavy software

● Building the Linux kernel works (modulo some patches: http://llvm.
linuxfoundation.org/index.php/Main_Page)

● Hairiest GCC “feature” unsupported: variable length arrays in
structs
struct {struct shash_desc shash;
 char ctx[crypto_shash_descsize(tfm)];} desc;

● Support for MSVC extensions (and ABI…) is developing too; some
success with Chromium on Windows (https://code.google.
com/p/chromium/wiki/Clang)

http://llvm.linuxfoundation.org/index.php/Main_Page
http://llvm.linuxfoundation.org/index.php/Main_Page
http://llvm.linuxfoundation.org/index.php/Main_Page
https://code.google.com/p/chromium/wiki/Clang
https://code.google.com/p/chromium/wiki/Clang
https://code.google.com/p/chromium/wiki/Clang

Kythe adds to Clang’s tooling support

● Persistence for abstract program data: records, not
CXXRecordDecls.

● Hermetic storage of compilation units
● Unambiguous naming for more program entities
● Abstract AST traversal

C++ is a first-class citizen

● The Kythe schema is intended to support all of C++14 (templates,
(generic) lambdas, auto, …)

● We expect support for Concepts Lite will not be difficult
● To get this into Clang:

○ Nothing Kythe-specific goes into the LLVM tree
○ Just a library in clang/tools/extra that calls appropriate members on an

abstract GraphObserver
○ The Kythe indexer is a particular implementation of GraphObserver

Outline

● Introduction
● System structure
● C++ support via Clang

○ What does Kythe get?
○ What does Kythe propose to give back?

● Future work

Things left to do

● UI/IDE integration
● Support for other languages

○ Including one or two that are supported by Clang already
● Other analyses that work over or contribute to the graph

○ Use Kythe information as sparse data to drive whole-project analysis
● Adding more build information (eg, who links to whom)
● Quick incremental updates

Summary

● The open Kythe data format enables interoperable tooling
● The Kythe pipeline is designed to scale
● C++ support is possible thanks to the work done on Clang tooling
● Simpler languages (Go, Java) aren’t necessarily easier to tool
● The code we will propose to upstream does not depend on Kythe
● There are lots of opportunities for community development

Mailing list

https://groups.google.com/forum/#!forum/kythe-early-interest

