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int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory
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int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 2 is not affected by Thread 1 and vice-versa

I expect this program to print 42

Thread 1 returns without modifying b
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...sometimes we get 0 on the screen 

gcc 4.7 -O2

int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory
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int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}
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int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

 movl  a(%rip), %eax   # load a into eax
 movl  b(%rip), %ebx   # load b into ebx
 testl %eax, %eax      # if a==1
 jne   .L2             #   jump to .L2
 movl  $0, b(%rip)
 ret
.L2:
 movl  %ebx, b(%rip)   # store ebx into b
 xorl  %eax, %eax      # store 0 into eax
 ret                   # return

gcc 4.7 -O2
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.L2:
 movl  %ebx, b(%rip)   # store ebx into b
 xorl  %eax, %eax      # store 0 into eax
 ret                   # return

gcc 4.7 -O2

The outer loop can be (and is) optimised away
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int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
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 testl %eax, %eax      # if a==1
 jne   .L2             #   jump to .L2
 movl  $0, b(%rip)
 ret
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gcc 4.7 -O2

The compiled code saves and restores b

Correct result in a sequential setting

4Monday 11 May 15



  movl   a(%rip),%eax
  movl   b(%rip),%ebx
  testl  %eax, %eax
  jne    .L2
  movl   $0, b(%rip)
  ret
.L2:
  movl   %ebx, b(%rip)
  xorl   %eax, %eax
  ret

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory
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  movl   a(%rip),%eax
  movl   b(%rip),%ebx
  testl  %eax, %eax
  jne    .L2
  movl   $0, b(%rip)
  ret
.L2:
  movl   %ebx, b(%rip)
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  ret

- Read a (1) into eax

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory
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- Read a (1) into eax

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into ebx

5Monday 11 May 15



  movl   a(%rip),%eax
  movl   b(%rip),%ebx
  testl  %eax, %eax
  jne    .L2
  movl   $0, b(%rip)
  ret
.L2:
  movl   %ebx, b(%rip)
  xorl   %eax, %eax
  ret
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Thread 1 Thread 2

Shared memory

- Read b (0) into ebx
- Store 42 into b
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Thread 1 Thread 2

Shared memory

- Read b (0) into ebx
- Store 42 into b
- Store ebx (0) into b
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  movl   a(%rip),%eax
  movl   b(%rip),%ebx
  testl  %eax, %eax
  jne    .L2
  movl   $0, b(%rip)
  ret
.L2:
  movl   %ebx, b(%rip)
  xorl   %eax, %eax
  ret

- Read a (1) into eax

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into ebx
- Store 42 into b
- Store ebx (0) into b
- Print b: 0 is printed
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C can’t be so nasty! 
Must be a subtle compiler bug.
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C can’t be so nasty! 
Must be a subtle compiler bug.

Of course C allows this.
No news here.
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What is C?

K&R

What is C?

ANSI C

C11
C99

DeFacto C: whatever 
C compilers implement
C programmers rely on
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What is C?

K&R

What is C?

ANSI C

C11
C99

DeFacto C: whatever 
C compilers implement
C programmers rely on

  1980 - ... : widespread use of threads, no spec, poor understanding of              
                      constraints

  2005 onwards: proposals by Boehm, Adve, C++0x concurrency subgroup

  2009-2011: Batty et al., draft standard ⇒ math ⇒ fixes ⇒ C/C++11 standard
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Why is it so hard?
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A simple, and innocuous, optimisation:

Constant propagation

x = 14
y = 7 - x / 2

x = 14
y = 7 - 14 / 2  

Source code

Optimised code
x = 14
y = 0
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Shared memory concurrency

x = y = 0x = y = 0

 x = 1
 if (y == 1)
   print x

 if (x == 1) {
   x = 0
   y = 1 }

Thread 1 Thread 2

Shared memory
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Shared memory concurrency

x = y = 0x = y = 0

 x = 1
 if (y == 1)
   print x

 if (x == 1) {
   x = 0
   y = 1 }

Intuitively this program always prints 0

Thread 1 Thread 2

Shared memory
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Shared memory concurrency

x = y = 0x = y = 0

 x = 1
 if (y == 1)
   print x

 if (x == 1) {
   x = 0
   y = 1 }

But if the compiler propagates the constant x = 1...

  
Thread 1 Thread 2
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Shared memory concurrency

x = y = 0x = y = 0

 x = 1
 if (y == 1)
   print x

 if (x == 1) {
   x = 0
   y = 1 }

But if the compiler propagates the constant x = 1...

...the program always writes 1 rather than 0.

  print 1  

  
Thread 1 Thread 2
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This talk

  4. Escape lanes are a Pandora’s box

  5. The way forward...

  0. Concurrency and optimisations, not so simple
  1. The layman semantics
  2. Escape lanes for the expert programmer

  3. Compiler testing via a theory of sound optimisations
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The layman solution
forbid data-races
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Standard way out: prohibit data races
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Data-races are errors

ADA 83 
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Data-races are errors

Posix Threads Specification
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Les data-races sont des erreursData-races are errors

C++2011 / C11
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Les data-races sont des erreursData-races are errors

How to use C/C++ to implement 
low-level system code?

C++2011 / C11
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Escape lanes 
for expert programmers
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Low-level atomics in C11/C++11
std::atomic<int> flag0(0),flag1(0),turn(0);

void lock(unsigned index) {
    if (0 == index) {
        flag0.store(1, std::memory_order_relaxed);
        turn.exchange(1, std::memory_order_acq_rel);

        while (flag1.load(std::memory_order_acquire)
            && 1 == turn.load(std::memory_order_relaxed))
            std::this_thread::yield();
    } else {
        flag1.store(1, std::memory_order_relaxed);
        turn.exchange(0, std::memory_order_acq_rel);

        while (flag0.load(std::memory_order_acquire)
            && 0 == turn.load(std::memory_order_relaxed))
            std::this_thread::yield();
    }
}

void unlock(unsigned index) {
    if (0 == index) {
        flag0.store(0, std::memory_order_release);
    } else {
        flag1.store(0, std::memory_order_release);
    }
}

Atomic variable declaration

New syntax 
for memory accesses

Qualifier
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The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED
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The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

Efficient implementation of message passing

Efficient implementation of message passing on ARM/Power

No synchronisation; direct access to hardware
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Memory access synchronisation

Thread 1 Thread 2

y = 1 if (x.load(MO_ACQUIRE) == 1)

x.store(1,MO_RELEASE)     r2 = y

x = y = 0
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Memory access synchronisation

Thread 1 Thread 2

y = 1 if (x.load(MO_ACQUIRE) == 1)

x.store(1,MO_RELEASE)     r2 = y

Non-atomic loads must return the most recent write 
in the happens-before order (unique in a DRF program)

x = y = 0
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Understanding MO_RELAXED

Thread 1 Thread 2

y = 1 if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED)     r2 = y

x = y = 0
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Understanding MO_RELAXED

Thread 1 Thread 2

y = 1 if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED)     r2 = y

DATA RACE

Two conflicting accesses not related by happens-before

x = y = 0
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Understanding MO_RELAXED

Thread 1 Thread 2

y.store(1,MO_RELAXED) if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED)     r2 = y.load(MO_RELAXED)

WELL DEFINED

but r2 = 0 is possible

x = y = 0
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Understanding MO_RELAXED

Thread 1 Thread 2

y.store(1,MO_RELAXED) if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED)     r2 = y.load(MO_RELAXED)

WELL DEFINED

but r2 = 0 is possible

 Allow a RELAXED load to see any store that:

   - does not happens-after it

   - is not hidden by an intervening store hb-ordered between them

x = y = 0

Intuition
the compiler (or hardware) can reorder independent accesses
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The full model

a
r
−→ b = (a, b) ∈ r

a r b = (a, b) ∈ r

a ̸
r
−→ b = (a, b) /∈ r

r
−→ = r

a
r
−→ b

s
−→ c = a

r
−→ b ∧ b

s
−→ c

relation over s rel = domain rel ⊆ s ∧ range rel ⊆ s

rel
−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

rel
−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

strict preorder ord = irreflexive ord ∧ trans ord

total over s ord =
relation over s ord ∧

(∀x ∈ s. ∀y ∈ s. x
ord
−−→ y ∨ y

ord
−−→ x ∨ (x = y))

strict total order over s ord =
strict preorder ord ∧ total over s ord

x |
ord
−−→pred y =

pred x ∧ x
ord
−−→ y ∧ ¬(∃z . pred z ∧ x

ord
−−→ z

ord
−−→ y)

x |
ord
−−→ y =

x
ord
−−→ y ∧ ¬(∃z . x

ord
−−→ z

ord
−−→ y)

well founded r = wf r

type abbrev action id : string

type abbrev thread id : string

type abbrev location : string

type abbrev val : string

memory order enum =
Mo seq cst

| Mo relaxed

| Mo release

| Mo acquire

| Mo consume

| Mo acq rel

action =
Lock of action id thread id location

| Unlock of action id thread id location
| Atomic load of action id thread id memory order enum location val
| Atomic store of action id thread id memory order enum location val
| Atomic rmw of action id thread id memory order enum location val val
| Load of action id thread id location val
| Store of action id thread id location val
| Fence of action id thread id memory order enum

(action id of (Lock aid ) = aid) ∧
(action id of (Unlock aid ) = aid) ∧
(action id of (Atomic load aid ) = aid) ∧
(action id of (Atomic store aid ) = aid) ∧
(action id of (Atomic rmw aid ) = aid) ∧
(action id of (Load aid ) = aid) ∧
(action id of (Store aid ) = aid) ∧
(action id of (Fence aid ) = aid)

(thread id of (Lock tid ) = tid) ∧
(thread id of (Unlock tid ) = tid) ∧
(thread id of (Atomic load tid ) = tid) ∧
(thread id of (Atomic store tid ) = tid) ∧
(thread id of (Atomic rmw tid ) = tid) ∧
(thread id of (Load tid ) = tid) ∧
(thread id of (Store tid ) = tid) ∧
(thread id of (Fence tid ) = tid)

(memory order (Atomic load mem ord ) =
Some mem ord) ∧

(memory order (Atomic store mem ord ) =
Some mem ord) ∧

(memory order (Atomic rmw mem ord ) =
Some mem ord) ∧

(memory order (Fence mem ord) =
Some mem ord) ∧

(memory order =
None)

(location (Lock l) = Some l) ∧
(location (Unlock l) = Some l) ∧
(location (Atomic load l ) = Some l) ∧
(location (Atomic store l ) = Some l) ∧
(location (Atomic rmw l ) = Some l) ∧
(location (Load l ) = Some l) ∧
(location (Store l ) = Some l) ∧
(location (Fence ) = None)

(value read (Atomic load v) = Some v) ∧
(value read (Atomic rmw v ) = Some v) ∧
(value read (Load v) = Some v) ∧
(value read = None)

(value written (Atomic store v) = Some v) ∧
(value written (Atomic rmw v) = Some v) ∧
(value written (Store v) = Some v) ∧
(value written = None)

is lock a =
case a of Lock → T ∥ → F

is unlock a =
case a of Unlock → T ∥ → F

is atomic load a =
case a of Atomic load → T ∥ → F

is atomic store a =
case a of Atomic store → T ∥ → F

is atomic rmw a =
case a of Atomic rmw → T ∥ → F

is load a = case a of Load → T ∥ → F

is store a = case a of Store → T ∥ → F

is fence a = case a of Fence → T ∥ → F

is lock or unlock a = is lock a ∨ is unlock a

is atomic action a =
is atomic load a ∨ is atomic store a ∨ is atomic rmw a

is load or store a = is load a ∨ is store a

is read a =
is atomic load a ∨ is atomic rmw a ∨ is load a

is write a =
is atomic store a ∨ is atomic rmw a ∨ is store a

is acquire a =
(case memory order a of

Some mem ord →
(mem ord ∈

{Mo acquire,Mo acq rel,Mo seq cst} ∧
(is read a ∨ is fence a)) ∨
(* 29.8:5 states that consume fences are acquire fences. *)
((mem ord = Mo consume) ∧ is fence a)

∥ None → is lock a)

is consume a =
is read a ∧ (memory order a = Some Mo consume)

is release a =
(case memory order a of

Some mem ord →
mem ord ∈ {Mo release,Mo acq rel,Mo seq cst} ∧

(is write a ∨ is fence a)
∥ None → is unlock a)

is seq cst a = (memory order a = Some Mo seq cst)

location kind =
Mutex

| Non atomic

| Atomic

actions respect location kinds = actions respect location kinds =
∀a.

case location a of Some l →
(case location-kind l of

Mutex → is lock or unlock a
∥ Non atomic → is load or store a
∥ Atomic → is load or store a ∨ is atomic action a)

∥ None → T

is at location kind = is at location kind =
case location a of

Some l → (location-kind l = lk0)
∥ None → F

is at mutex location a =
is at location kind a Mutex

is at non atomic location a =
is at location kind a Non atomic

is at atomic location a =
is at location kind a Atomic

same thread a b = (thread id of a = thread id of b)

threadwise relation over s rel =
relation over s rel ∧ (∀(a, b) ∈ rel . same thread a b)

same location a b = (location a = location b)

locations of actions = {l . ∃a. (location a = Some l)}

well formed action a =
case a of

Atomic load mem ord → mem ord ∈
{Mo relaxed,Mo acquire,Mo seq cst,Mo consume}

∥ Atomic store mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo seq cst}

∥ Atomic rmw mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo acquire,Mo acq rel,Mo seq cst,Mo consume}

∥ → T

well formed threads = well formed threads =
inj on action id of (actions) ∧
(∀a. well formed action a) ∧
threadwise relation over actions sequenced-before ∧
threadwise relation over actions data-dependency ∧
threadwise relation over actions control-dependency ∧
strict preorder sequenced-before ∧
strict preorder data-dependency ∧
strict preorder control-dependency ∧
relation over actions additional-synchronized-with ∧
(∀a. thread id of a ∈ threads) ∧
actions respect location kinds∧
data-dependency ⊆ sequenced-before

well formed reads from mapping = well formed reads from mapping =

relation over actions (
rf
−→) ∧

(∀a. ∀a′. ∀b. a
rf
−→ b ∧ a′

rf
−→ b =⇒ (a = a′)) ∧

(∀(a, b) ∈
rf
−→.

same location a b ∧
(value read b = value written a) ∧
(a ̸= b) ∧
(is at mutex location a =⇒

is unlock a ∧ is lock b) ∧
(is at non atomic location a =⇒

is store a ∧ is load b) ∧
(is at atomic location a =⇒
(is atomic store a ∨ is atomic rmw a ∨ is store a)
∧ (is atomic load b ∨ is atomic rmw b ∨ is load b)))

all lock or unlock actions at lopt as =
{a ∈ as. is lock or unlock a ∧ (location a = lopt)}

consistent locks = consistent locks =
∀l ∈ locations of actions. (location-kind l = Mutex) =⇒ (

let lock unlock actions =
all lock or unlock actions at (Some l)actions in

let lock order =
sc
−→|lock unlock actions in

(* 30.4.1:5 - The implementation shall serialize those (lock and unlock) operations. *)
strict total order over lock unlock actions lock order ∧

(* 30.4.1:1 A thread owns a mutex from the time it successfully calls one of the lock functions until
it calls unlock.*)
(* 30.4.1:20 Requires: The calling thread shall own the mutex. *)
(* 30.4.1:21 Effects: Releases the calling threads ownership of the mutex.*)
(∀au ∈ lock unlock actions. is unlock au =⇒

(∃al ∈ lock unlock actions.

al |
lock order
−−−−−−→ au ∧ same thread al au ∧ is lock al)) ∧

(* 30.4.1:7 Effects: Blocks the calling thread until ownership of the mutex can be obtained for the
calling thread.*)
(* 30.4.1:8 Postcondition: The calling thread owns the mutex. *)
(∀al ∈ lock unlock actions. is lock al =⇒

(∀au ∈ lock unlock actions.

au |
lock order
−−−−−−→ al =⇒ is unlock au)))

rs element rs head a =
same thread a rs head ∨ is atomic rmw a

release sequence = arel
release-sequence
−−−−−−−−−→ b =

is at atomic location b ∧
is release arel ∧ (
(b = arel) ∨

(rs element arel b ∧ arel
modification-order
−−−−−−−−−−→ b ∧

(∀c . arel
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element arel c)))

release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

hypothetical release sequence = a
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ b =

is at atomic location b ∧ (
(b = a) ∨

(rs element a b ∧ a
modification-order
−−−−−−−−−−→ b ∧

(∀c . a
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element a c)))

hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

hypothetical release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

synchronizes with = a
synchronizes-with
−−−−−−−−−−→ b =

(* – additional synchronization, from thread create etc. – *)

a
additional-synchronized-with
−−−−−−−−−−−−−−−−→ b ∨

(same location a b ∧ a ∈ actions ∧ b ∈ actions ∧ (
(* – mutex synchronization – *)

(is unlock a ∧ is lock b ∧ a
sc
−→ b) ∨

(* – release/acquire synchronization – *)
(is release a ∧ is acquire b ∧ ¬ same thread a b ∧

(∃c . a
release-sequence
−−−−−−−−−→ c

rf
−→ b)) ∨

(* – fence synchronization – *)
(is fence a ∧ is release a ∧ is fence b ∧ is acquire b ∧
(∃x . ∃y . same location x y ∧

is atomic action x ∧ is atomic action y ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧ y

sequenced-before
−−−−−−−−−→ b ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ z

rf
−→ y))) ∨

(is fence a ∧ is release a ∧
is atomic action b ∧ is acquire b ∧
(∃x . same location x b ∧

is atomic action x ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ z

rf
−→ b))) ∨

(is atomic action a ∧ is release a ∧
is fence b ∧ is acquire b ∧
(∃x . same location a x ∧ is atomic action x ∧

x
sequenced-before
−−−−−−−−−→ b ∧

(∃z . a
release-sequence
−−−−−−−−−→ z

rf
−→ x)))))

synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence =

synchronizes with actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence a b}

carries a dependency to = a
carries-a-dependency-to
−−−−−−−−−−−−−→ b =

a ((
rf
−→∩

sequenced-before
−−−−−−−−−→) ∪

data-dependency
−−−−−−−−−→)+ b

carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf =

carries a dependency to actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf a b}

dependency ordered before = a
dependency-ordered-before
−−−−−−−−−−−−−−−→ d =

a ∈ actions ∧ d ∈ actions ∧
(∃b. is release a ∧ is consume b ∧

(∃e. a
release-sequence
−−−−−−−−−→ e

rf
−→ b) ∧

(b
carries-a-dependency-to
−−−−−−−−−−−−−→ d ∨ (b = d)))

dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to =

dependency ordered before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to a b}

simple happens before =
simple happens before
−−−−−−−−−−−−−→ =

(
sequenced-before
−−−−−−−−−→∪

synchronizes-with
−−−−−−−−−−→)+

consistent simple happens before shb =

irreflexive (
shb
−−→)

inter thread happens before =
inter-thread-happens-before
−−−−−−−−−−−−−−−→ =

let r =
synchronizes-with
−−−−−−−−−−→∪

dependency-ordered-before
−−−−−−−−−−−−−−−→∪

(
synchronizes-with
−−−−−−−−−−→ ◦

sequenced-before
−−−−−−−−−→) in

(
r
−→∪ (

sequenced-before
−−−−−−−−−→ ◦

r
−→))+

consistent inter thread happens before = consistent inter thread happens before =

irreflexive (
inter-thread-happens-before
−−−−−−−−−−−−−−−→)

happens before =
happens-before
−−−−−−−−→ =

sequenced-before
−−−−−−−−−→∪

inter-thread-happens-before
−−−−−−−−−−−−−−−→

all sc actions = all sc actions =
{a. (is seq cst a ∨ is lock a ∨ is unlock a)}

consistent sc order = consistent sc order =

let sc happens before =
happens-before
−−−−−−−−→|all sc actions in

let sc mod order =
modification-order
−−−−−−−−−−→|all sc actions in

strict total order over all sc actions (
sc
−→) ∧

sc happens before
−−−−−−−−−−−→ ⊆

sc
−→∧

sc mod order
−−−−−−−−→ ⊆

sc
−→

consistent modification order = consistent modification order =

(∀a. ∀b. a
modification-order
−−−−−−−−−−→ b =⇒ same location a b) ∧

(∀l ∈ locations of actions. case location-kind l of
Atomic → (

let actions at l = {a. (location a = Some l)} in
let writes at l = {a at l . (is store a ∨

is atomic store a ∨ is atomic rmw a)} in
strict total order over writes at l

(
modification-order
−−−−−−−−−−→|actions at l) ∧
(* happens-before at the writes of l is a subset of mo for l *)
happens-before
−−−−−−−−→|writes at l ⊆

modification-order
−−−−−−−−−−→∧

(* Mo seq cst fences impose modification order *)

(
sequenced-before
−−−−−−−−−→ ◦ (

sc
−→|is fence) ◦

sequenced-before
−−−−−−−−−→|writes at l)

⊆
modification-order
−−−−−−−−−−→)

∥ → (
let actions at l = {a. (location a = Some l)} in

(
modification-order
−−−−−−−−−−→|actions at l) = {}))

visible side effect = a
visible-side-effect
−−−−−−−−−→ b =

a
happens-before
−−−−−−−−→ b ∧

is write a ∧ is read b ∧ same location a b ∧
¬(∃c . (c ̸= a) ∧ (c ̸= b) ∧

is write c ∧ same location c b ∧

a
happens-before
−−−−−−−−→ c

happens-before
−−−−−−−−→ b)

visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before =
{ab ∈ happens-before. let (a, b) = ab in
visible side effect actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before a b}

visible sequence of side effects tail = visible sequence of side effects tail vsse head b =

{c . vsse head
modification-order
−−−−−−−−−−→ c ∧

¬(b
happens-before
−−−−−−−−→ c) ∧

(∀a. vsse head
modification-order
−−−−−−−−−−→ a

modification-order
−−−−−−−−−−→ c

=⇒ ¬(b
happens-before
−−−−−−−−→ a))}

myimage f s = {y . ∃x ∈ s. (y = f x)}

visible sequences of side effects = visible sequences of side effects =
λ(vsse head , b).

(b, if is at atomic location b then
{vsse head} ∪
visible sequence of side effects tail vsse head b

else
{})

visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect =
myimage (visible sequences of side effects actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect)visible-side-effect

consistent reads from mapping = consistent reads from mapping =
(∀b. (is read b ∧ is at non atomic location b) =⇒

(if (∃avse . avse
visible-side-effect
−−−−−−−−−→ b)

then (∃avse . avse
visible-side-effect
−−−−−−−−−→ b ∧ avse

rf
−→ b)

else ¬(∃a. a
rf
−→ b))) ∧

(∀b. (is read b ∧ is at atomic location b) =⇒
(if (∃(b′, vsse) ∈ visible-sequences-of-side-effects. (b′ = b))
then (∃(b′, vsse) ∈ visible-sequences-of-side-effects.

(b′ = b) ∧ (∃c ∈ vsse. c
rf
−→ b))

else ¬(∃a. a
rf
−→ b))) ∧

(∀(x , a) ∈
rf
−→.

∀(y , b) ∈
rf
−→.

a
happens-before
−−−−−−−−→ b ∧
same location a b ∧ is at atomic location b

=⇒ (x = y) ∨ x
modification-order
−−−−−−−−−−→ y) ∧

(* new CoWR *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c .

c
rf
−→ b ∧
is write a ∧ same location a b ∧ is at atomic location b

=⇒ (c = a) ∨ a
modification-order
−−−−−−−−−−→ c) ∧

(* new CoRW *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c .

c
rf
−→ a ∧
is write b ∧ same location a b ∧ is at atomic location a

=⇒ c
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is atomic rmw b

=⇒ a |
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is seq cst b

=⇒ (¬ is seq cst a ∧ (∀x . x |
sc
−→λc. is write c∧same location b c b =⇒ x

modification-order
−−−−−−−−−−→ a)) ∨

a |
sc
−→λc. is write c∧same location b c b) ∧

(* -Fence restrictions- *)

(* 29.3:3 *)

(∀a. ∀(x , b) ∈
sequenced-before
−−−−−−−−−→. ∀y .

(is fence x ∧ is seq cst x ∧ is atomic action b ∧
is write a ∧ same location a b ∧

a |
sc
−→ x ∧ y

rf
−→ b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:4 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

rf
−→.

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ same location a b ∧

x
sc
−→ b ∧ is atomic action b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:5 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

sequenced-before
−−−−−−−−−→. ∀z .

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ is fence y ∧ is seq cst y ∧
is atomic action b ∧ same location a b ∧

x
sc
−→ y ∧ z

rf
−→ b)

=⇒ (z = a) ∨ a
modification-order
−−−−−−−−−−→ z)

all data dependency =
all data dependency
−−−−−−−−−−−−→ =

(
rf
−→∪

carries-a-dependency-to
−−−−−−−−−−−−−→)+

consistent control dependency = consistent control dependency =

irreflexive ((
control-dependency
−−−−−−−−−−−→∪

all data dependency
−−−−−−−−−−−−→)+)

consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
well formed threads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧
consistent locks actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc ∧ (
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let hypothetical-release-sequence = hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in
let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in
let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in
let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in
let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in
let visible-side-effect = visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before in
let visible-sequences-of-side-effects = visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect in
consistent inter thread happens before inter-thread-happens-before ∧
consistent sc order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order sc happens-before ∧
consistent modification order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc modification-order happens-before ∧
well formed reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf ∧
consistent reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf sc modification-order happens-before visible-side-effect visible-sequences-of-side-effects)

indeterminate reads actions threads = indeterminate reads =

{b. is read b ∧ ¬(∃a. a
rf
−→ b)}

unsequenced races = unsequenced races = {(a, b).
(a ̸= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
same thread a b ∧

¬(a
sequenced-before
−−−−−−−−−→ b ∨ b

sequenced-before
−−−−−−−−−→ a)}

data races = data races = {(a, b).
(a ̸= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
¬ same thread a b ∧
¬(is atomic action a ∧ is atomic action b) ∧

¬(a
happens-before
−−−−−−−−→ b ∨ b

happens-before
−−−−−−−−→ a)}

data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let hypothetical-release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in
let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in
let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in
let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in
let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in
data races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before

cpp memory model opsem (p ∈ ′program) =
let executions = {(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc).

opsem p actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧ consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc} in
if ∃(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc) ∈ executions .

(indeterminate reads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf ̸= {}) ∨
(unsequenced races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ̸= {}) ∨
(data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc ̸= {})

then {}
else executions
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The full model

a
r
−→ b = (a, b) ∈ r

a r b = (a, b) ∈ r

a ̸
r
−→ b = (a, b) /∈ r

r
−→ = r

a
r
−→ b

s
−→ c = a

r
−→ b ∧ b

s
−→ c

relation over s rel = domain rel ⊆ s ∧ range rel ⊆ s

rel
−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

rel
−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

strict preorder ord = irreflexive ord ∧ trans ord

total over s ord =
relation over s ord ∧

(∀x ∈ s. ∀y ∈ s. x
ord
−−→ y ∨ y

ord
−−→ x ∨ (x = y))

strict total order over s ord =
strict preorder ord ∧ total over s ord

x |
ord
−−→pred y =

pred x ∧ x
ord
−−→ y ∧ ¬(∃z . pred z ∧ x

ord
−−→ z

ord
−−→ y)

x |
ord
−−→ y =

x
ord
−−→ y ∧ ¬(∃z . x

ord
−−→ z

ord
−−→ y)

well founded r = wf r

type abbrev action id : string

type abbrev thread id : string

type abbrev location : string

type abbrev val : string

memory order enum =
Mo seq cst

| Mo relaxed

| Mo release

| Mo acquire

| Mo consume

| Mo acq rel

action =
Lock of action id thread id location

| Unlock of action id thread id location
| Atomic load of action id thread id memory order enum location val
| Atomic store of action id thread id memory order enum location val
| Atomic rmw of action id thread id memory order enum location val val
| Load of action id thread id location val
| Store of action id thread id location val
| Fence of action id thread id memory order enum

(action id of (Lock aid ) = aid) ∧
(action id of (Unlock aid ) = aid) ∧
(action id of (Atomic load aid ) = aid) ∧
(action id of (Atomic store aid ) = aid) ∧
(action id of (Atomic rmw aid ) = aid) ∧
(action id of (Load aid ) = aid) ∧
(action id of (Store aid ) = aid) ∧
(action id of (Fence aid ) = aid)

(thread id of (Lock tid ) = tid) ∧
(thread id of (Unlock tid ) = tid) ∧
(thread id of (Atomic load tid ) = tid) ∧
(thread id of (Atomic store tid ) = tid) ∧
(thread id of (Atomic rmw tid ) = tid) ∧
(thread id of (Load tid ) = tid) ∧
(thread id of (Store tid ) = tid) ∧
(thread id of (Fence tid ) = tid)

(memory order (Atomic load mem ord ) =
Some mem ord) ∧

(memory order (Atomic store mem ord ) =
Some mem ord) ∧

(memory order (Atomic rmw mem ord ) =
Some mem ord) ∧

(memory order (Fence mem ord) =
Some mem ord) ∧

(memory order =
None)

(location (Lock l) = Some l) ∧
(location (Unlock l) = Some l) ∧
(location (Atomic load l ) = Some l) ∧
(location (Atomic store l ) = Some l) ∧
(location (Atomic rmw l ) = Some l) ∧
(location (Load l ) = Some l) ∧
(location (Store l ) = Some l) ∧
(location (Fence ) = None)

(value read (Atomic load v) = Some v) ∧
(value read (Atomic rmw v ) = Some v) ∧
(value read (Load v) = Some v) ∧
(value read = None)

(value written (Atomic store v) = Some v) ∧
(value written (Atomic rmw v) = Some v) ∧
(value written (Store v) = Some v) ∧
(value written = None)

is lock a =
case a of Lock → T ∥ → F

is unlock a =
case a of Unlock → T ∥ → F

is atomic load a =
case a of Atomic load → T ∥ → F

is atomic store a =
case a of Atomic store → T ∥ → F

is atomic rmw a =
case a of Atomic rmw → T ∥ → F

is load a = case a of Load → T ∥ → F

is store a = case a of Store → T ∥ → F

is fence a = case a of Fence → T ∥ → F

is lock or unlock a = is lock a ∨ is unlock a

is atomic action a =
is atomic load a ∨ is atomic store a ∨ is atomic rmw a

is load or store a = is load a ∨ is store a

is read a =
is atomic load a ∨ is atomic rmw a ∨ is load a

is write a =
is atomic store a ∨ is atomic rmw a ∨ is store a

is acquire a =
(case memory order a of

Some mem ord →
(mem ord ∈

{Mo acquire,Mo acq rel,Mo seq cst} ∧
(is read a ∨ is fence a)) ∨
(* 29.8:5 states that consume fences are acquire fences. *)
((mem ord = Mo consume) ∧ is fence a)

∥ None → is lock a)

is consume a =
is read a ∧ (memory order a = Some Mo consume)

is release a =
(case memory order a of

Some mem ord →
mem ord ∈ {Mo release,Mo acq rel,Mo seq cst} ∧

(is write a ∨ is fence a)
∥ None → is unlock a)

is seq cst a = (memory order a = Some Mo seq cst)

location kind =
Mutex

| Non atomic

| Atomic

actions respect location kinds = actions respect location kinds =
∀a.

case location a of Some l →
(case location-kind l of

Mutex → is lock or unlock a
∥ Non atomic → is load or store a
∥ Atomic → is load or store a ∨ is atomic action a)

∥ None → T

is at location kind = is at location kind =
case location a of

Some l → (location-kind l = lk0)
∥ None → F

is at mutex location a =
is at location kind a Mutex

is at non atomic location a =
is at location kind a Non atomic

is at atomic location a =
is at location kind a Atomic

same thread a b = (thread id of a = thread id of b)

threadwise relation over s rel =
relation over s rel ∧ (∀(a, b) ∈ rel . same thread a b)

same location a b = (location a = location b)

locations of actions = {l . ∃a. (location a = Some l)}

well formed action a =
case a of

Atomic load mem ord → mem ord ∈
{Mo relaxed,Mo acquire,Mo seq cst,Mo consume}

∥ Atomic store mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo seq cst}

∥ Atomic rmw mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo acquire,Mo acq rel,Mo seq cst,Mo consume}

∥ → T

well formed threads = well formed threads =
inj on action id of (actions) ∧
(∀a. well formed action a) ∧
threadwise relation over actions sequenced-before ∧
threadwise relation over actions data-dependency ∧
threadwise relation over actions control-dependency ∧
strict preorder sequenced-before ∧
strict preorder data-dependency ∧
strict preorder control-dependency ∧
relation over actions additional-synchronized-with ∧
(∀a. thread id of a ∈ threads) ∧
actions respect location kinds∧
data-dependency ⊆ sequenced-before

well formed reads from mapping = well formed reads from mapping =

relation over actions (
rf
−→) ∧

(∀a. ∀a′. ∀b. a
rf
−→ b ∧ a′

rf
−→ b =⇒ (a = a′)) ∧

(∀(a, b) ∈
rf
−→.

same location a b ∧
(value read b = value written a) ∧
(a ̸= b) ∧
(is at mutex location a =⇒

is unlock a ∧ is lock b) ∧
(is at non atomic location a =⇒

is store a ∧ is load b) ∧
(is at atomic location a =⇒
(is atomic store a ∨ is atomic rmw a ∨ is store a)
∧ (is atomic load b ∨ is atomic rmw b ∨ is load b)))

all lock or unlock actions at lopt as =
{a ∈ as. is lock or unlock a ∧ (location a = lopt)}

consistent locks = consistent locks =
∀l ∈ locations of actions. (location-kind l = Mutex) =⇒ (

let lock unlock actions =
all lock or unlock actions at (Some l)actions in

let lock order =
sc
−→|lock unlock actions in

(* 30.4.1:5 - The implementation shall serialize those (lock and unlock) operations. *)
strict total order over lock unlock actions lock order ∧

(* 30.4.1:1 A thread owns a mutex from the time it successfully calls one of the lock functions until
it calls unlock.*)
(* 30.4.1:20 Requires: The calling thread shall own the mutex. *)
(* 30.4.1:21 Effects: Releases the calling threads ownership of the mutex.*)
(∀au ∈ lock unlock actions. is unlock au =⇒

(∃al ∈ lock unlock actions.

al |
lock order
−−−−−−→ au ∧ same thread al au ∧ is lock al)) ∧

(* 30.4.1:7 Effects: Blocks the calling thread until ownership of the mutex can be obtained for the
calling thread.*)
(* 30.4.1:8 Postcondition: The calling thread owns the mutex. *)
(∀al ∈ lock unlock actions. is lock al =⇒

(∀au ∈ lock unlock actions.

au |
lock order
−−−−−−→ al =⇒ is unlock au)))

rs element rs head a =
same thread a rs head ∨ is atomic rmw a

release sequence = arel
release-sequence
−−−−−−−−−→ b =

is at atomic location b ∧
is release arel ∧ (
(b = arel) ∨

(rs element arel b ∧ arel
modification-order
−−−−−−−−−−→ b ∧

(∀c . arel
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element arel c)))

release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

hypothetical release sequence = a
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ b =

is at atomic location b ∧ (
(b = a) ∨

(rs element a b ∧ a
modification-order
−−−−−−−−−−→ b ∧

(∀c . a
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element a c)))

hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

hypothetical release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

synchronizes with = a
synchronizes-with
−−−−−−−−−−→ b =

(* – additional synchronization, from thread create etc. – *)

a
additional-synchronized-with
−−−−−−−−−−−−−−−−→ b ∨

(same location a b ∧ a ∈ actions ∧ b ∈ actions ∧ (
(* – mutex synchronization – *)

(is unlock a ∧ is lock b ∧ a
sc
−→ b) ∨

(* – release/acquire synchronization – *)
(is release a ∧ is acquire b ∧ ¬ same thread a b ∧

(∃c . a
release-sequence
−−−−−−−−−→ c

rf
−→ b)) ∨

(* – fence synchronization – *)
(is fence a ∧ is release a ∧ is fence b ∧ is acquire b ∧
(∃x . ∃y . same location x y ∧

is atomic action x ∧ is atomic action y ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧ y

sequenced-before
−−−−−−−−−→ b ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ z

rf
−→ y))) ∨

(is fence a ∧ is release a ∧
is atomic action b ∧ is acquire b ∧
(∃x . same location x b ∧

is atomic action x ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ z

rf
−→ b))) ∨

(is atomic action a ∧ is release a ∧
is fence b ∧ is acquire b ∧
(∃x . same location a x ∧ is atomic action x ∧

x
sequenced-before
−−−−−−−−−→ b ∧

(∃z . a
release-sequence
−−−−−−−−−→ z

rf
−→ x)))))

synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence =

synchronizes with actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence a b}

carries a dependency to = a
carries-a-dependency-to
−−−−−−−−−−−−−→ b =

a ((
rf
−→∩

sequenced-before
−−−−−−−−−→) ∪

data-dependency
−−−−−−−−−→)+ b

carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf =

carries a dependency to actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf a b}

dependency ordered before = a
dependency-ordered-before
−−−−−−−−−−−−−−−→ d =

a ∈ actions ∧ d ∈ actions ∧
(∃b. is release a ∧ is consume b ∧

(∃e. a
release-sequence
−−−−−−−−−→ e

rf
−→ b) ∧

(b
carries-a-dependency-to
−−−−−−−−−−−−−→ d ∨ (b = d)))

dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to =

dependency ordered before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to a b}

simple happens before =
simple happens before
−−−−−−−−−−−−−→ =

(
sequenced-before
−−−−−−−−−→∪

synchronizes-with
−−−−−−−−−−→)+

consistent simple happens before shb =

irreflexive (
shb
−−→)

inter thread happens before =
inter-thread-happens-before
−−−−−−−−−−−−−−−→ =

let r =
synchronizes-with
−−−−−−−−−−→∪

dependency-ordered-before
−−−−−−−−−−−−−−−→∪

(
synchronizes-with
−−−−−−−−−−→ ◦

sequenced-before
−−−−−−−−−→) in

(
r
−→∪ (

sequenced-before
−−−−−−−−−→ ◦

r
−→))+

consistent inter thread happens before = consistent inter thread happens before =

irreflexive (
inter-thread-happens-before
−−−−−−−−−−−−−−−→)

happens before =
happens-before
−−−−−−−−→ =

sequenced-before
−−−−−−−−−→∪

inter-thread-happens-before
−−−−−−−−−−−−−−−→

all sc actions = all sc actions =
{a. (is seq cst a ∨ is lock a ∨ is unlock a)}

consistent sc order = consistent sc order =

let sc happens before =
happens-before
−−−−−−−−→|all sc actions in

let sc mod order =
modification-order
−−−−−−−−−−→|all sc actions in

strict total order over all sc actions (
sc
−→) ∧

sc happens before
−−−−−−−−−−−→ ⊆

sc
−→∧

sc mod order
−−−−−−−−→ ⊆

sc
−→

consistent modification order = consistent modification order =

(∀a. ∀b. a
modification-order
−−−−−−−−−−→ b =⇒ same location a b) ∧

(∀l ∈ locations of actions. case location-kind l of
Atomic → (

let actions at l = {a. (location a = Some l)} in
let writes at l = {a at l . (is store a ∨

is atomic store a ∨ is atomic rmw a)} in
strict total order over writes at l

(
modification-order
−−−−−−−−−−→|actions at l) ∧
(* happens-before at the writes of l is a subset of mo for l *)
happens-before
−−−−−−−−→|writes at l ⊆

modification-order
−−−−−−−−−−→∧

(* Mo seq cst fences impose modification order *)

(
sequenced-before
−−−−−−−−−→ ◦ (

sc
−→|is fence) ◦

sequenced-before
−−−−−−−−−→|writes at l)

⊆
modification-order
−−−−−−−−−−→)

∥ → (
let actions at l = {a. (location a = Some l)} in

(
modification-order
−−−−−−−−−−→|actions at l) = {}))

visible side effect = a
visible-side-effect
−−−−−−−−−→ b =

a
happens-before
−−−−−−−−→ b ∧

is write a ∧ is read b ∧ same location a b ∧
¬(∃c . (c ̸= a) ∧ (c ̸= b) ∧

is write c ∧ same location c b ∧

a
happens-before
−−−−−−−−→ c

happens-before
−−−−−−−−→ b)

visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before =
{ab ∈ happens-before. let (a, b) = ab in
visible side effect actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before a b}

visible sequence of side effects tail = visible sequence of side effects tail vsse head b =

{c . vsse head
modification-order
−−−−−−−−−−→ c ∧

¬(b
happens-before
−−−−−−−−→ c) ∧

(∀a. vsse head
modification-order
−−−−−−−−−−→ a

modification-order
−−−−−−−−−−→ c

=⇒ ¬(b
happens-before
−−−−−−−−→ a))}

myimage f s = {y . ∃x ∈ s. (y = f x)}

visible sequences of side effects = visible sequences of side effects =
λ(vsse head , b).

(b, if is at atomic location b then
{vsse head} ∪
visible sequence of side effects tail vsse head b

else
{})

visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect =
myimage (visible sequences of side effects actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect)visible-side-effect

consistent reads from mapping = consistent reads from mapping =
(∀b. (is read b ∧ is at non atomic location b) =⇒

(if (∃avse . avse
visible-side-effect
−−−−−−−−−→ b)

then (∃avse . avse
visible-side-effect
−−−−−−−−−→ b ∧ avse

rf
−→ b)

else ¬(∃a. a
rf
−→ b))) ∧

(∀b. (is read b ∧ is at atomic location b) =⇒
(if (∃(b′, vsse) ∈ visible-sequences-of-side-effects. (b′ = b))
then (∃(b′, vsse) ∈ visible-sequences-of-side-effects.

(b′ = b) ∧ (∃c ∈ vsse. c
rf
−→ b))

else ¬(∃a. a
rf
−→ b))) ∧

(∀(x , a) ∈
rf
−→.

∀(y , b) ∈
rf
−→.

a
happens-before
−−−−−−−−→ b ∧
same location a b ∧ is at atomic location b

=⇒ (x = y) ∨ x
modification-order
−−−−−−−−−−→ y) ∧

(* new CoWR *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c .

c
rf
−→ b ∧
is write a ∧ same location a b ∧ is at atomic location b

=⇒ (c = a) ∨ a
modification-order
−−−−−−−−−−→ c) ∧

(* new CoRW *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c .

c
rf
−→ a ∧
is write b ∧ same location a b ∧ is at atomic location a

=⇒ c
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is atomic rmw b

=⇒ a |
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is seq cst b

=⇒ (¬ is seq cst a ∧ (∀x . x |
sc
−→λc. is write c∧same location b c b =⇒ x

modification-order
−−−−−−−−−−→ a)) ∨

a |
sc
−→λc. is write c∧same location b c b) ∧

(* -Fence restrictions- *)

(* 29.3:3 *)

(∀a. ∀(x , b) ∈
sequenced-before
−−−−−−−−−→. ∀y .

(is fence x ∧ is seq cst x ∧ is atomic action b ∧
is write a ∧ same location a b ∧

a |
sc
−→ x ∧ y

rf
−→ b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:4 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

rf
−→.

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ same location a b ∧

x
sc
−→ b ∧ is atomic action b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:5 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

sequenced-before
−−−−−−−−−→. ∀z .

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ is fence y ∧ is seq cst y ∧
is atomic action b ∧ same location a b ∧

x
sc
−→ y ∧ z

rf
−→ b)

=⇒ (z = a) ∨ a
modification-order
−−−−−−−−−−→ z)

all data dependency =
all data dependency
−−−−−−−−−−−−→ =

(
rf
−→∪

carries-a-dependency-to
−−−−−−−−−−−−−→)+

consistent control dependency = consistent control dependency =

irreflexive ((
control-dependency
−−−−−−−−−−−→∪

all data dependency
−−−−−−−−−−−−→)+)

consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
well formed threads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧
consistent locks actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc ∧ (
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let hypothetical-release-sequence = hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in
let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in
let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in
let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in
let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in
let visible-side-effect = visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before in
let visible-sequences-of-side-effects = visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect in
consistent inter thread happens before inter-thread-happens-before ∧
consistent sc order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order sc happens-before ∧
consistent modification order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc modification-order happens-before ∧
well formed reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf ∧
consistent reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf sc modification-order happens-before visible-side-effect visible-sequences-of-side-effects)

indeterminate reads actions threads = indeterminate reads =

{b. is read b ∧ ¬(∃a. a
rf
−→ b)}

unsequenced races = unsequenced races = {(a, b).
(a ̸= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
same thread a b ∧

¬(a
sequenced-before
−−−−−−−−−→ b ∨ b

sequenced-before
−−−−−−−−−→ a)}

data races = data races = {(a, b).
(a ̸= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
¬ same thread a b ∧
¬(is atomic action a ∧ is atomic action b) ∧

¬(a
happens-before
−−−−−−−−→ b ∨ b

happens-before
−−−−−−−−→ a)}

data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let hypothetical-release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in
let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in
let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in
let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in
let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in
data races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before

cpp memory model opsem (p ∈ ′program) =
let executions = {(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc).

opsem p actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧ consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc} in
if ∃(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc) ∈ executions .

(indeterminate reads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf ̸= {}) ∨
(unsequenced races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ̸= {}) ∨
(data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc ̸= {})

then {}
else executions

We can reason about C concurrency!
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int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 2 is not affected by Thread 1 and vice-versa

This program is data-race free
This program must print 42
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b = 42;
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Compiler testing: state of the art  
    Yang, Chen, Eide, Regehr - PLDI 2011
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Compiler testing: state of the art  
    Yang, Chen, Eide, Regehr - PLDI 2011

Reported hundreds of bugs

on various versions of gcc, clang and other compilers

26Monday 11 May 15



Compiler testing: state of the art  
    Yang, Chen, Eide, Regehr - PLDI 2011

Reported hundreds of bugs

on various versions of gcc, clang and other compilers

Cannot catch
concurrency compiler bugs
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Hunting concurrency compiler bugs?

How to deal with non-determinism?

How to generate non-racy interesting programs?

How to capture all the behaviours of concurrent programs?

A compiler can optimise away behaviours: 
how to test for correctness?

limit case: two compilers generate correct code with disjoint final states
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C/C++ compilers support separate compilation
Functions can be called in arbitrary non-racy concurrent contexts

C/C++ compilers can only apply transformations sound 
with respect to an arbitrary non-racy concurrent context

Idea

Hunt concurrency compiler bugs 

=
 search for transformations of sequential code 

not sound in an arbitrary non-racy context
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REFERENCE 
MEMORY 

TRACE
MEMORY 

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

Check: only transformations sound 
in any concurrent non-racy context

SEQUENTIAL
PROGRAM

29Monday 11 May 15



Soundness of compiler optimisations in 
the C11/C++11 memory model
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What is an optimisation?

Compiler Writer Semanticist
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What is an optimisation?

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

Compiler Writer Semanticist
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What is an optimisation?

for (int i=0; i<2; i++) {
  z = i;
  x[i] +=    ;
}

y+1

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

Compiler Writer Semanticist
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tmp

What is an optimisation?

for (int i=0; i<2; i++) {
  z = i;
  x[i] +=    ;
}

y+1tmp =    ;

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

Compiler Writer Semanticist
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tmp

What is an optimisation?

for (int i=0; i<2; i++) {
  z = i;
  x[i] +=    ;
}

y+1tmp =    ;

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

 Elimination of run-time events
 Reordering of run-time events
 Introduction of run-time events

 Operations on sets of events

Compiler Writer Semanticist
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tmp

What is an optimisation?

...assuming initially y=42... 

Store z 0

Store x[0] 43
Store z 1
Load y 42
Store x[1] 43

for (int i=0; i<2; i++) {
  z = i;
  x[i] +=    ;
}

y+1tmp =    ; Load y 42

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

 Elimination of run-time events
 Reordering of run-time events
 Introduction of run-time events

 Operations on sets of events

Compiler Writer Semanticist
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tmp

What is an optimisation?

...assuming initially y=42... 

Store z 0

Store x[0] 43
Store z 1
Load y 42
Store x[1] 43

for (int i=0; i<2; i++) {
  z = i;
  x[i] +=    ;
}

y+1tmp =    ;

Load y 42

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

 Elimination of run-time events
 Reordering of run-time events
 Introduction of run-time events

 Operations on sets of events

Compiler Writer Semanticist
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Elimination of overwritten writes

Store g 1

Store g 2

sb

sb

...

Under which conditions is it 
correct to eliminate the first store?
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A same-thread release-acquire pair is a pair of 
a release action followed by an acquire action

in program order.

An action is a release if it is a possible source of a synchronisation

 unlock mutex, release or seq_cst atomic write

An action is an acquire if it is a possible target of a synchronisation 

lock mutex, acquire or seq_cst atomic read 
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Elimination of overwritten writes

Store g 1

Store g 2

sb

sb

It is safe to eliminate the first store 
if there are:

no access to g

no st rel/acq pair
1. no intervening accesses to g
2. no intervening 
       same-thread release-acquire pair
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g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 1
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candidate overwritten write
g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 1
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candidate overwritten write
g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

same-thread release-acquire pair

Thread 1
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The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2
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The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync
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The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync

The program should only print 1

36Monday 11 May 15



The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync

If we perform overwritten write elimination it prints 0
The program should only print 1
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sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

while(f2.load(ACQUIRE)==0);
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sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2
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sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

If only a release (or acquire) is present, then 
all discriminating contexts are racy.

It is sound to optimise the overwritten write.

data race

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2
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Write-after-Read

Store g v1

Store g v1

Write-after-Write

no access to g

no rel/acq pair

Read-after-Read

Read g v

Read g v

no access to g

no rel/acq pair

sb

sb

Read-after-Write

Store g v

Read g v

no access to g

no rel/acq pair

sb

sb

Eliminations: bestiary

Store g v1

Store g v2

no access to g

no rel/acq pair

sb

sb

Overwritten-Write

Read g v

Store g v

Write-after-Read

no access to g

no rel/acq pair

sb

sbsb

Reads which are not used (via data or control dependencies) to decide a 
write or synchronisation event are also eliminable (irrelevant reads).

sb
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Write-after-Read

Store g v1

Store g v1

Write-after-Write

no access to g

no rel/acq pair

Read-after-Read

Read g v

Read g v

no access to g

no rel/acq pair

sb

sb

Read-after-Write

Store g v

Read g v

no access to g

no rel/acq pair

sb

sb

Eliminations: bestiary

Store g v1

Store g v2

no access to g

no rel/acq pair

sb

sb

Overwritten-Write

Read g v

Store g v

Write-after-Read

no access to g

no rel/acq pair

sb

sbsb

Reads which are not used (via data or control dependencies) to decide a 
write or synchronisation event are also eliminable (irrelevant reads).

sb

Also correctness statements for

reorderings, merging, and introductions of events.
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From theory to the Cmmtest tool
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REFERENCE 
MEMORY 

TRACE
MEMORY 

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

Check: only transformations sound 
in any concurrent non-racy context
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REFERENCE 
MEMORY 

TRACE
MEMORY 

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith 
extended with locks 

and atomics

Check: only transformations sound 
in any concurrent non-racy context
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REFERENCE 
MEMORY 

TRACE
MEMORY 

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith 
extended with locks 

and atomics

binary 
instrumentation

Check: only transformations sound 
in any concurrent non-racy context
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REFERENCE 
MEMORY 

TRACE
MEMORY 

TRACE

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith 
extended with locks 

and atomics

binary 
instrumentation

EXECUTABLE

gcc/clang -O0

binary
instrumentation

Check: only transformations sound 
in any concurrent non-racy context
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REFERENCE 
MEMORY 

TRACE
MEMORY 

TRACE

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith 
extended with locks 

and atomics

binary 
instrumentation

EXECUTABLE

gcc/clang -O0

binary
instrumentation

Check: only transformations sound 
in any concurrent non-racy context

OCaml tool
 1. analyse the traces to detect eliminable actions
 2. match reference and optimised traces
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void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

const unsigned int g3 = 0UL;
long long g4 = 0x1;
int g6 = 6L;
volatile unsigned int g5 = 1UL;

Start with a randomly generated well-defined program
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void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
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void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

Init g3 0
Init g4 1
Init g5 1
Init g6 6 
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void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load  g4 1 
     Store g4 0 
RaW* Load  g5 1
     Store g5 2 
OW*  Store g6 4 
RaW* Load  g6 4 
RaR* Load  g6 4 
RaR* Load  g6 4 
     Store g6 1 
RaW* Load  g4 0

reference
semantics

Init g3 0
Init g4 1
Init g5 1
Init g6 6 
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     Store g5 2 
OW*  Store g6 4 
RaW* Load  g6 4 
RaR* Load  g6 4 
RaR* Load  g6 4 
     Store g6 1 
RaW* Load  g4 0

reference
semantics

Load  g5 1 
Store g4 0 
Store g6 1 
Store g5 2
Load  g4 0

gcc -O2 memory trace

Init g3 0
Init g4 1
Init g5 1
Init g6 6 
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void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load  g4 1 
     Store g4 0 
RaW* Load  g5 1
     Store g5 2 
OW*  Store g6 4 
RaW* Load  g6 4 
RaR* Load  g6 4 
RaR* Load  g6 4 
     Store g6 1 
RaW* Load  g4 0

reference
semantics

Load  g5 1 
Store g4 0 
Store g6 1 
Store g5 2
Load  g4 0

gcc -O2 memory trace

Init g3 0
Init g4 1
Init g5 1
Init g6 6 

Can match applying 
only correct eliminations and reorderings
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  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
  }

int a = 1;
int b = 0;

If we focus on the miscompiled initial example...
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  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
  }

int a = 1;
int b = 0;
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  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
  }

int a = 1;
int b = 0;

reference
semantics

Load a 1
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  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
  }

int a = 1;
int b = 0;

Load  a 1
Load  b 0
Store b 0

gcc -O2 memory tracereference
semantics

Load a 1

43Monday 11 May 15



  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
  }

int a = 1;
int b = 0;

Load  a 1
Load  b 0
Store b 0

gcc -O2 memory trace

     Cannot match some events           detect compiler bug

reference
semantics

Load a 1
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Applications
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1. Testing C compilers (GCC, Clang, ICC)

Some concurrency compiler bugs found 
in the latest version of GCC.

Store introductions performed by loop invariant motion or 
if-conversion optimisations.

Remark: these bugs break the Posix thread model too.

All promptly fixed.
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2. Checking compiler invariants

Baked this invariant into the tool and found a counterexample...

GCC internal invariant: never reorder with an atomic access

atomic_uint a; 
int32_t g1, g2;

int main (int, char *[]) {
  a.load() & a.load ();
  g2 = g1 != 0; 
}

ALoad  a   0  4
ALoad  a   0  4
Load   g1  0  4
Store  g2  0  4

Load   g1  0  4
ALoad  a   0  4
ALoad  a   0  4
Store  g2  0  4

...not a bug, but fixed anyway
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3. Detecting unexpected behaviours

Correct or not?

uint16_t g

for (; g==0; g--); g=0;

uint16_t g
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3. Detecting unexpected behaviours

uint16_t g

for (; g==0; g--); g=0;

uint16_t g

ALoad  a  0  4
Load   g  0  2
ALoad  a  0  4
AStore a  0  4
ALoad  a  1  4

ALoad  a  0  4
Store  g  0  2
ALoad  a  0  4
AStore a  0  4
ALoad  a  1  4

?

The introduced store cannot be observed by a non-racy context.

Still, arguable if a compiler should do this or not.

If g is initialised with 0, a load gets replaced by a store:
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3. Detecting unexpected behaviours

uint16_t g

for (; g==0; g--); g=0;

uint16_t g

ALoad  a  0  4
Load   g  0  2
ALoad  a  0  4
AStore a  0  4
ALoad  a  1  4

ALoad  a  0  4
Store  g  0  2
ALoad  a  0  4
AStore a  0  4
ALoad  a  1  4

?

The introduced store cannot be observed by a non-racy context.

Still, arguable if a compiler should do this or not.

If g is initialised with 0, a load gets replaced by a store:

False positives in Thread Sanitizer
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The formalisation of the C11 memory model 
enables compiler testing...  what else?
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Proving the correctness of mappings for atomics
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

50Monday 11 May 15

https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html


Inform new optimisations
e.g. the work by Robin Morisset on the Arm LLVM backend

  while (flag.load(acquire))
   {}

.loop
  ldr r0, [r1]
  dmb ish
  bnz .loop

.loop
  ldr r0, [r1]
  bnz .loop
  dmb ish
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Inform new optimisations
e.g. the work by Robin Morisset on the Arm LLVM backend

  while (flag.load(acquire))
   {}

.loop
  ldr r0, [r1]
  dmb ish
  bnz .loop

.loop
  ldr r0, [r1]
  bnz .loop
  dmb ish
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Not all of C/C++11 is good
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A second look at qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED
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A second look at qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

REASONABLE
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A second look at qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

REASONABLE

HARD TO IMPLEMENT
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A second look at qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

REASONABLE

HARD TO IMPLEMENT

SEMANTICS TOO WEAK
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Out of thin air reads
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Shorthand

 from now on, all the memory accesses are

atomic with MO_RELAXED semantics
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Relaxed atomics

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = 42

x = y = 0
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Relaxed atomics

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = 42

r1 = r2 = 42
is a valid execution.

R x 42 R y 42

W y 42 W x 42
sb sb

rfrf

x = y = 0
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Out-of-thin-air reads

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = r2

x = y = 0
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Out-of-thin-air reads

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = r2

r1 = r2 = 42
is also an allowed execution

R x 42 R y 42

W y 42 W x 42
sb sb

rfrf

x = y = 0
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Out-of-thin-air reads

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = r2

r1 = r2 = 42
is also an allowed execution

R x 42 R y 42

W y 42 W x 42
sb sb

rfrf

the value 42 appears out-of-thin-air

x = y = 0
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Speculation can justify out-of-thin-air reads

If the compiler states that x is likely to hold 42...
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Speculation can justify out-of-thin-air reads

If the compiler states that x is likely to hold 42...

It does not happen in practice...  

(a big thank you to compiler and hardware developers)

...but allowed by the standard 
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Consequences of out-of-thin-air reads
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Thread 1 Thread 1

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo { 
  atomic<struct foo *> next;
}
struct foo *a;

a nextnext
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Thread 1 Thread 1

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo { 
  atomic<struct foo *> next;
}
struct foo *a;

a nextnext
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Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo { 
  atomic<struct foo *> next;
}
struct foo *a, *b;
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Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo { 
  atomic<struct foo *> next;
}
struct foo *a, *b;

If a and b initially reference disjoint data-structures
we expect a and b to remain disjoint
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Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo { 
  atomic<struct foo *> next;
}
struct foo *a, *b;

a nextnext

b nextnext

63Monday 11 May 15



Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo { 
  atomic<struct foo *> next;
}
struct foo *a, *b;

a nextnext

b nextnext

  If the compiler speculates r1=b and r2=a, then
    the store r1->next=a justifies r2=b->next assigning r2=a 
    (and symmetrically to justify r1=b)
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Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo { 
  atomic<struct foo *> next;
}
struct foo *a, *b;

a nextnext

b nextnext

Break our basic intuitions
about memory and sharing!

  If the compiler speculates r1=b and r2=a, then
    the store r1->next=a justifies r2=b->next assigning r2=a 
    (and symmetrically to justify r1=b)

63Monday 11 May 15



if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)

x = y = a = 0
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x = y = a = 0

Remark 1

This code is not racy!

There is no consistent execution in which 
the read of a occurs.

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)
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x = y = a = 0

Remark 2

a = 1 ⋀ x = y = 0

is the only possible final state

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)
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x = y = a = 0

Remark 2

a = 1 ⋀ x = y = 0

is the only possible final state

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)

Consider sequentialisation:
C || D   ⟹  C ; D

(ought to be correct)
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x = y = a = 0

 a = 1

if (x.load(rlx)==42) if (y.load(rlx)==42)

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)
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x = y = a = 0

 a = 1

if (x.load(rlx)==42) if (y.load(rlx)==42)

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)
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a = 1 
x = y = 42
is also possible

 a = 1

if (x.load(rlx)==42) if (y.load(rlx)==42)

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)

x = y = a = 0

42

42

42

42
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a = 1 
x = y = 42
is also possible

 a = 1

if (x.load(rlx)==42) if (y.load(rlx)==42)

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)

x = y = a = 0

42

42

42

42

Break common source-to-source
(or LLVM IR - to - LLVM IR) 

compiler optimisations
including expression linearisation and roach-motel reorderings
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We still lack a really satisfactory proposal for the 
semantics of a general-purpose shared-memory 

concurrent programming language. 
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The way forward
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Understand the effects of  
what compilers implement 
and programmers rely on

Build on that...
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Can one do < comparison or pointer arithmetic 
between pointers to separately allocated objects?

Routinely done in Linux kernel Forbidden by ISO standard

Beyond concurrency

72Monday 11 May 15



tinyurl.com/csurvey2

A web survey of 15 questions to 
investigate what C is in current 

practice: what behaviour is 
implemented by mainstream 

compilers and relied on by 
systems programmers
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tinyurl.com/csurvey2

Eventual outcome: clear descriptions 
of what people can rely on and

what compilers in practice should 
implement, what alias analysis and

optimisation passes should (and 
should not) be allowed to do, etc.
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http://www.cl.cam.ac.uk/~pes20/csurvey2
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tinyurl.com/csurvey2

Thank you.  
Questions?
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