
Francesco Zappa Nardelli

Inria, France

C Concurrency:
Still Tricky

Based on work done with

Morisset, Pawan, Vafeiadis, Balabonsky, Chakraborty
MPI-SWS and Inria

1Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

2Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

2Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

2Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

2Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

2Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

2Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 1 returns without modifying b

2Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 2 is not affected by Thread 1 and vice-versa

Thread 1 returns without modifying b

2Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 2 is not affected by Thread 1 and vice-versa

I expect this program to print 42

Thread 1 returns without modifying b

2Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

2Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

3Monday 11 May 15

...sometimes we get 0 on the screen

gcc 4.7 -O2

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

3Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

4Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %eax # load a into eax
 movl b(%rip), %ebx # load b into ebx
 testl %eax, %eax # if a==1
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %ebx, b(%rip) # store ebx into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

4Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %eax # load a into eax
 movl b(%rip), %ebx # load b into ebx
 testl %eax, %eax # if a==1
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %ebx, b(%rip) # store ebx into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

The outer loop can be (and is) optimised away

4Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %eax # load a into eax
 movl b(%rip), %ebx # load b into ebx
 testl %eax, %eax # if a==1
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %ebx, b(%rip) # store ebx into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

4Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %eax # load a into eax
 movl b(%rip), %ebx # load b into ebx
 testl %eax, %eax # if a==1
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %ebx, b(%rip) # store ebx into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

4Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %eax # load a into eax
 movl b(%rip), %ebx # load b into ebx
 testl %eax, %eax # if a==1
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %ebx, b(%rip) # store ebx into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

4Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %eax # load a into eax
 movl b(%rip), %ebx # load b into ebx
 testl %eax, %eax # if a==1
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %ebx, b(%rip) # store ebx into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

4Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %eax # load a into eax
 movl b(%rip), %ebx # load b into ebx
 testl %eax, %eax # if a==1
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %ebx, b(%rip) # store ebx into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

4Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

 movl a(%rip), %eax # load a into eax
 movl b(%rip), %ebx # load b into ebx
 testl %eax, %eax # if a==1
 jne .L2 # jump to .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %ebx, b(%rip) # store ebx into b
 xorl %eax, %eax # store 0 into eax
 ret # return

gcc 4.7 -O2

The compiled code saves and restores b

Correct result in a sequential setting

4Monday 11 May 15

 movl a(%rip),%eax
 movl b(%rip),%ebx
 testl %eax, %eax
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %ebx, b(%rip)
 xorl %eax, %eax
 ret

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

5Monday 11 May 15

 movl a(%rip),%eax
 movl b(%rip),%ebx
 testl %eax, %eax
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %ebx, b(%rip)
 xorl %eax, %eax
 ret

- Read a (1) into eax

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

5Monday 11 May 15

 movl a(%rip),%eax
 movl b(%rip),%ebx
 testl %eax, %eax
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %ebx, b(%rip)
 xorl %eax, %eax
 ret

- Read a (1) into eax

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into ebx

5Monday 11 May 15

 movl a(%rip),%eax
 movl b(%rip),%ebx
 testl %eax, %eax
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %ebx, b(%rip)
 xorl %eax, %eax
 ret

- Read a (1) into eax

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into ebx
- Store 42 into b

5Monday 11 May 15

 movl a(%rip),%eax
 movl b(%rip),%ebx
 testl %eax, %eax
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %ebx, b(%rip)
 xorl %eax, %eax
 ret

- Read a (1) into eax

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into ebx
- Store 42 into b
- Store ebx (0) into b

5Monday 11 May 15

 movl a(%rip),%eax
 movl b(%rip),%ebx
 testl %eax, %eax
 jne .L2
 movl $0, b(%rip)
 ret
.L2:
 movl %ebx, b(%rip)
 xorl %eax, %eax
 ret

- Read a (1) into eax

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into ebx
- Store 42 into b
- Store ebx (0) into b
- Print b: 0 is printed

5Monday 11 May 15

6Monday 11 May 15

C can’t be so nasty!
Must be a subtle compiler bug.

6Monday 11 May 15

C can’t be so nasty!
Must be a subtle compiler bug.

Of course C allows this.
No news here.

6Monday 11 May 15

What is C?

K&R

What is C?

ANSI C

C11
C99

DeFacto C: whatever
C compilers implement
C programmers rely on

7Monday 11 May 15

What is C?

K&R

What is C?

ANSI C

C11
C99

DeFacto C: whatever
C compilers implement
C programmers rely on

 1980 - ... : widespread use of threads, no spec, poor understanding of
 constraints

 2005 onwards: proposals by Boehm, Adve, C++0x concurrency subgroup

 2009-2011: Batty et al., draft standard ⇒ math ⇒ fixes ⇒ C/C++11 standard

7Monday 11 May 15

Why is it so hard?

8Monday 11 May 15

A simple, and innocuous, optimisation:

Constant propagation

x = 14
y = 7 - x / 2

x = 14
y = 7 - 14 / 2

Source code

Optimised code
x = 14
y = 0

9Monday 11 May 15

Shared memory concurrency

x = y = 0x = y = 0

 x = 1
 if (y == 1)
 print x

 if (x == 1) {
 x = 0
 y = 1 }

Thread 1 Thread 2

Shared memory

10Monday 11 May 15

Shared memory concurrency

x = y = 0x = y = 0

 x = 1
 if (y == 1)
 print x

 if (x == 1) {
 x = 0
 y = 1 }

Intuitively this program always prints 0

Thread 1 Thread 2

Shared memory

10Monday 11 May 15

Shared memory concurrency

x = y = 0x = y = 0

 x = 1
 if (y == 1)
 print x

 if (x == 1) {
 x = 0
 y = 1 }

But if the compiler propagates the constant x = 1...

Thread 1 Thread 2

11Monday 11 May 15

Shared memory concurrency

x = y = 0x = y = 0

 x = 1
 if (y == 1)
 print x

 if (x == 1) {
 x = 0
 y = 1 }

But if the compiler propagates the constant x = 1...

...the program always writes 1 rather than 0.

 print 1

Thread 1 Thread 2

11Monday 11 May 15

This talk

 4. Escape lanes are a Pandora’s box

 5. The way forward...

 0. Concurrency and optimisations, not so simple
 1. The layman semantics
 2. Escape lanes for the expert programmer

 3. Compiler testing via a theory of sound optimisations

12Monday 11 May 15

The layman solution
forbid data-races

13Monday 11 May 15

Standard way out: prohibit data races

14Monday 11 May 15

Data-races are errors

ADA 83

15Monday 11 May 15

Data-races are errors

Posix Threads Specification

16Monday 11 May 15

Les data-races sont des erreursData-races are errors

C++2011 / C11

17Monday 11 May 15

Les data-races sont des erreursData-races are errors

How to use C/C++ to implement
low-level system code?

C++2011 / C11

17Monday 11 May 15

Escape lanes
for expert programmers

18Monday 11 May 15

Low-level atomics in C11/C++11
std::atomic<int> flag0(0),flag1(0),turn(0);

void lock(unsigned index) {
 if (0 == index) {
 flag0.store(1, std::memory_order_relaxed);
 turn.exchange(1, std::memory_order_acq_rel);

 while (flag1.load(std::memory_order_acquire)
 && 1 == turn.load(std::memory_order_relaxed))
 std::this_thread::yield();
 } else {
 flag1.store(1, std::memory_order_relaxed);
 turn.exchange(0, std::memory_order_acq_rel);

 while (flag0.load(std::memory_order_acquire)
 && 0 == turn.load(std::memory_order_relaxed))
 std::this_thread::yield();
 }
}

void unlock(unsigned index) {
 if (0 == index) {
 flag0.store(0, std::memory_order_release);
 } else {
 flag1.store(0, std::memory_order_release);
 }
}

Atomic variable declaration

New syntax
for memory accesses

Qualifier

19Monday 11 May 15

The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE

MO_RELEASE / MO_CONSUME

LESS RELAXED

MORE RELAXED

20Monday 11 May 15

The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE

MO_RELEASE / MO_CONSUME

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

20Monday 11 May 15

The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE

MO_RELEASE / MO_CONSUME

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

Efficient implementation of message passing

20Monday 11 May 15

The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE

MO_RELEASE / MO_CONSUME

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

Efficient implementation of message passing

Efficient implementation of message passing on ARM/Power

20Monday 11 May 15

The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE

MO_RELEASE / MO_CONSUME

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

Efficient implementation of message passing

Efficient implementation of message passing on ARM/Power

No synchronisation; direct access to hardware

20Monday 11 May 15

Memory access synchronisation

Thread 1 Thread 2

y = 1 if (x.load(MO_ACQUIRE) == 1)

x.store(1,MO_RELEASE) r2 = y

x = y = 0

21Monday 11 May 15

Memory access synchronisation

Thread 1 Thread 2

y = 1 if (x.load(MO_ACQUIRE) == 1)

x.store(1,MO_RELEASE) r2 = y

Non-atomic loads must return the most recent write
in the happens-before order (unique in a DRF program)

x = y = 0

21Monday 11 May 15

Understanding MO_RELAXED

Thread 1 Thread 2

y = 1 if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED) r2 = y

x = y = 0

22Monday 11 May 15

Understanding MO_RELAXED

Thread 1 Thread 2

y = 1 if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED) r2 = y

DATA RACE

Two conflicting accesses not related by happens-before

x = y = 0

22Monday 11 May 15

Understanding MO_RELAXED

Thread 1 Thread 2

y.store(1,MO_RELAXED) if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED) r2 = y.load(MO_RELAXED)

WELL DEFINED

but r2 = 0 is possible

x = y = 0

23Monday 11 May 15

Understanding MO_RELAXED

Thread 1 Thread 2

y.store(1,MO_RELAXED) if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED) r2 = y.load(MO_RELAXED)

WELL DEFINED

but r2 = 0 is possible

x = y = 0

Intuition
the compiler (or hardware) can reorder independent accesses

23Monday 11 May 15

Understanding MO_RELAXED

Thread 1 Thread 2

y.store(1,MO_RELAXED) if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED) r2 = y.load(MO_RELAXED)

WELL DEFINED

but r2 = 0 is possible

 Allow a RELAXED load to see any store that:

 - does not happens-after it

 - is not hidden by an intervening store hb-ordered between them

x = y = 0

Intuition
the compiler (or hardware) can reorder independent accesses

23Monday 11 May 15

The full model

a
r
−→ b = (a, b) ∈ r

a r b = (a, b) ∈ r

a ̸
r
−→ b = (a, b) /∈ r

r
−→ = r

a
r
−→ b

s
−→ c = a

r
−→ b ∧ b

s
−→ c

relation over s rel = domain rel ⊆ s ∧ range rel ⊆ s

rel
−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

rel
−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

strict preorder ord = irreflexive ord ∧ trans ord

total over s ord =
relation over s ord ∧

(∀x ∈ s. ∀y ∈ s. x
ord
−−→ y ∨ y

ord
−−→ x ∨ (x = y))

strict total order over s ord =
strict preorder ord ∧ total over s ord

x |
ord
−−→pred y =

pred x ∧ x
ord
−−→ y ∧ ¬(∃z . pred z ∧ x

ord
−−→ z

ord
−−→ y)

x |
ord
−−→ y =

x
ord
−−→ y ∧ ¬(∃z . x

ord
−−→ z

ord
−−→ y)

well founded r = wf r

type abbrev action id : string

type abbrev thread id : string

type abbrev location : string

type abbrev val : string

memory order enum =
Mo seq cst

| Mo relaxed

| Mo release

| Mo acquire

| Mo consume

| Mo acq rel

action =
Lock of action id thread id location

| Unlock of action id thread id location
| Atomic load of action id thread id memory order enum location val
| Atomic store of action id thread id memory order enum location val
| Atomic rmw of action id thread id memory order enum location val val
| Load of action id thread id location val
| Store of action id thread id location val
| Fence of action id thread id memory order enum

(action id of (Lock aid) = aid) ∧
(action id of (Unlock aid) = aid) ∧
(action id of (Atomic load aid) = aid) ∧
(action id of (Atomic store aid) = aid) ∧
(action id of (Atomic rmw aid) = aid) ∧
(action id of (Load aid) = aid) ∧
(action id of (Store aid) = aid) ∧
(action id of (Fence aid) = aid)

(thread id of (Lock tid) = tid) ∧
(thread id of (Unlock tid) = tid) ∧
(thread id of (Atomic load tid) = tid) ∧
(thread id of (Atomic store tid) = tid) ∧
(thread id of (Atomic rmw tid) = tid) ∧
(thread id of (Load tid) = tid) ∧
(thread id of (Store tid) = tid) ∧
(thread id of (Fence tid) = tid)

(memory order (Atomic load mem ord) =
Some mem ord) ∧

(memory order (Atomic store mem ord) =
Some mem ord) ∧

(memory order (Atomic rmw mem ord) =
Some mem ord) ∧

(memory order (Fence mem ord) =
Some mem ord) ∧

(memory order =
None)

(location (Lock l) = Some l) ∧
(location (Unlock l) = Some l) ∧
(location (Atomic load l) = Some l) ∧
(location (Atomic store l) = Some l) ∧
(location (Atomic rmw l) = Some l) ∧
(location (Load l) = Some l) ∧
(location (Store l) = Some l) ∧
(location (Fence) = None)

(value read (Atomic load v) = Some v) ∧
(value read (Atomic rmw v) = Some v) ∧
(value read (Load v) = Some v) ∧
(value read = None)

(value written (Atomic store v) = Some v) ∧
(value written (Atomic rmw v) = Some v) ∧
(value written (Store v) = Some v) ∧
(value written = None)

is lock a =
case a of Lock → T ∥ → F

is unlock a =
case a of Unlock → T ∥ → F

is atomic load a =
case a of Atomic load → T ∥ → F

is atomic store a =
case a of Atomic store → T ∥ → F

is atomic rmw a =
case a of Atomic rmw → T ∥ → F

is load a = case a of Load → T ∥ → F

is store a = case a of Store → T ∥ → F

is fence a = case a of Fence → T ∥ → F

is lock or unlock a = is lock a ∨ is unlock a

is atomic action a =
is atomic load a ∨ is atomic store a ∨ is atomic rmw a

is load or store a = is load a ∨ is store a

is read a =
is atomic load a ∨ is atomic rmw a ∨ is load a

is write a =
is atomic store a ∨ is atomic rmw a ∨ is store a

is acquire a =
(case memory order a of

Some mem ord →
(mem ord ∈

{Mo acquire,Mo acq rel,Mo seq cst} ∧
(is read a ∨ is fence a)) ∨
(* 29.8:5 states that consume fences are acquire fences. *)
((mem ord = Mo consume) ∧ is fence a)

∥ None → is lock a)

is consume a =
is read a ∧ (memory order a = Some Mo consume)

is release a =
(case memory order a of

Some mem ord →
mem ord ∈ {Mo release,Mo acq rel,Mo seq cst} ∧

(is write a ∨ is fence a)
∥ None → is unlock a)

is seq cst a = (memory order a = Some Mo seq cst)

location kind =
Mutex

| Non atomic

| Atomic

actions respect location kinds = actions respect location kinds =
∀a.

case location a of Some l →
(case location-kind l of

Mutex → is lock or unlock a
∥ Non atomic → is load or store a
∥ Atomic → is load or store a ∨ is atomic action a)

∥ None → T

is at location kind = is at location kind =
case location a of

Some l → (location-kind l = lk0)
∥ None → F

is at mutex location a =
is at location kind a Mutex

is at non atomic location a =
is at location kind a Non atomic

is at atomic location a =
is at location kind a Atomic

same thread a b = (thread id of a = thread id of b)

threadwise relation over s rel =
relation over s rel ∧ (∀(a, b) ∈ rel . same thread a b)

same location a b = (location a = location b)

locations of actions = {l . ∃a. (location a = Some l)}

well formed action a =
case a of

Atomic load mem ord → mem ord ∈
{Mo relaxed,Mo acquire,Mo seq cst,Mo consume}

∥ Atomic store mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo seq cst}

∥ Atomic rmw mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo acquire,Mo acq rel,Mo seq cst,Mo consume}

∥ → T

well formed threads = well formed threads =
inj on action id of (actions) ∧
(∀a. well formed action a) ∧
threadwise relation over actions sequenced-before ∧
threadwise relation over actions data-dependency ∧
threadwise relation over actions control-dependency ∧
strict preorder sequenced-before ∧
strict preorder data-dependency ∧
strict preorder control-dependency ∧
relation over actions additional-synchronized-with ∧
(∀a. thread id of a ∈ threads) ∧
actions respect location kinds∧
data-dependency ⊆ sequenced-before

well formed reads from mapping = well formed reads from mapping =

relation over actions (
rf
−→) ∧

(∀a. ∀a′. ∀b. a
rf
−→ b ∧ a′

rf
−→ b =⇒ (a = a′)) ∧

(∀(a, b) ∈
rf
−→.

same location a b ∧
(value read b = value written a) ∧
(a ̸= b) ∧
(is at mutex location a =⇒

is unlock a ∧ is lock b) ∧
(is at non atomic location a =⇒

is store a ∧ is load b) ∧
(is at atomic location a =⇒
(is atomic store a ∨ is atomic rmw a ∨ is store a)
∧ (is atomic load b ∨ is atomic rmw b ∨ is load b)))

all lock or unlock actions at lopt as =
{a ∈ as. is lock or unlock a ∧ (location a = lopt)}

consistent locks = consistent locks =
∀l ∈ locations of actions. (location-kind l = Mutex) =⇒ (

let lock unlock actions =
all lock or unlock actions at (Some l)actions in

let lock order =
sc
−→|lock unlock actions in

(* 30.4.1:5 - The implementation shall serialize those (lock and unlock) operations. *)
strict total order over lock unlock actions lock order ∧

(* 30.4.1:1 A thread owns a mutex from the time it successfully calls one of the lock functions until
it calls unlock.*)
(* 30.4.1:20 Requires: The calling thread shall own the mutex. *)
(* 30.4.1:21 Effects: Releases the calling threads ownership of the mutex.*)
(∀au ∈ lock unlock actions. is unlock au =⇒

(∃al ∈ lock unlock actions.

al |
lock order
−−−−−−→ au ∧ same thread al au ∧ is lock al)) ∧

(* 30.4.1:7 Effects: Blocks the calling thread until ownership of the mutex can be obtained for the
calling thread.*)
(* 30.4.1:8 Postcondition: The calling thread owns the mutex. *)
(∀al ∈ lock unlock actions. is lock al =⇒

(∀au ∈ lock unlock actions.

au |
lock order
−−−−−−→ al =⇒ is unlock au)))

rs element rs head a =
same thread a rs head ∨ is atomic rmw a

release sequence = arel
release-sequence
−−−−−−−−−→ b =

is at atomic location b ∧
is release arel ∧ (
(b = arel) ∨

(rs element arel b ∧ arel
modification-order
−−−−−−−−−−→ b ∧

(∀c . arel
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element arel c)))

release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

hypothetical release sequence = a
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ b =

is at atomic location b ∧ (
(b = a) ∨

(rs element a b ∧ a
modification-order
−−−−−−−−−−→ b ∧

(∀c . a
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element a c)))

hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

hypothetical release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

synchronizes with = a
synchronizes-with
−−−−−−−−−−→ b =

(* – additional synchronization, from thread create etc. – *)

a
additional-synchronized-with
−−−−−−−−−−−−−−−−→ b ∨

(same location a b ∧ a ∈ actions ∧ b ∈ actions ∧ (
(* – mutex synchronization – *)

(is unlock a ∧ is lock b ∧ a
sc
−→ b) ∨

(* – release/acquire synchronization – *)
(is release a ∧ is acquire b ∧ ¬ same thread a b ∧

(∃c . a
release-sequence
−−−−−−−−−→ c

rf
−→ b)) ∨

(* – fence synchronization – *)
(is fence a ∧ is release a ∧ is fence b ∧ is acquire b ∧
(∃x . ∃y . same location x y ∧

is atomic action x ∧ is atomic action y ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧ y

sequenced-before
−−−−−−−−−→ b ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ z

rf
−→ y))) ∨

(is fence a ∧ is release a ∧
is atomic action b ∧ is acquire b ∧
(∃x . same location x b ∧

is atomic action x ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ z

rf
−→ b))) ∨

(is atomic action a ∧ is release a ∧
is fence b ∧ is acquire b ∧
(∃x . same location a x ∧ is atomic action x ∧

x
sequenced-before
−−−−−−−−−→ b ∧

(∃z . a
release-sequence
−−−−−−−−−→ z

rf
−→ x)))))

synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence =

synchronizes with actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence a b}

carries a dependency to = a
carries-a-dependency-to
−−−−−−−−−−−−−→ b =

a ((
rf
−→∩

sequenced-before
−−−−−−−−−→) ∪

data-dependency
−−−−−−−−−→)+ b

carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf =

carries a dependency to actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf a b}

dependency ordered before = a
dependency-ordered-before
−−−−−−−−−−−−−−−→ d =

a ∈ actions ∧ d ∈ actions ∧
(∃b. is release a ∧ is consume b ∧

(∃e. a
release-sequence
−−−−−−−−−→ e

rf
−→ b) ∧

(b
carries-a-dependency-to
−−−−−−−−−−−−−→ d ∨ (b = d)))

dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to =

dependency ordered before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to a b}

simple happens before =
simple happens before
−−−−−−−−−−−−−→ =

(
sequenced-before
−−−−−−−−−→∪

synchronizes-with
−−−−−−−−−−→)+

consistent simple happens before shb =

irreflexive (
shb
−−→)

inter thread happens before =
inter-thread-happens-before
−−−−−−−−−−−−−−−→ =

let r =
synchronizes-with
−−−−−−−−−−→∪

dependency-ordered-before
−−−−−−−−−−−−−−−→∪

(
synchronizes-with
−−−−−−−−−−→ ◦

sequenced-before
−−−−−−−−−→) in

(
r
−→∪ (

sequenced-before
−−−−−−−−−→ ◦

r
−→))+

consistent inter thread happens before = consistent inter thread happens before =

irreflexive (
inter-thread-happens-before
−−−−−−−−−−−−−−−→)

happens before =
happens-before
−−−−−−−−→ =

sequenced-before
−−−−−−−−−→∪

inter-thread-happens-before
−−−−−−−−−−−−−−−→

all sc actions = all sc actions =
{a. (is seq cst a ∨ is lock a ∨ is unlock a)}

consistent sc order = consistent sc order =

let sc happens before =
happens-before
−−−−−−−−→|all sc actions in

let sc mod order =
modification-order
−−−−−−−−−−→|all sc actions in

strict total order over all sc actions (
sc
−→) ∧

sc happens before
−−−−−−−−−−−→ ⊆

sc
−→∧

sc mod order
−−−−−−−−→ ⊆

sc
−→

consistent modification order = consistent modification order =

(∀a. ∀b. a
modification-order
−−−−−−−−−−→ b =⇒ same location a b) ∧

(∀l ∈ locations of actions. case location-kind l of
Atomic → (

let actions at l = {a. (location a = Some l)} in
let writes at l = {a at l . (is store a ∨

is atomic store a ∨ is atomic rmw a)} in
strict total order over writes at l

(
modification-order
−−−−−−−−−−→|actions at l) ∧
(* happens-before at the writes of l is a subset of mo for l *)
happens-before
−−−−−−−−→|writes at l ⊆

modification-order
−−−−−−−−−−→∧

(* Mo seq cst fences impose modification order *)

(
sequenced-before
−−−−−−−−−→ ◦ (

sc
−→|is fence) ◦

sequenced-before
−−−−−−−−−→|writes at l)

⊆
modification-order
−−−−−−−−−−→)

∥ → (
let actions at l = {a. (location a = Some l)} in

(
modification-order
−−−−−−−−−−→|actions at l) = {}))

visible side effect = a
visible-side-effect
−−−−−−−−−→ b =

a
happens-before
−−−−−−−−→ b ∧

is write a ∧ is read b ∧ same location a b ∧
¬(∃c . (c ̸= a) ∧ (c ̸= b) ∧

is write c ∧ same location c b ∧

a
happens-before
−−−−−−−−→ c

happens-before
−−−−−−−−→ b)

visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before =
{ab ∈ happens-before. let (a, b) = ab in
visible side effect actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before a b}

visible sequence of side effects tail = visible sequence of side effects tail vsse head b =

{c . vsse head
modification-order
−−−−−−−−−−→ c ∧

¬(b
happens-before
−−−−−−−−→ c) ∧

(∀a. vsse head
modification-order
−−−−−−−−−−→ a

modification-order
−−−−−−−−−−→ c

=⇒ ¬(b
happens-before
−−−−−−−−→ a))}

myimage f s = {y . ∃x ∈ s. (y = f x)}

visible sequences of side effects = visible sequences of side effects =
λ(vsse head , b).

(b, if is at atomic location b then
{vsse head} ∪
visible sequence of side effects tail vsse head b

else
{})

visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect =
myimage (visible sequences of side effects actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect)visible-side-effect

consistent reads from mapping = consistent reads from mapping =
(∀b. (is read b ∧ is at non atomic location b) =⇒

(if (∃avse . avse
visible-side-effect
−−−−−−−−−→ b)

then (∃avse . avse
visible-side-effect
−−−−−−−−−→ b ∧ avse

rf
−→ b)

else ¬(∃a. a
rf
−→ b))) ∧

(∀b. (is read b ∧ is at atomic location b) =⇒
(if (∃(b′, vsse) ∈ visible-sequences-of-side-effects. (b′ = b))
then (∃(b′, vsse) ∈ visible-sequences-of-side-effects.

(b′ = b) ∧ (∃c ∈ vsse. c
rf
−→ b))

else ¬(∃a. a
rf
−→ b))) ∧

(∀(x , a) ∈
rf
−→.

∀(y , b) ∈
rf
−→.

a
happens-before
−−−−−−−−→ b ∧
same location a b ∧ is at atomic location b

=⇒ (x = y) ∨ x
modification-order
−−−−−−−−−−→ y) ∧

(* new CoWR *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c .

c
rf
−→ b ∧
is write a ∧ same location a b ∧ is at atomic location b

=⇒ (c = a) ∨ a
modification-order
−−−−−−−−−−→ c) ∧

(* new CoRW *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c .

c
rf
−→ a ∧
is write b ∧ same location a b ∧ is at atomic location a

=⇒ c
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is atomic rmw b

=⇒ a |
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is seq cst b

=⇒ (¬ is seq cst a ∧ (∀x . x |
sc
−→λc. is write c∧same location b c b =⇒ x

modification-order
−−−−−−−−−−→ a)) ∨

a |
sc
−→λc. is write c∧same location b c b) ∧

(* -Fence restrictions- *)

(* 29.3:3 *)

(∀a. ∀(x , b) ∈
sequenced-before
−−−−−−−−−→. ∀y .

(is fence x ∧ is seq cst x ∧ is atomic action b ∧
is write a ∧ same location a b ∧

a |
sc
−→ x ∧ y

rf
−→ b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:4 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

rf
−→.

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ same location a b ∧

x
sc
−→ b ∧ is atomic action b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:5 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

sequenced-before
−−−−−−−−−→. ∀z .

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ is fence y ∧ is seq cst y ∧
is atomic action b ∧ same location a b ∧

x
sc
−→ y ∧ z

rf
−→ b)

=⇒ (z = a) ∨ a
modification-order
−−−−−−−−−−→ z)

all data dependency =
all data dependency
−−−−−−−−−−−−→ =

(
rf
−→∪

carries-a-dependency-to
−−−−−−−−−−−−−→)+

consistent control dependency = consistent control dependency =

irreflexive ((
control-dependency
−−−−−−−−−−−→∪

all data dependency
−−−−−−−−−−−−→)+)

consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
well formed threads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧
consistent locks actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc ∧ (
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let hypothetical-release-sequence = hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in
let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in
let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in
let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in
let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in
let visible-side-effect = visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before in
let visible-sequences-of-side-effects = visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect in
consistent inter thread happens before inter-thread-happens-before ∧
consistent sc order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order sc happens-before ∧
consistent modification order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc modification-order happens-before ∧
well formed reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf ∧
consistent reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf sc modification-order happens-before visible-side-effect visible-sequences-of-side-effects)

indeterminate reads actions threads = indeterminate reads =

{b. is read b ∧ ¬(∃a. a
rf
−→ b)}

unsequenced races = unsequenced races = {(a, b).
(a ̸= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
same thread a b ∧

¬(a
sequenced-before
−−−−−−−−−→ b ∨ b

sequenced-before
−−−−−−−−−→ a)}

data races = data races = {(a, b).
(a ̸= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
¬ same thread a b ∧
¬(is atomic action a ∧ is atomic action b) ∧

¬(a
happens-before
−−−−−−−−→ b ∨ b

happens-before
−−−−−−−−→ a)}

data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let hypothetical-release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in
let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in
let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in
let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in
let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in
data races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before

cpp memory model opsem (p ∈ ′program) =
let executions = {(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc).

opsem p actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧ consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc} in
if ∃(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc) ∈ executions .

(indeterminate reads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf ̸= {}) ∨
(unsequenced races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ̸= {}) ∨
(data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc ̸= {})

then {}
else executions

24Monday 11 May 15

The full model

a
r
−→ b = (a, b) ∈ r

a r b = (a, b) ∈ r

a ̸
r
−→ b = (a, b) /∈ r

r
−→ = r

a
r
−→ b

s
−→ c = a

r
−→ b ∧ b

s
−→ c

relation over s rel = domain rel ⊆ s ∧ range rel ⊆ s

rel
−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

rel
−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

strict preorder ord = irreflexive ord ∧ trans ord

total over s ord =
relation over s ord ∧

(∀x ∈ s. ∀y ∈ s. x
ord
−−→ y ∨ y

ord
−−→ x ∨ (x = y))

strict total order over s ord =
strict preorder ord ∧ total over s ord

x |
ord
−−→pred y =

pred x ∧ x
ord
−−→ y ∧ ¬(∃z . pred z ∧ x

ord
−−→ z

ord
−−→ y)

x |
ord
−−→ y =

x
ord
−−→ y ∧ ¬(∃z . x

ord
−−→ z

ord
−−→ y)

well founded r = wf r

type abbrev action id : string

type abbrev thread id : string

type abbrev location : string

type abbrev val : string

memory order enum =
Mo seq cst

| Mo relaxed

| Mo release

| Mo acquire

| Mo consume

| Mo acq rel

action =
Lock of action id thread id location

| Unlock of action id thread id location
| Atomic load of action id thread id memory order enum location val
| Atomic store of action id thread id memory order enum location val
| Atomic rmw of action id thread id memory order enum location val val
| Load of action id thread id location val
| Store of action id thread id location val
| Fence of action id thread id memory order enum

(action id of (Lock aid) = aid) ∧
(action id of (Unlock aid) = aid) ∧
(action id of (Atomic load aid) = aid) ∧
(action id of (Atomic store aid) = aid) ∧
(action id of (Atomic rmw aid) = aid) ∧
(action id of (Load aid) = aid) ∧
(action id of (Store aid) = aid) ∧
(action id of (Fence aid) = aid)

(thread id of (Lock tid) = tid) ∧
(thread id of (Unlock tid) = tid) ∧
(thread id of (Atomic load tid) = tid) ∧
(thread id of (Atomic store tid) = tid) ∧
(thread id of (Atomic rmw tid) = tid) ∧
(thread id of (Load tid) = tid) ∧
(thread id of (Store tid) = tid) ∧
(thread id of (Fence tid) = tid)

(memory order (Atomic load mem ord) =
Some mem ord) ∧

(memory order (Atomic store mem ord) =
Some mem ord) ∧

(memory order (Atomic rmw mem ord) =
Some mem ord) ∧

(memory order (Fence mem ord) =
Some mem ord) ∧

(memory order =
None)

(location (Lock l) = Some l) ∧
(location (Unlock l) = Some l) ∧
(location (Atomic load l) = Some l) ∧
(location (Atomic store l) = Some l) ∧
(location (Atomic rmw l) = Some l) ∧
(location (Load l) = Some l) ∧
(location (Store l) = Some l) ∧
(location (Fence) = None)

(value read (Atomic load v) = Some v) ∧
(value read (Atomic rmw v) = Some v) ∧
(value read (Load v) = Some v) ∧
(value read = None)

(value written (Atomic store v) = Some v) ∧
(value written (Atomic rmw v) = Some v) ∧
(value written (Store v) = Some v) ∧
(value written = None)

is lock a =
case a of Lock → T ∥ → F

is unlock a =
case a of Unlock → T ∥ → F

is atomic load a =
case a of Atomic load → T ∥ → F

is atomic store a =
case a of Atomic store → T ∥ → F

is atomic rmw a =
case a of Atomic rmw → T ∥ → F

is load a = case a of Load → T ∥ → F

is store a = case a of Store → T ∥ → F

is fence a = case a of Fence → T ∥ → F

is lock or unlock a = is lock a ∨ is unlock a

is atomic action a =
is atomic load a ∨ is atomic store a ∨ is atomic rmw a

is load or store a = is load a ∨ is store a

is read a =
is atomic load a ∨ is atomic rmw a ∨ is load a

is write a =
is atomic store a ∨ is atomic rmw a ∨ is store a

is acquire a =
(case memory order a of

Some mem ord →
(mem ord ∈

{Mo acquire,Mo acq rel,Mo seq cst} ∧
(is read a ∨ is fence a)) ∨
(* 29.8:5 states that consume fences are acquire fences. *)
((mem ord = Mo consume) ∧ is fence a)

∥ None → is lock a)

is consume a =
is read a ∧ (memory order a = Some Mo consume)

is release a =
(case memory order a of

Some mem ord →
mem ord ∈ {Mo release,Mo acq rel,Mo seq cst} ∧

(is write a ∨ is fence a)
∥ None → is unlock a)

is seq cst a = (memory order a = Some Mo seq cst)

location kind =
Mutex

| Non atomic

| Atomic

actions respect location kinds = actions respect location kinds =
∀a.

case location a of Some l →
(case location-kind l of

Mutex → is lock or unlock a
∥ Non atomic → is load or store a
∥ Atomic → is load or store a ∨ is atomic action a)

∥ None → T

is at location kind = is at location kind =
case location a of

Some l → (location-kind l = lk0)
∥ None → F

is at mutex location a =
is at location kind a Mutex

is at non atomic location a =
is at location kind a Non atomic

is at atomic location a =
is at location kind a Atomic

same thread a b = (thread id of a = thread id of b)

threadwise relation over s rel =
relation over s rel ∧ (∀(a, b) ∈ rel . same thread a b)

same location a b = (location a = location b)

locations of actions = {l . ∃a. (location a = Some l)}

well formed action a =
case a of

Atomic load mem ord → mem ord ∈
{Mo relaxed,Mo acquire,Mo seq cst,Mo consume}

∥ Atomic store mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo seq cst}

∥ Atomic rmw mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo acquire,Mo acq rel,Mo seq cst,Mo consume}

∥ → T

well formed threads = well formed threads =
inj on action id of (actions) ∧
(∀a. well formed action a) ∧
threadwise relation over actions sequenced-before ∧
threadwise relation over actions data-dependency ∧
threadwise relation over actions control-dependency ∧
strict preorder sequenced-before ∧
strict preorder data-dependency ∧
strict preorder control-dependency ∧
relation over actions additional-synchronized-with ∧
(∀a. thread id of a ∈ threads) ∧
actions respect location kinds∧
data-dependency ⊆ sequenced-before

well formed reads from mapping = well formed reads from mapping =

relation over actions (
rf
−→) ∧

(∀a. ∀a′. ∀b. a
rf
−→ b ∧ a′

rf
−→ b =⇒ (a = a′)) ∧

(∀(a, b) ∈
rf
−→.

same location a b ∧
(value read b = value written a) ∧
(a ̸= b) ∧
(is at mutex location a =⇒

is unlock a ∧ is lock b) ∧
(is at non atomic location a =⇒

is store a ∧ is load b) ∧
(is at atomic location a =⇒
(is atomic store a ∨ is atomic rmw a ∨ is store a)
∧ (is atomic load b ∨ is atomic rmw b ∨ is load b)))

all lock or unlock actions at lopt as =
{a ∈ as. is lock or unlock a ∧ (location a = lopt)}

consistent locks = consistent locks =
∀l ∈ locations of actions. (location-kind l = Mutex) =⇒ (

let lock unlock actions =
all lock or unlock actions at (Some l)actions in

let lock order =
sc
−→|lock unlock actions in

(* 30.4.1:5 - The implementation shall serialize those (lock and unlock) operations. *)
strict total order over lock unlock actions lock order ∧

(* 30.4.1:1 A thread owns a mutex from the time it successfully calls one of the lock functions until
it calls unlock.*)
(* 30.4.1:20 Requires: The calling thread shall own the mutex. *)
(* 30.4.1:21 Effects: Releases the calling threads ownership of the mutex.*)
(∀au ∈ lock unlock actions. is unlock au =⇒

(∃al ∈ lock unlock actions.

al |
lock order
−−−−−−→ au ∧ same thread al au ∧ is lock al)) ∧

(* 30.4.1:7 Effects: Blocks the calling thread until ownership of the mutex can be obtained for the
calling thread.*)
(* 30.4.1:8 Postcondition: The calling thread owns the mutex. *)
(∀al ∈ lock unlock actions. is lock al =⇒

(∀au ∈ lock unlock actions.

au |
lock order
−−−−−−→ al =⇒ is unlock au)))

rs element rs head a =
same thread a rs head ∨ is atomic rmw a

release sequence = arel
release-sequence
−−−−−−−−−→ b =

is at atomic location b ∧
is release arel ∧ (
(b = arel) ∨

(rs element arel b ∧ arel
modification-order
−−−−−−−−−−→ b ∧

(∀c . arel
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element arel c)))

release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

hypothetical release sequence = a
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ b =

is at atomic location b ∧ (
(b = a) ∨

(rs element a b ∧ a
modification-order
−−−−−−−−−−→ b ∧

(∀c . a
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element a c)))

hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

hypothetical release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

synchronizes with = a
synchronizes-with
−−−−−−−−−−→ b =

(* – additional synchronization, from thread create etc. – *)

a
additional-synchronized-with
−−−−−−−−−−−−−−−−→ b ∨

(same location a b ∧ a ∈ actions ∧ b ∈ actions ∧ (
(* – mutex synchronization – *)

(is unlock a ∧ is lock b ∧ a
sc
−→ b) ∨

(* – release/acquire synchronization – *)
(is release a ∧ is acquire b ∧ ¬ same thread a b ∧

(∃c . a
release-sequence
−−−−−−−−−→ c

rf
−→ b)) ∨

(* – fence synchronization – *)
(is fence a ∧ is release a ∧ is fence b ∧ is acquire b ∧
(∃x . ∃y . same location x y ∧

is atomic action x ∧ is atomic action y ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧ y

sequenced-before
−−−−−−−−−→ b ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ z

rf
−→ y))) ∨

(is fence a ∧ is release a ∧
is atomic action b ∧ is acquire b ∧
(∃x . same location x b ∧

is atomic action x ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ z

rf
−→ b))) ∨

(is atomic action a ∧ is release a ∧
is fence b ∧ is acquire b ∧
(∃x . same location a x ∧ is atomic action x ∧

x
sequenced-before
−−−−−−−−−→ b ∧

(∃z . a
release-sequence
−−−−−−−−−→ z

rf
−→ x)))))

synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence =

synchronizes with actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence a b}

carries a dependency to = a
carries-a-dependency-to
−−−−−−−−−−−−−→ b =

a ((
rf
−→∩

sequenced-before
−−−−−−−−−→) ∪

data-dependency
−−−−−−−−−→)+ b

carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf =

carries a dependency to actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf a b}

dependency ordered before = a
dependency-ordered-before
−−−−−−−−−−−−−−−→ d =

a ∈ actions ∧ d ∈ actions ∧
(∃b. is release a ∧ is consume b ∧

(∃e. a
release-sequence
−−−−−−−−−→ e

rf
−→ b) ∧

(b
carries-a-dependency-to
−−−−−−−−−−−−−→ d ∨ (b = d)))

dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to =

dependency ordered before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to a b}

simple happens before =
simple happens before
−−−−−−−−−−−−−→ =

(
sequenced-before
−−−−−−−−−→∪

synchronizes-with
−−−−−−−−−−→)+

consistent simple happens before shb =

irreflexive (
shb
−−→)

inter thread happens before =
inter-thread-happens-before
−−−−−−−−−−−−−−−→ =

let r =
synchronizes-with
−−−−−−−−−−→∪

dependency-ordered-before
−−−−−−−−−−−−−−−→∪

(
synchronizes-with
−−−−−−−−−−→ ◦

sequenced-before
−−−−−−−−−→) in

(
r
−→∪ (

sequenced-before
−−−−−−−−−→ ◦

r
−→))+

consistent inter thread happens before = consistent inter thread happens before =

irreflexive (
inter-thread-happens-before
−−−−−−−−−−−−−−−→)

happens before =
happens-before
−−−−−−−−→ =

sequenced-before
−−−−−−−−−→∪

inter-thread-happens-before
−−−−−−−−−−−−−−−→

all sc actions = all sc actions =
{a. (is seq cst a ∨ is lock a ∨ is unlock a)}

consistent sc order = consistent sc order =

let sc happens before =
happens-before
−−−−−−−−→|all sc actions in

let sc mod order =
modification-order
−−−−−−−−−−→|all sc actions in

strict total order over all sc actions (
sc
−→) ∧

sc happens before
−−−−−−−−−−−→ ⊆

sc
−→∧

sc mod order
−−−−−−−−→ ⊆

sc
−→

consistent modification order = consistent modification order =

(∀a. ∀b. a
modification-order
−−−−−−−−−−→ b =⇒ same location a b) ∧

(∀l ∈ locations of actions. case location-kind l of
Atomic → (

let actions at l = {a. (location a = Some l)} in
let writes at l = {a at l . (is store a ∨

is atomic store a ∨ is atomic rmw a)} in
strict total order over writes at l

(
modification-order
−−−−−−−−−−→|actions at l) ∧
(* happens-before at the writes of l is a subset of mo for l *)
happens-before
−−−−−−−−→|writes at l ⊆

modification-order
−−−−−−−−−−→∧

(* Mo seq cst fences impose modification order *)

(
sequenced-before
−−−−−−−−−→ ◦ (

sc
−→|is fence) ◦

sequenced-before
−−−−−−−−−→|writes at l)

⊆
modification-order
−−−−−−−−−−→)

∥ → (
let actions at l = {a. (location a = Some l)} in

(
modification-order
−−−−−−−−−−→|actions at l) = {}))

visible side effect = a
visible-side-effect
−−−−−−−−−→ b =

a
happens-before
−−−−−−−−→ b ∧

is write a ∧ is read b ∧ same location a b ∧
¬(∃c . (c ̸= a) ∧ (c ̸= b) ∧

is write c ∧ same location c b ∧

a
happens-before
−−−−−−−−→ c

happens-before
−−−−−−−−→ b)

visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before =
{ab ∈ happens-before. let (a, b) = ab in
visible side effect actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before a b}

visible sequence of side effects tail = visible sequence of side effects tail vsse head b =

{c . vsse head
modification-order
−−−−−−−−−−→ c ∧

¬(b
happens-before
−−−−−−−−→ c) ∧

(∀a. vsse head
modification-order
−−−−−−−−−−→ a

modification-order
−−−−−−−−−−→ c

=⇒ ¬(b
happens-before
−−−−−−−−→ a))}

myimage f s = {y . ∃x ∈ s. (y = f x)}

visible sequences of side effects = visible sequences of side effects =
λ(vsse head , b).

(b, if is at atomic location b then
{vsse head} ∪
visible sequence of side effects tail vsse head b

else
{})

visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect =
myimage (visible sequences of side effects actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect)visible-side-effect

consistent reads from mapping = consistent reads from mapping =
(∀b. (is read b ∧ is at non atomic location b) =⇒

(if (∃avse . avse
visible-side-effect
−−−−−−−−−→ b)

then (∃avse . avse
visible-side-effect
−−−−−−−−−→ b ∧ avse

rf
−→ b)

else ¬(∃a. a
rf
−→ b))) ∧

(∀b. (is read b ∧ is at atomic location b) =⇒
(if (∃(b′, vsse) ∈ visible-sequences-of-side-effects. (b′ = b))
then (∃(b′, vsse) ∈ visible-sequences-of-side-effects.

(b′ = b) ∧ (∃c ∈ vsse. c
rf
−→ b))

else ¬(∃a. a
rf
−→ b))) ∧

(∀(x , a) ∈
rf
−→.

∀(y , b) ∈
rf
−→.

a
happens-before
−−−−−−−−→ b ∧
same location a b ∧ is at atomic location b

=⇒ (x = y) ∨ x
modification-order
−−−−−−−−−−→ y) ∧

(* new CoWR *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c .

c
rf
−→ b ∧
is write a ∧ same location a b ∧ is at atomic location b

=⇒ (c = a) ∨ a
modification-order
−−−−−−−−−−→ c) ∧

(* new CoRW *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c .

c
rf
−→ a ∧
is write b ∧ same location a b ∧ is at atomic location a

=⇒ c
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is atomic rmw b

=⇒ a |
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is seq cst b

=⇒ (¬ is seq cst a ∧ (∀x . x |
sc
−→λc. is write c∧same location b c b =⇒ x

modification-order
−−−−−−−−−−→ a)) ∨

a |
sc
−→λc. is write c∧same location b c b) ∧

(* -Fence restrictions- *)

(* 29.3:3 *)

(∀a. ∀(x , b) ∈
sequenced-before
−−−−−−−−−→. ∀y .

(is fence x ∧ is seq cst x ∧ is atomic action b ∧
is write a ∧ same location a b ∧

a |
sc
−→ x ∧ y

rf
−→ b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:4 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

rf
−→.

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ same location a b ∧

x
sc
−→ b ∧ is atomic action b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:5 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

sequenced-before
−−−−−−−−−→. ∀z .

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ is fence y ∧ is seq cst y ∧
is atomic action b ∧ same location a b ∧

x
sc
−→ y ∧ z

rf
−→ b)

=⇒ (z = a) ∨ a
modification-order
−−−−−−−−−−→ z)

all data dependency =
all data dependency
−−−−−−−−−−−−→ =

(
rf
−→∪

carries-a-dependency-to
−−−−−−−−−−−−−→)+

consistent control dependency = consistent control dependency =

irreflexive ((
control-dependency
−−−−−−−−−−−→∪

all data dependency
−−−−−−−−−−−−→)+)

consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
well formed threads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧
consistent locks actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc ∧ (
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let hypothetical-release-sequence = hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in
let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in
let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in
let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in
let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in
let visible-side-effect = visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before in
let visible-sequences-of-side-effects = visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect in
consistent inter thread happens before inter-thread-happens-before ∧
consistent sc order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order sc happens-before ∧
consistent modification order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc modification-order happens-before ∧
well formed reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf ∧
consistent reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf sc modification-order happens-before visible-side-effect visible-sequences-of-side-effects)

indeterminate reads actions threads = indeterminate reads =

{b. is read b ∧ ¬(∃a. a
rf
−→ b)}

unsequenced races = unsequenced races = {(a, b).
(a ̸= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
same thread a b ∧

¬(a
sequenced-before
−−−−−−−−−→ b ∨ b

sequenced-before
−−−−−−−−−→ a)}

data races = data races = {(a, b).
(a ̸= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
¬ same thread a b ∧
¬(is atomic action a ∧ is atomic action b) ∧

¬(a
happens-before
−−−−−−−−→ b ∨ b

happens-before
−−−−−−−−→ a)}

data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let hypothetical-release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in
let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in
let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in
let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in
let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in
data races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before

cpp memory model opsem (p ∈ ′program) =
let executions = {(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc).

opsem p actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧ consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc} in
if ∃(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc) ∈ executions .

(indeterminate reads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf ̸= {}) ∨
(unsequenced races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ̸= {}) ∨
(data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc ̸= {})

then {}
else executions

We can reason about C concurrency!

24Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 2 is not affected by Thread 1 and vice-versa

This program is data-race free
This program must print 42

25Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 2 is not affected by Thread 1 and vice-versa

This program is data-race free
This program must print 42

This is a concurrency compiler bugcompiler bug

25Monday 11 May 15

int s;
for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 2 is not affected by Thread 1 and vice-versa

This program is data-race free
This program must print 42

This is a concurrency compiler bugconcurrency compiler bug

25Monday 11 May 15

Compiler testing: state of the art
 Yang, Chen, Eide, Regehr - PLDI 2011

26Monday 11 May 15

Compiler testing: state of the art
 Yang, Chen, Eide, Regehr - PLDI 2011

Reported hundreds of bugs

on various versions of gcc, clang and other compilers

26Monday 11 May 15

Compiler testing: state of the art
 Yang, Chen, Eide, Regehr - PLDI 2011

Reported hundreds of bugs

on various versions of gcc, clang and other compilers

Cannot catch
concurrency compiler bugs

26Monday 11 May 15

Hunting concurrency compiler bugs?

How to deal with non-determinism?

How to generate non-racy interesting programs?

How to capture all the behaviours of concurrent programs?

A compiler can optimise away behaviours:
how to test for correctness?

limit case: two compilers generate correct code with disjoint final states

27Monday 11 May 15

C/C++ compilers support separate compilation
Functions can be called in arbitrary non-racy concurrent contexts

C/C++ compilers can only apply transformations sound
with respect to an arbitrary non-racy concurrent context

Idea

Hunt concurrency compiler bugs

=
 search for transformations of sequential code

not sound in an arbitrary non-racy context

28Monday 11 May 15

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

Check: only transformations sound
in any concurrent non-racy context

SEQUENTIAL
PROGRAM

29Monday 11 May 15

Soundness of compiler optimisations in
the C11/C++11 memory model

30Monday 11 May 15

What is an optimisation?

Compiler Writer Semanticist

31Monday 11 May 15

What is an optimisation?

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

Compiler Writer Semanticist

31Monday 11 May 15

What is an optimisation?

for (int i=0; i<2; i++) {
 z = i;
 x[i] += ;
}

y+1

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

Compiler Writer Semanticist

31Monday 11 May 15

tmp

What is an optimisation?

for (int i=0; i<2; i++) {
 z = i;
 x[i] += ;
}

y+1tmp = ;

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

Compiler Writer Semanticist

31Monday 11 May 15

tmp

What is an optimisation?

for (int i=0; i<2; i++) {
 z = i;
 x[i] += ;
}

y+1tmp = ;

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

 Elimination of run-time events
 Reordering of run-time events
 Introduction of run-time events

 Operations on sets of events

Compiler Writer Semanticist

31Monday 11 May 15

tmp

What is an optimisation?

...assuming initially y=42...

Store z 0

Store x[0] 43
Store z 1
Load y 42
Store x[1] 43

for (int i=0; i<2; i++) {
 z = i;
 x[i] += ;
}

y+1tmp = ; Load y 42

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

 Elimination of run-time events
 Reordering of run-time events
 Introduction of run-time events

 Operations on sets of events

Compiler Writer Semanticist

31Monday 11 May 15

tmp

What is an optimisation?

...assuming initially y=42...

Store z 0

Store x[0] 43
Store z 1
Load y 42
Store x[1] 43

for (int i=0; i<2; i++) {
 z = i;
 x[i] += ;
}

y+1tmp = ;

Load y 42

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

 Elimination of run-time events
 Reordering of run-time events
 Introduction of run-time events

 Operations on sets of events

Compiler Writer Semanticist

31Monday 11 May 15

Elimination of overwritten writes

Store g 1

Store g 2

sb

sb

...

Under which conditions is it
correct to eliminate the first store?

32Monday 11 May 15

A same-thread release-acquire pair is a pair of
a release action followed by an acquire action

in program order.

An action is a release if it is a possible source of a synchronisation

 unlock mutex, release or seq_cst atomic write

An action is an acquire if it is a possible target of a synchronisation

lock mutex, acquire or seq_cst atomic read

33Monday 11 May 15

Elimination of overwritten writes

Store g 1

Store g 2

sb

sb

It is safe to eliminate the first store
if there are:

no access to g

no st rel/acq pair
1. no intervening accesses to g
2. no intervening
 same-thread release-acquire pair

34Monday 11 May 15

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 1

35Monday 11 May 15

candidate overwritten write
g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 1

35Monday 11 May 15

candidate overwritten write
g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

same-thread release-acquire pair

Thread 1

35Monday 11 May 15

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

36Monday 11 May 15

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync

36Monday 11 May 15

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync

The program should only print 1

36Monday 11 May 15

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync

If we perform overwritten write elimination it prints 0
The program should only print 1

36Monday 11 May 15

sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

while(f2.load(ACQUIRE)==0);

37Monday 11 May 15

sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

37Monday 11 May 15

sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

If only a release (or acquire) is present, then
all discriminating contexts are racy.

It is sound to optimise the overwritten write.

data race

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

37Monday 11 May 15

Write-after-Read

Store g v1

Store g v1

Write-after-Write

no access to g

no rel/acq pair

Read-after-Read

Read g v

Read g v

no access to g

no rel/acq pair

sb

sb

Read-after-Write

Store g v

Read g v

no access to g

no rel/acq pair

sb

sb

Eliminations: bestiary

Store g v1

Store g v2

no access to g

no rel/acq pair

sb

sb

Overwritten-Write

Read g v

Store g v

Write-after-Read

no access to g

no rel/acq pair

sb

sbsb

Reads which are not used (via data or control dependencies) to decide a
write or synchronisation event are also eliminable (irrelevant reads).

sb

38Monday 11 May 15

Write-after-Read

Store g v1

Store g v1

Write-after-Write

no access to g

no rel/acq pair

Read-after-Read

Read g v

Read g v

no access to g

no rel/acq pair

sb

sb

Read-after-Write

Store g v

Read g v

no access to g

no rel/acq pair

sb

sb

Eliminations: bestiary

Store g v1

Store g v2

no access to g

no rel/acq pair

sb

sb

Overwritten-Write

Read g v

Store g v

Write-after-Read

no access to g

no rel/acq pair

sb

sbsb

Reads which are not used (via data or control dependencies) to decide a
write or synchronisation event are also eliminable (irrelevant reads).

sb

Also correctness statements for

reorderings, merging, and introductions of events.

38Monday 11 May 15

From theory to the Cmmtest tool

39Monday 11 May 15

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

Check: only transformations sound
in any concurrent non-racy context

40Monday 11 May 15

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith
extended with locks

and atomics

Check: only transformations sound
in any concurrent non-racy context

40Monday 11 May 15

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith
extended with locks

and atomics

binary
instrumentation

Check: only transformations sound
in any concurrent non-racy context

40Monday 11 May 15

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith
extended with locks

and atomics

binary
instrumentation

EXECUTABLE

gcc/clang -O0

binary
instrumentation

Check: only transformations sound
in any concurrent non-racy context

41Monday 11 May 15

REFERENCE
MEMORY

TRACE
MEMORY

TRACE

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith
extended with locks

and atomics

binary
instrumentation

EXECUTABLE

gcc/clang -O0

binary
instrumentation

Check: only transformations sound
in any concurrent non-racy context

OCaml tool
 1. analyse the traces to detect eliminable actions
 2. match reference and optimised traces

41Monday 11 May 15

void func_1(void){
 int *l8 = &g6;
 int l36 = 0x5E9D070FL;
 unsigned int l107 = 0xAA37C3ACL;
 g4 &= g3;
 g5++;
 int *l102 = &l36;
 for (g6 = 4; g6 < (-3); g6 += 1);
 l102 = &g6;
 *l102 = ((*l8) && (l107 << 7)*(*l102));
}

const unsigned int g3 = 0UL;
long long g4 = 0x1;
int g6 = 6L;
volatile unsigned int g5 = 1UL;

Start with a randomly generated well-defined program

42Monday 11 May 15

void func_1(void){
 int *l8 = &g6;
 int l36 = 0x5E9D070FL;
 unsigned int l107 = 0xAA37C3ACL;
 g4 &= g3;
 g5++;
 int *l102 = &l36;
 for (g6 = 4; g6 < (-3); g6 += 1);
 l102 = &g6;
 *l102 = ((*l8) && (l107 << 7)*(*l102));
}

const unsigned int g3 = 0UL;
long long g4 = 0x1;
int g6 = 6L;
volatile unsigned int g5 = 1UL;

42Monday 11 May 15

void func_1(void){
 int *l8 = &g6;
 int l36 = 0x5E9D070FL;
 unsigned int l107 = 0xAA37C3ACL;
 g4 &= g3;
 g5++;
 int *l102 = &l36;
 for (g6 = 4; g6 < (-3); g6 += 1);
 l102 = &g6;
 *l102 = ((*l8) && (l107 << 7)*(*l102));
}

Init g3 0
Init g4 1
Init g5 1
Init g6 6

42Monday 11 May 15

void func_1(void){
 int *l8 = &g6;
 int l36 = 0x5E9D070FL;
 unsigned int l107 = 0xAA37C3ACL;
 g4 &= g3;
 g5++;
 int *l102 = &l36;
 for (g6 = 4; g6 < (-3); g6 += 1);
 l102 = &g6;
 *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load g4 1
 Store g4 0
RaW* Load g5 1
 Store g5 2
OW* Store g6 4
RaW* Load g6 4
RaR* Load g6 4
RaR* Load g6 4
 Store g6 1
RaW* Load g4 0

reference
semantics

Init g3 0
Init g4 1
Init g5 1
Init g6 6

42Monday 11 May 15

void func_1(void){
 int *l8 = &g6;
 int l36 = 0x5E9D070FL;
 unsigned int l107 = 0xAA37C3ACL;
 g4 &= g3;
 g5++;
 int *l102 = &l36;
 for (g6 = 4; g6 < (-3); g6 += 1);
 l102 = &g6;
 *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load g4 1
 Store g4 0
RaW* Load g5 1
 Store g5 2
OW* Store g6 4
RaW* Load g6 4
RaR* Load g6 4
RaR* Load g6 4
 Store g6 1
RaW* Load g4 0

reference
semantics

Load g5 1
Store g4 0
Store g6 1
Store g5 2
Load g4 0

gcc -O2 memory trace

Init g3 0
Init g4 1
Init g5 1
Init g6 6

42Monday 11 May 15

void func_1(void){
 int *l8 = &g6;
 int l36 = 0x5E9D070FL;
 unsigned int l107 = 0xAA37C3ACL;
 g4 &= g3;
 g5++;
 int *l102 = &l36;
 for (g6 = 4; g6 < (-3); g6 += 1);
 l102 = &g6;
 *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load g4 1
 Store g4 0
RaW* Load g5 1
 Store g5 2
OW* Store g6 4
RaW* Load g6 4
RaR* Load g6 4
RaR* Load g6 4
 Store g6 1
RaW* Load g4 0

reference
semantics

Load g5 1
Store g4 0
Store g6 1
Store g5 2
Load g4 0

gcc -O2 memory trace

Init g3 0
Init g4 1
Init g5 1
Init g6 6

42Monday 11 May 15

void func_1(void){
 int *l8 = &g6;
 int l36 = 0x5E9D070FL;
 unsigned int l107 = 0xAA37C3ACL;
 g4 &= g3;
 g5++;
 int *l102 = &l36;
 for (g6 = 4; g6 < (-3); g6 += 1);
 l102 = &g6;
 *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load g4 1
 Store g4 0
RaW* Load g5 1
 Store g5 2
OW* Store g6 4
RaW* Load g6 4
RaR* Load g6 4
RaR* Load g6 4
 Store g6 1
RaW* Load g4 0

reference
semantics

Load g5 1
Store g4 0
Store g6 1
Store g5 2
Load g4 0

gcc -O2 memory trace

Init g3 0
Init g4 1
Init g5 1
Init g6 6

42Monday 11 May 15

void func_1(void){
 int *l8 = &g6;
 int l36 = 0x5E9D070FL;
 unsigned int l107 = 0xAA37C3ACL;
 g4 &= g3;
 g5++;
 int *l102 = &l36;
 for (g6 = 4; g6 < (-3); g6 += 1);
 l102 = &g6;
 *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load g4 1
 Store g4 0
RaW* Load g5 1
 Store g5 2
OW* Store g6 4
RaW* Load g6 4
RaR* Load g6 4
RaR* Load g6 4
 Store g6 1
RaW* Load g4 0

reference
semantics

Load g5 1
Store g4 0
Store g6 1
Store g5 2
Load g4 0

gcc -O2 memory trace

Init g3 0
Init g4 1
Init g5 1
Init g6 6

Can match applying
only correct eliminations and reorderings

42Monday 11 May 15

 int s;
 for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
 }

int a = 1;
int b = 0;

If we focus on the miscompiled initial example...

43Monday 11 May 15

 int s;
 for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
 }

int a = 1;
int b = 0;

43Monday 11 May 15

 int s;
 for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
 }

int a = 1;
int b = 0;

reference
semantics

Load a 1

43Monday 11 May 15

 int s;
 for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
 }

int a = 1;
int b = 0;

Load a 1
Load b 0
Store b 0

gcc -O2 memory tracereference
semantics

Load a 1

43Monday 11 May 15

 int s;
 for (s=0; s!=4; s++) {
 if (a==1)
 return NULL;
 for (b=0; b>=26; ++b)
 ;
 }

int a = 1;
int b = 0;

Load a 1
Load b 0
Store b 0

gcc -O2 memory trace

 Cannot match some events detect compiler bug

reference
semantics

Load a 1

43Monday 11 May 15

Applications

44Monday 11 May 15

1. Testing C compilers (GCC, Clang, ICC)

Some concurrency compiler bugs found
in the latest version of GCC.

Store introductions performed by loop invariant motion or
if-conversion optimisations.

Remark: these bugs break the Posix thread model too.

All promptly fixed.

45Monday 11 May 15

2. Checking compiler invariants

Baked this invariant into the tool and found a counterexample...

GCC internal invariant: never reorder with an atomic access

atomic_uint a;
int32_t g1, g2;

int main (int, char *[]) {
 a.load() & a.load ();
 g2 = g1 != 0;
}

ALoad a 0 4
ALoad a 0 4
Load g1 0 4
Store g2 0 4

Load g1 0 4
ALoad a 0 4
ALoad a 0 4
Store g2 0 4

...not a bug, but fixed anyway

46Monday 11 May 15

3. Detecting unexpected behaviours

Correct or not?

uint16_t g

for (; g==0; g--); g=0;

uint16_t g

47Monday 11 May 15

3. Detecting unexpected behaviours

uint16_t g

for (; g==0; g--); g=0;

uint16_t g

ALoad a 0 4
Load g 0 2
ALoad a 0 4
AStore a 0 4
ALoad a 1 4

ALoad a 0 4
Store g 0 2
ALoad a 0 4
AStore a 0 4
ALoad a 1 4

?

The introduced store cannot be observed by a non-racy context.

Still, arguable if a compiler should do this or not.

If g is initialised with 0, a load gets replaced by a store:

48Monday 11 May 15

3. Detecting unexpected behaviours

uint16_t g

for (; g==0; g--); g=0;

uint16_t g

ALoad a 0 4
Load g 0 2
ALoad a 0 4
AStore a 0 4
ALoad a 1 4

ALoad a 0 4
Store g 0 2
ALoad a 0 4
AStore a 0 4
ALoad a 1 4

?

The introduced store cannot be observed by a non-racy context.

Still, arguable if a compiler should do this or not.

If g is initialised with 0, a load gets replaced by a store:

False positives in Thread Sanitizer

48Monday 11 May 15

The formalisation of the C11 memory model
enables compiler testing... what else?

49Monday 11 May 15

Proving the correctness of mappings for atomics
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

50Monday 11 May 15

https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

Inform new optimisations
e.g. the work by Robin Morisset on the Arm LLVM backend

 while (flag.load(acquire))
 {}

.loop
 ldr r0, [r1]
 dmb ish
 bnz .loop

.loop
 ldr r0, [r1]
 bnz .loop
 dmb ish

51Monday 11 May 15

Inform new optimisations
e.g. the work by Robin Morisset on the Arm LLVM backend

 while (flag.load(acquire))
 {}

.loop
 ldr r0, [r1]
 dmb ish
 bnz .loop

.loop
 ldr r0, [r1]
 bnz .loop
 dmb ish

52Monday 11 May 15

Not all of C/C++11 is good

53Monday 11 May 15

A second look at qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE

MO_RELEASE / MO_CONSUME

LESS RELAXED

MORE RELAXED

54Monday 11 May 15

A second look at qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE

MO_RELEASE / MO_CONSUME

LESS RELAXED

MORE RELAXED

REASONABLE

54Monday 11 May 15

A second look at qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE

MO_RELEASE / MO_CONSUME

LESS RELAXED

MORE RELAXED

REASONABLE

HARD TO IMPLEMENT

54Monday 11 May 15

A second look at qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE

MO_RELEASE / MO_CONSUME

LESS RELAXED

MORE RELAXED

REASONABLE

HARD TO IMPLEMENT

SEMANTICS TOO WEAK

54Monday 11 May 15

Out of thin air reads

55Monday 11 May 15

Shorthand

 from now on, all the memory accesses are

atomic with MO_RELAXED semantics

56Monday 11 May 15

Relaxed atomics

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = 42

x = y = 0

57Monday 11 May 15

Relaxed atomics

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = 42

r1 = r2 = 42
is a valid execution.

R x 42 R y 42

W y 42 W x 42
sb sb

rfrf

x = y = 0

57Monday 11 May 15

Out-of-thin-air reads

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = r2

x = y = 0

58Monday 11 May 15

Out-of-thin-air reads

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = r2

r1 = r2 = 42
is also an allowed execution

R x 42 R y 42

W y 42 W x 42
sb sb

rfrf

x = y = 0

58Monday 11 May 15

Out-of-thin-air reads

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = r2

r1 = r2 = 42
is also an allowed execution

R x 42 R y 42

W y 42 W x 42
sb sb

rfrf

the value 42 appears out-of-thin-air

x = y = 0

58Monday 11 May 15

Speculation can justify out-of-thin-air reads

If the compiler states that x is likely to hold 42...

59Monday 11 May 15

Speculation can justify out-of-thin-air reads

If the compiler states that x is likely to hold 42...

It does not happen in practice...

(a big thank you to compiler and hardware developers)

...but allowed by the standard

59Monday 11 May 15

Consequences of out-of-thin-air reads

60Monday 11 May 15

Thread 1 Thread 1

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo {
 atomic<struct foo *> next;
}
struct foo *a;

a nextnext

61Monday 11 May 15

Thread 1 Thread 1

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo {
 atomic<struct foo *> next;
}
struct foo *a;

a nextnext

61Monday 11 May 15

Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo {
 atomic<struct foo *> next;
}
struct foo *a, *b;

62Monday 11 May 15

Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo {
 atomic<struct foo *> next;
}
struct foo *a, *b;

If a and b initially reference disjoint data-structures
we expect a and b to remain disjoint

62Monday 11 May 15

Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo {
 atomic<struct foo *> next;
}
struct foo *a, *b;

a nextnext

b nextnext

63Monday 11 May 15

Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo {
 atomic<struct foo *> next;
}
struct foo *a, *b;

a nextnext

b nextnext

 If the compiler speculates r1=b and r2=a, then
 the store r1->next=a justifies r2=b->next assigning r2=a
 (and symmetrically to justify r1=b)

63Monday 11 May 15

Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo {
 atomic<struct foo *> next;
}
struct foo *a, *b;

a nextnext

b nextnext

 If the compiler speculates r1=b and r2=a, then
 the store r1->next=a justifies r2=b->next assigning r2=a
 (and symmetrically to justify r1=b)

63Monday 11 May 15

Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo {
 atomic<struct foo *> next;
}
struct foo *a, *b;

a nextnext

b nextnext

Break our basic intuitions
about memory and sharing!

 If the compiler speculates r1=b and r2=a, then
 the store r1->next=a justifies r2=b->next assigning r2=a
 (and symmetrically to justify r1=b)

63Monday 11 May 15

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

x = y = a = 0

64Monday 11 May 15

x = y = a = 0

Remark 1

This code is not racy!

There is no consistent execution in which
the read of a occurs.

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

65Monday 11 May 15

x = y = a = 0

Remark 2

a = 1 ⋀ x = y = 0

is the only possible final state

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

66Monday 11 May 15

x = y = a = 0

Remark 2

a = 1 ⋀ x = y = 0

is the only possible final state

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

Consider sequentialisation:
C || D ⟹ C ; D

(ought to be correct)

66Monday 11 May 15

x = y = a = 0

 a = 1

if (x.load(rlx)==42) if (y.load(rlx)==42)

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

67Monday 11 May 15

x = y = a = 0

 a = 1

if (x.load(rlx)==42) if (y.load(rlx)==42)

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

67Monday 11 May 15

a = 1
x = y = 42
is also possible

 a = 1

if (x.load(rlx)==42) if (y.load(rlx)==42)

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

x = y = a = 0

42

42

42

42

68Monday 11 May 15

a = 1
x = y = 42
is also possible

 a = 1

if (x.load(rlx)==42) if (y.load(rlx)==42)

 y.write(42,rlx) if (a==1)
 x.write(42,rlx)

x = y = a = 0

42

42

42

42

Break common source-to-source
(or LLVM IR - to - LLVM IR)

compiler optimisations
including expression linearisation and roach-motel reorderings

68Monday 11 May 15

We still lack a really satisfactory proposal for the
semantics of a general-purpose shared-memory

concurrent programming language.

69Monday 11 May 15

The way forward

70Monday 11 May 15

Understand the effects of
what compilers implement
and programmers rely on

Build on that...

71Monday 11 May 15

Can one do < comparison or pointer arithmetic
between pointers to separately allocated objects?

Routinely done in Linux kernel Forbidden by ISO standard

Beyond concurrency

72Monday 11 May 15

tinyurl.com/csurvey2

A web survey of 15 questions to
investigate what C is in current

practice: what behaviour is
implemented by mainstream

compilers and relied on by
systems programmers

73Monday 11 May 15

http://www.cl.cam.ac.uk/~pes20/csurvey2
http://www.cl.cam.ac.uk/~pes20/csurvey2

tinyurl.com/csurvey2

Eventual outcome: clear descriptions
of what people can rely on and

what compilers in practice should
implement, what alias analysis and

optimisation passes should (and
should not) be allowed to do, etc.

73Monday 11 May 15

http://www.cl.cam.ac.uk/~pes20/csurvey2
http://www.cl.cam.ac.uk/~pes20/csurvey2

tinyurl.com/csurvey2

Thank you.
Questions?

73Monday 11 May 15

http://www.cl.cam.ac.uk/~pes20/csurvey2
http://www.cl.cam.ac.uk/~pes20/csurvey2

