
A high-level implementation of software
pipelining in LLVM

Roel Jordans 1, David Moloney 2

1 Eindhoven University of Technology, The Netherlands
r.jordans@tue.nl

2 Movidius Ltd., Ireland

2015 European LLVM conference
Tuesday April 14th

Overview

Rationale

Implementation

Results

Conclusion

Overview

Rationale

Implementation

Results

Conclusion

Rationale

Software pipelining (often Modulo Scheduling)

I Interleave operations from multiple loop iterations

I Improved loop ILP

I Currently missing from LLVM
I Loop scheduling technique

I Requires both loop dependency and resource availability
information

I Usually done at a target specific level as part of scheduling

I But it would be very good if we could re-use this
implementation for different targets

Example: resource constrained

Example: data dependencies

Source Level Modulo Scheduling (SLMS)

SLMS: Source-to-source translation at statement level

Towards a Source Level Compiler: Source Level Modulo Scheduling

– Ben-Asher & Meisler (2007)

SLMS results

SLMS features and limitations

I Improves performance in many cases

I No resource constraints considered

I Works with complete statements

I When no valid II is found statements may be split
(decomposed)

This work

What would happen if we do this at LLVM’s IR level

I More fine grained statements (close to operations)

I Coarse resource constraints through target hooks

I Schedule loop pipelining pass late in the optimization
sequence (just before final cleanup)

Overview

Rationale

Implementation

Results

Conclusion

IR data dependencies

I Memory dependencies

I Phi nodes

Revisiting our example: memory dependencies

define void @foo(i8* nocapture %in , i32 %width) #0 {

entry:

%cmp = icmp ugt i32 %width , 1

br i1 %cmp , label %for.body , label %for.end

for.body: ; preds = %entry , %for.body

%i.012 = phi i32 [%inc , %for.body], [1, %entry]

%sub = add i32 %i.012, -1

%arrayidx = getelementptr inbounds i8* %in , i32 %sub

%0 = load i8* %arrayidx , align 1, !tbaa !0

%arrayidx1 = getelementptr inbounds i8* %in , i32 %i.012

%1 = load i8* %arrayidx1 , align 1, !tbaa !0

%add = add i8 %1 , %0

store i8 %add , i8* %arrayidx1 , align 1, !tbaa !0

%inc = add i32 %i.012, 1

%exitcond = icmp eq i32 %inc , %width

br i1 %exitcond , label %for.end , label %for.body

for.end: ; preds = %for.body , %entry

ret void

}

Revisiting our example: using a phi-node

define void @foo(i8* nocapture %in , i32 %width) #0 {

entry:

%arrayidx = getelementptr inbounds i8* %in , i32 0

%prefetch = load i8* %arrayidx , align 1, !tbaa !0

%cmp = icmp ugt i32 %width , 1

br i1 %cmp , label %for.body , label %for.end

for.body: ; preds = %entry , %for.body

%i.012 = phi i32 [%inc , %for.body], [1, %entry]

%0 = phi i32 [%add , %for.body], [%prefetch , %entry]

%arrayidx1 = getelementptr inbounds i8* %in , i32 %i.012

%1 = load i8* %arrayidx1 , align 1, !tbaa !0

%add = add i8 %1 , %0

store i8 %add , i8* %arrayidx1 , align 1, !tbaa !0

%inc = add i32 %i.012, 1

%exitcond = icmp eq i32 %inc , %width

br i1 %exitcond , label %for.end , label %for.body

for.end: ; preds = %for.body , %entry

ret void

}

Target hooks

I Communicate available resources from target specific layer
I Candidate resource constraints

I Number of scalar function units
I Number of vector function units
I . . .

I IR instruction cost
I Obtained from CostModelAnalysis
I Currently only a debug pass and re-implemented by each user

(e.g. vectorization)

The scheduling algorithm

I Swing Modulo Scheduling
I Fast heuristic algorithm
I Also used by GCC (and in the past LLVM)

I Scheduling in five steps
I Find cyclic (loop carried) dependencies and their length
I Find resource pressure
I Compute minimal initiation interval (II)
I Order nodes according to ’criticality’
I Schedule nodes in order

Swing Modulo Scheduling: A Lifetime-Sensitive Approach

– Llosa et al. (1996)

Code generation

CFG for 'loop5b' function

entry

T F

for.body.lr.ph

T F

for.end

for.body

T F

for.body.lp.prologue

for.body.lp.kernel

T F

for.body.lp.epilogue

CFG for 'loop10' function

entry

T F

for.end

for.body.lp.prologue

for.body.lp.kernel

T F

for.body.lp.epilogue

I Construct new loop structure (prologue, kernel, epilogue)
I Branch into new loop when sufficient iterations are available
I Clean-up through constant propagation, CSE, and CFG

simplification

Overview

Rationale

Implementation

Results

Conclusion

Target platform

I Initial implementation for Movidius’ SHAVE architecture

I 8 issue VLIW processor

I With DSP and SIMD extensions

I More on this architecture later today! (LG02 @ 14:40)

I But implemented in the IR layer so mostly target independent

Results

I Good points:
I It works
I Up to 1.5x speedup observed in TSVC tests
I Even higher ILP improvements

I Weak spots
I Still many big regressions (up to 4x slowdown)
I Some serious problems still need to be fixed

I Instruction patterns are split over multiple loop iterations
I My bookkeeping of live variables needs improvement
I Currently blocking some of the more viable candidate loops

Possible improvements

I User control
I Selective application to loops (e.g. through #pragma)

I Predictability
I Modeling of instruction patterns in IR
I Improved resource model
I Better profitability analysis
I Superblock instruction selection to find complex operations

crossing BB bounds?

Overview

Rationale

Implementation

Results

Conclusion

Conclusion

I It works, somewhat. . .

I IR instruction patterns are difficult to keep intact
I Still lots of room for improvement

I Upgrade from LLVM 3.5 to trunk
I Fix bugs (bookkeeping of live values, . . .)
I Re-check performance!
I Fix regressions
I Test with other targets!

Thank you

	Rationale
	Implementation
	Results
	Conclusion

