Compiler aided optimization of the pimpl-idiom

Alexander Richardson (alr48@cam.ac.uk)

University of Cambridge

Tuesday 14" April, 2015

Alexander Richardson Compiler aided optimization of the pimpl-idio Tuesday 14 April, 2015 1/11


mailto:alr48@cam.ac.uk

Pimpl-idiom

@ Used to keep binary compatibility in C4++ libraries
@ Heavily used by e.g. Qt and KDE

@ Problem: requires extra memory allocations

Alexander Richardson Compiler aided optimization of the pimpl-idio Tuesday 14" April, 2015 2/11



Example

//foo.h

class Foo {
public:

Foo(const charx s);
private:

FooPrivatex d;

h

// foo.cpp
class FooPrivate {

// data members

}

Foo::Foo(const charx s) : d(new FooPrivate(s)) {}

Alexander Richardson Compiler aided optimization of the pimpl-idio Tuesday 14" April, 2015 3/11



Pimpl overhead

malloc() . malloc()

Foo* foo =
new Foo()

Foo::d » FooPrivate

Alexander Richardson Compiler aided optimization of the pimpl-idio Tuesday 14" April, 2015 4/11



Even more overhead with inheritance

Derived* foo = malloc()

new Derived()

» Base::d Derived::d
malloc
0 malloc()
BasePrivate DerivedPrivate

Alexander Richardson

Compiler aided optimization of the pimpl-idio

Tuesday 14" April, 2015

5 /11



Optimized layout

Derived* foo =
new Derived()

malloc()
caculate_offset()
I\
Base::d Derived::d DerivedPrivate BasePrivate

caculate_offsM‘

Alexander Richardson Compiler aided optimization of the pimpl-idio Tuesday 14" April, 2015 6 /11



Solution

One large malloc() call and then use placement new

Must retain binary compatibility

Could be done at the library level

@ Error-prone and hard to debug
@ Requires changing every new expression!

e Better: Let clang do the work for us

Alexander Richardson Compiler aided optimization of the pimpl-idio Tuesday 14" April, 2015 7/11



Solution

//foo.h

class Foo {
public:
Foo(const charx s);
private:
[[clang::pimpl]] FooPrivatex d; // only need to add one attribute

// foo.cpp
class FooPrivate {

// data members

}

Foo::Foo(const charx s) : d(new FooPrivate(s)) {}

Alexander Richardson Compiler aided optimization of the pimpl-idio Tuesday 14" April, 2015 8 /11



Solution

@ Generate three static data members per class
@ sizeof (private class)
@ alignof (private class)
e Total required allocation size (optimization)

Alexander Richardson Compiler aided optimization of the pimpl-idio Tuesday 14 April, 2015 9/11



Solution

@ Generate three static data members per class
@ sizeof (private class)
@ alignof (private class)
e Total required allocation size (optimization)
@ Generate extra constructor overloads
@ Foo(int x) — Foo(int x, void* dpointer)
o If dpointer is non-null use placement new
@ Pass adjusted dpointer to base class constructor

Alexander Richardson Compiler aided optimization of the pimpl-idio Tuesday 14t™" April, 2015 9/11



Solution

@ Generate three static data members per class
@ sizeof (private class)
@ alignof (private class)
e Total required allocation size (optimization)
@ Generate extra constructor overloads
@ Foo(int x) — Foo(int x, void* dpointer)
o If dpointer is non-null use placement new
@ Pass adjusted dpointer to base class constructor
@ Let original constructor delegate to new one and pass
nullptr for the dpointer parameter

Alexander Richardson Compiler aided optimization of the pimpl-idio Tuesday 14t™" April, 2015



Solution

@ Generate three static data members per class
@ sizeof (private class)
@ alignof (private class)
e Total required allocation size (optimization)
@ Generate extra constructor overloads
@ Foo(int x) — Foo(int x, void* dpointer)
o If dpointer is non-null use placement new
@ Pass adjusted dpointer to base class constructor
@ Let original constructor delegate to new one and pass
nullptr for the dpointer parameter
@ Add custom operator delete to private class

Alexander Richardson Compiler aided optimization of the pimpl-idio Tuesday 14™" April, 2015 9/11



Solution

@ Generate three static data members per class
@ sizeof (private class)
@ alignof (private class)
e Total required allocation size (optimization)
@ Generate extra constructor overloads
@ Foo(int x) — Foo(int x, void* dpointer)
o If dpointer is non-null use placement new
@ Pass adjusted dpointer to base class constructor
@ Let original constructor delegate to new one and pass
nullptr for the dpointer parameter
@ Add custom operator delete to private class
@ Replace every new Foo(args) expression by

voidx buffer = ::operator new(Foo::totalSize);
Foox foo = new (buffer) Foo(args,buffer 4 sizeof(Foo) + align);

Alexander Richardson Compiler aided optimization of the pimpl-idio Tuesday 14™" April, 2015 9/11



Conclusion

@ Over 50% speedup in allocation-heavy benchmark

@ Total memory usage reduced by about 3%

Alexander Richardson Compiler aided optimization of the pimpl-idio Tuesday 14" April, 2015 10 / 11



@ Code at https://github.com/a-richardson/clang

@ Questions — alr4d8@cam.ac.uk

Alexander Richardson Compiler aided optimization of the pimpl-idio Tuesday 14" April, 2015 11 /11


https://github.com/a-richardson/clang
mailto:alr48@cam.ac.uk

