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Pimpl-idiom

@ Used to keep binary compatibility in C4++ libraries
@ Heavily used by e.g. Qt and KDE

@ Problem: requires extra memory allocations
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Example

//foo.h

class Foo {
public:

Foo(const charx s);
private:

FooPrivatex d;

h

// foo.cpp
class FooPrivate {

// data members

}

Foo::Foo(const charx s) : d(new FooPrivate(s)) {}
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Pimpl overhead

malloc() . malloc()

Foo* foo =
new Foo()

Foo::d » FooPrivate
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Even more overhead with inheritance

Derived* foo = malloc()

new Derived()

» Base::d Derived::d
malloc
0 malloc()
BasePrivate DerivedPrivate
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Optimized layout

Derived* foo =
new Derived()

malloc()
caculate_offset()
I\
Base::d Derived::d DerivedPrivate BasePrivate

caculate_offsM‘
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Solution

One large malloc() call and then use placement new

Must retain binary compatibility

Could be done at the library level

@ Error-prone and hard to debug
@ Requires changing every new expression!

e Better: Let clang do the work for us
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Solution

//foo.h

class Foo {
public:
Foo(const charx s);
private:
[[clang::pimpl]] FooPrivatex d; // only need to add one attribute

// foo.cpp
class FooPrivate {

// data members

}

Foo::Foo(const charx s) : d(new FooPrivate(s)) {}
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Solution

@ Generate three static data members per class
@ sizeof (private class)
@ alignof (private class)
e Total required allocation size (optimization)
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Solution

@ Generate three static data members per class
@ sizeof (private class)
@ alignof (private class)
e Total required allocation size (optimization)
@ Generate extra constructor overloads
@ Foo(int x) — Foo(int x, void* dpointer)
o If dpointer is non-null use placement new
@ Pass adjusted dpointer to base class constructor
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Solution

@ Generate three static data members per class
@ sizeof (private class)
@ alignof (private class)
e Total required allocation size (optimization)
@ Generate extra constructor overloads
@ Foo(int x) — Foo(int x, void* dpointer)
o If dpointer is non-null use placement new
@ Pass adjusted dpointer to base class constructor
@ Let original constructor delegate to new one and pass
nullptr for the dpointer parameter
@ Add custom operator delete to private class
@ Replace every new Foo(args) expression by

voidx buffer = ::operator new(Foo::totalSize);
Foox foo = new (buffer) Foo(args,buffer 4 sizeof(Foo) + align);
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Conclusion

@ Over 50% speedup in allocation-heavy benchmark

@ Total memory usage reduced by about 3%
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@ Code at https://github.com/a-richardson/clang

@ Questions — alr4d8@cam.ac.uk
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