
T-EMU 2.0: The Next Generation LLVM
Based Micro-Processor Emulator
Dr. Mattias Holm <maho@terma.com>

© 2015 Terma A/S 2

● Outline

– Emulation Primer

– T-EMU 2.0
● History

● Architectural Overview

● TableGen and LLVM use

– Future Directions

– Final remarks of LLVM use

© 2015 Terma A/S 3

Emulation

● Instruction level simulation of a
CPU

● Executes the emulated target's
instruction set in a virtual machine
running on a host .

● Simulates memory and MMU

● Simulates peripheral devices
and/or provides a way to integrate
external devices

● Performance measured in MIPS
(millions of emulated instructions
per second)

© 2015 Terma A/S 4

Emulation: Parts of an Emulator

● Instruction decoder

– One for the interpreter

– One for the binary translator

– One for the assembler living down the lane...

● Instruction semantics

– One routine per instruction
● May be in variants (e.g. arithmetic instructions with %g0 as destination)

– Binary translator and interpreter need different types of
instruction descriptions...

● Write two... or rather not.

● Write one and #ifdef yourself around issues

● Write one and transform it to the relevant format

© 2015 Terma A/S 5

Emulation: Interpretation

● Decode dispatch

– Main loop:
● instr = fetch(mem, cpu->pc) ;; Fetch instruction

● impl = decode(instr) ;; Decode instruction

● impl(cpu, mem) ;; Execute instruction, can be indirect branch to label....

● Threaded Interpreter

– Instructions embed the main loop, i.e. threads it along the instructions
● Avoids the return to main loop instruction

© 2015 Terma A/S 6

Emulation: Binary Translation

● Roughly the same as a JITter

– Similar optimisations apply

● Translates blocks of target code to native host code on the fly

● Can combine with interpreters

– Common approach in JavaScript engines

● Basic block is often related to target code, not host code...

● Basic block chaining embeds the emulation loop (similar to
interpreter threading)

● Implementation

– C function emitting code directly (no optimisations except simple ones
(e.g. proper instruction selection))

● Very fast at code generation time

– Data driven: emulator intermediate used to emit machine code after
transformations (e.g. LLVM IR)

© 2015 Terma A/S 7

Emulation

● Common Implementation Languages

– Assembler
● Can fine tune

● Not portable

– C
● Usually not fast enough for interpretation (except when threading

code...)

● Can implement dynamic code generator reasonably efficiently

– Custom languages / DSLs
● Portable (depending on DSL compiler)

● High performance

● Easy to maintain but may need significant resources for in-house
maintenance.

● T-EMU 2 use the LLVM toolchain

– TableGen for instruction decoders

– LLVM Assembler for instruction semantics (embedded in
TableGen files)

© 2015 Terma A/S 8

State of the Art

● Binary translators

– OVPSim

– Windriver Simics (~350 MIPS)

– QEMU (partially GPL → no use in certain industries)

● Interpretation (SPARC emulators)

– TSIM (~60 MIPS)

– ESOC Emulator (65 MIPS no MMU, 25 MIPS with MMU)

– T-EMU 2.0...

● Others

– Countless of game console emulators etc

© 2015 Terma A/S 9

T-EMU 2.0: The Terma Emulator

● T-EMU 1:

– Derivation of ESOC Emulator Suite 1.11

– Formed the baseline for the work on ESOC Emulator Suite 2.0

– Written in EMMA: The Extensible Meta-Macro Assembler (embedded assembler,
using Ada as host language)

– Emulates
● MIL-STD-1750A/B

● SPARCv8 (ERC32, LEON2, LEON3)

● T-EMU 2:

– Complete rewrite

– Using modern C++11 and LLVM

– LLVM compiler tools are used extensively

– Interpreted, but ready to upgrade with binary translation capabilities

– Significant work spent on defining a device modelling APIs
● Can easily be wrapped for scripting languages (e.g. prototype your device model in Python) or

SMP2 (an ESA standard for simulation models)

– Can emulate multi-core processors

– Emulates SPARCv8 (ERC32, LEON2, LEON3, LEON4)

© 2015 Terma A/S 10

T-EMU 2.0: The Terma Emulator

● Library based design

– Easy to integrate in simulators

– Public stable API is C (i.e. can integrate with just
about anything).

● Command Line Interface

– Assisting with emulator and model development
and integration

– Embedded / on-board software development (e.g.
unit tests)

© 2015 Terma A/S 11

T-EMU 2.0: Architecture and Internals

● Emulator Cores:

– Written in TableGen and LLVM assembler

– (Operational) decode-dispatch cores transformed to
threaded code automatically using custom LLVM
transformation passes.

– TableGen data combines: instruction decoders,
instruction semantics and assembler syntax in a
transformable format

– Multi-core support

● Emulator Shell

– Implemented using the T-EMU 2.0 object system APIs

– Integrates auto-generated assemblers and disassemblers
generated from TableGen data.

– High level interfaces
● Interrupt interface, memory interface, etc

© 2015 Terma A/S 12

T-EMU 2.0: Memory Emulation

● Each processor has a memory
space attached to it:

– Memory space decodes addresses

● N-level page table for identifying
memory mapped objects

– memory

– devices

● Unified interface for memory and
devices:

– Memory Access Interface

– Zero-overhead for MMU due to address
translation cache

● Memory attributes

– breakpoint, watchpoint read + write,
upset, faulty, user 1,2,3

Load VA

Lookup virtual
page address in

Address
Translation

Cache

call
external
read()

Cache
hit?

load
ATC_entry.host

+ VA & 0x00000fff

Value Loaded

NO

YES

© 2015 Terma A/S 13

T-EMU 2.0: Device Models

typedef struct temu_MemTransaction {
 uint64_t Va; // Virtual addr
 uint64_t Pa; // Physical addr
 uint64_t Value; // Out or in value
 uint8_t Size; // Log size of access

 uint64_t Offset; // Pa – Dev Start
 void *Initiator; // CPU pointer
 void *Page; // Out (for ATC)
 uint64_t Cycles; // Out (cost of op)
} temu_MemTransaction;

typedef struct temu_MemAccessIface {
 void (*fetch)(void *Obj, temu_MemTransaction *Mt);
 void (*read)(void *Obj, temu_MemTransaction *Mt);
 void (*write)(void *Obj, temu_MemTransaction *Mt);
} temu_MemAccessIface;

MMIO Models Implement the MemAccessIface:

The functions take a potiner to a MemTransaction object (which is constructed by the core):

© 2015 Terma A/S 14

T-EMU 2.0: Compilation Pipeline

Sparc.td

Core.ll
(LLVM asm)

Disassembler
.cpp

Assembler
.cpp

Sparc.cpp

ThreadedCore.bc
(LLVM bitcode)

Sparc.so

opt
Decode-

dispatch to
threaded
transformEmuGen

© 2015 Terma A/S 15

TableGen Based Capabilities

● Generate multiple instruction decoders

– Switch based (C or LLVM ASM / IR)

– Table based (nested tables or single table)

– Can quickly pick the best one for the task and experiment
● Assemblers use switch based decoders

● Interpreter use single table decoder

● Generates decode-dispatch emulator core in LLVM
assembler

● Generates assembler and disassembler from instruction
descriptions.

● Simplified maintenance due to code block concatenation
and multi-classes used to e.g. provide single definition
for both reg-reg and reg-imm operations.

© 2015 Terma A/S 16

LLVM Transformations

● Decode dispatch core has one function per instruction (it is operational
using an emulator loop implemented in C).

– Decode table identifies functions

● LLVM pass creates a single “emulate” function

– One label per instruction

– One call to semantics for the instruction

– Fetch, decode and indirect branch after call

– Semantics are inlined into the single emulate function

– Decode table transformed to an indirect branch target table

● Emulator intrinsics:

– All state accesses and modifications done through emulator intrinsics

– E.g. call @emu.getReg(cpu_t *cpu, i5 %rs1)

– We can easily change the way we access registers (different alternatives for emulating
SPARC register windows and similar) e.g:

● Indirect access through pointer array (nice in an interpreter)

● First and last window synchronisation on save, restore and %psr updates (nice in a binary translator)

© 2015 Terma A/S 17

T-EMU 2.0: TableGen CPU Descriptions

multiclass ri_inst_alu<bits<2> op, bits<6> op3, string asm, code sem> {

 def rr : fmt3_1<op, op3> {

 let AsmStr = asm # “ {rs1:gpr}, {rs2:gpr}, {rd:gpr}”;

 let Semantics = [{

 %r1 = call i32 @emu.getReg(%cpu_t* %cpu, i5 %rs1)

 %r2 = call i32 @emu.getReg(%cpu_t* %cpu, i5 %rs2)

 }] # sem # [{

 call void @emu.setReg(%cpu_t* %cpu, i5 %rd, i32 %res)

 }]

 }

 def ri : fmt3_2<op, op3> {

 let AsmStr = asm # “ {rs1:gpr}, {simm13}, {rd:gpr}”;

 ...

 }

}

defm add : ri_inst_alu <0b10, 0b1010101, “add”, [{

 %res = add i32 %r1, %r2

}]>;

© 2015 Terma A/S 18

LLVM Transformation

def void @add_rr (%cpu_t* %cpu, i32 %inst) {

unpack:

 %rs1 = call i5 @emu.unpack.i5(i32 %inst, i32 14)

 %rs2 = call i5 @emu.unpack.i5(i32 %inst, i32 0)

 %rd = call i5 @emu.unpack.i5(i32 %inst, i32 25)

 br label %semantics

semantics:

 %r1 = call i32 @emu.getReg(%cpu_t* %cpu, i5 %rs1)

 %r2 = call i32 @emu.getReg(%cpu_t* %cpu, i5 %rs2)

 %res = add i32 %r1, %r2

 call void @emu.setReg(%cpu_t* %cpu, i5 %rd, i32 %res)

 ret void

}

© 2015 Terma A/S 19

LLVM Transformations

;; Note: grossly simplified (no step updates,

;; missing hundereds of instructions etc)

def @emulate(%cpu_t* %cpu, i64 %steps) {

entry:

 %pc = call i32 @emu.getPc(%cpu_t* %cpu)

 %inst = call i32 @emu.fetch(%cpu_t* %cpu, i32 %pc)

 %dest = call i8* @emu.decode(i32 %inst)

 indirectbr %dest

add_rr:

 %inst0 = phi i32 entry %inst...

 call void @add_rr(%cpu_t* %cpu, %inst0)

 %pc0 = call i32 @emu.normalIncPc(%cpu_t* %cpu)

 %inst1 = call i32 @emu.fetch(%cpu_t* %cpu, i32 %pc0)

 %dest1 = call i8* @emu.decode(i32 %inst0)

 indirectbr %dest1

}

© 2015 Terma A/S 20

Current Interpreted Emulator Performance

TSIM

ESOC Emulator

T-EMU 2.0

0 10 20 30 40 50 60 70 80 90 100

MIPS (higher is better)

● 3.5 GHz x86-64
● ESOC Emu numbers are for the stock ESOC Emu configuration without MMU. Current ongoing

optimisation work.
● TSIM numbers from http://www.gaisler.com/
● Anything above 50 MIPS is high performance for an interpreted emulator

© 2015 Terma A/S 21

T-EMU: General Future Directions

● Binary translation (>300 MIPS)

● Additional architectures (ARM, PowerPC, MIPS etc)

● Direct support for more ways for device modelling:

– SMP2

– System-C

– VHDL

● Bigger model library:

– Provide models for all common spacecraft processors and peripherals

© 2015 Terma A/S 22

T-EMU: Directions with LLVM

● Binary translation

– Instruction semantics already binary translation friendly

– Binary translation specific decoders can be generated

– LLVM format can be transformed to:
● Direct code emitting functions:

– Code emission will be fast

● Pre-generated instructions implementations for memcopy-based code emission:
– Code must obviously be PIC

– Code emission will be very fast

– Stiching of code blocks is tricky

● LLVM or IR templates for LLVM based JIT
– Code emission will be “slow”

– Can use optimisations (emitted code will be fast)

– Likely slower than we want in the standard case

– MC-JIT can probably be used.

– One LLVM function per extended basic blocks (e.g. the SCCs formed by
standard emulated basic blocks with indirect and absolute branches (in
the target code) as terminators).

● Note: we probably want a multi-tier JITter (see e.g. the WebKit JavaScript engine).

© 2015 Terma A/S 23

Bumps on the Road

● TableGen is not really well documented:

– Several semantic issues are best figured out by
using it

– The existing documentation and a LLVM dev
meeting video tutorial helps

– Read the source...

● Writing in LLVM assembler:

– Hard to debug

– No way to include files (M4 or CPP to the
rescue)

– No way to define named constants (M4 or CPP
to the rescue again)

– It wasn't really intended for this, so we are not
complaining… :)

© 2015 Terma A/S 24

LLVM and T-EMU 2

● LLVM is useful in an emulator for two reasons

– TableGen (really powerful)

– IR and the transformation passes

● LLVM is not just for compilers and programming language
designers

● Enabled the rapid development of a new high-performance
and hackable emulator in a short time

● Ensures we can extend the new emulator with binary
translation without rewriting the instruction definitions.

● Domain specific code transformations are very, very
powerful. LLVM transformation toolchain is not just for
standard compiler optimisations

● Unique use of LLVM (we think)

– Related work exists (e.g. LLVM as optimisation of QEMU)

© 2015 Terma A/S 25

Questions?

PoCs:
● Technical: Dr. Mattias Holm <maho@terma.com>
● Sales: Roger M. Patrick <rmp@terma.com>

http://t-emu.terma.com/

mailto:maho@terma.com
mailto:rmp@terma.com

© 2015 Terma A/S 26

Further Reading

● Dynamically Translating x86 to
LLVM using QEMU: Vitaly
Chipounov and George Candea ,
2010

● Using the LLVM Compiler
Infrastructure for Optimised
Asynchronous Dynamic
Translation in QEMU, Andrew
Jeffery , 2009

● LnQ: Building High Performance
Dynamic Binary Translators with
Existing Compiler Backends,
Chun-Chen Hsu et.al , 2011

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

