
1

Profile-based Indirect Call
Promotion

Ivan Baev, Qualcomm Innovation Center

2

Outline

Motivation

Indirect call promotion transformation and heuristics

Results

Related optimizations

3

Motivation: reduce indirect branch mispredictions

Object-oriented programs are ubiquitous

− Virtual function calls usually implemented with indirect branch instructions

Indirect calls can be common in C programs too

− 104 static indirect calls in gap benchmark

Indirect branch is more difficult to predict than conditional branch in hardware

− It requires prediction of target address instead of prediction of branch direction

− Branch direction can take only two values: taken or not-taken

− Indirect branch target prediction can involve N possible target addresses

4

Motivation: reduce indirect branch mispredictions

0

2

4

6

8

10

12

14

16

M
P

K
I

Conditional branches
Indirect branches

UT-Austin/Intel study with Intel Core Duo T2500 processor with a specialized indirect branch predictor [H. Kim et al., ISCA, 2007]

5

Motivation: impact of profile-based optimizations

Inlining

Indirect call promotion

Code (basic blocks, functions) placement optimizations

Data (globals, structures) placement optimizations

Profile-enhanced classical optimizations (if-conversion, partial redundancy
elimination, scheduling, register allocation, etc.)

6

Impact of selected IP and profile-based optimizations

Google study with Open64 compiler on Intel Pentium 4 [X. Li et al., CGO, 2010]

7

Indirect call promotion (ICP) – definition and opportunities

ICP replaces an indirect call with:

− A compare instruction, conditional branch, and direct call to the hottest target

− The direct call is often inlined

ICP reduces indirect branch misprediction penalty

Enhances the impact of inter-procedural optimizations – e.g. inlining or function
placement

Enlarges the scope of optimizations around indirect calls - e.g. loop or global
optimizations

8

Example of indirect call transformation with two targets
promoted

define void @main(void (i32)* %fp) {
entry:
call void %fp(i32 10)
ret void

}

%fp may go to functions @foo, @bar, …

define void @main(void (i32)* %fp) {
entry:
%0 = bitcast void (i32)* %fp to i8*
%1 = bitcast void (i32)* @foo to i8*
%2 = icmp eq i8* %0, %1
br i1 %2, label %if.true, label %if.false

if.true:
call void @foo(i32 10) // direct call to foo
br label %if.merge

if.false:
%3 = bitcast void (i32)* %fp to i8*
%4 = bitcast void (i32)* @bar to i8*
%5 = icmp eq i8* %3, %4
br i1 %5, label %if.true2, label %if.false3

if.true2:
call void @bar(i32 10) // direct call to bar
br label %if.merge

if.false3:
call void %fp(i32 10)
br label %if.merge

if.merge:
ret void

}

9

ICP design goals

Provide a general solution as an LLVM transformation pass

Provide many tuning options for deployment in an LLVM-based compiler
depending on customer requirements and workloads

Clear interfaces to allow development in parallel:

− Interface with indirect call profiling - through indirect call metadata

{!"indirect_call_targets", i64 6000, !"foo", i64 3000, !"bar", i64 2500, !”other”, i64 500}

− Interface with inliner - defer any inlining decisions to Inliner which has a complete view of the
application

10

Indirect call profiling

For each indirect call/invoke we record the number of times their target functions
are invoked

Instrument at clang level by extending the existing profiling infrastructure

Extended to value profiling

− Currently reviewed and upstreamed in several patches

With early inline and late instrumentation we might instrument at LLVM IR level

11

Example of indirect call transformation with two targets
promoted

define void @main(void (i32)* %fp) {
entry:

call void %fp(i32 10), !prof !1
ret void

}

!1 = !{!"indirect_call_targets", i64 6000, !"foo",
i64 3000, !"bar", i64 2500, !”other”, i64 500}

define void @main(void (i32)* %fp) {
entry:
%0 = bitcast void (i32)* %fp to i8*
%1 = bitcast void (i32)* @foo to i8*
%2 = icmp eq i8* %0, %1
br i1 %2, label %if.true, label %if.false, !prof !0

if.true:
call void @foo(i32 10) // direct call to foo
br label %if.merge

if.false:
%3 = bitcast void (i32)* %fp to i8*
%4 = bitcast void (i32)* @bar to i8*
%5 = icmp eq i8* %3, %4
br i1 %5, label %if.true2, label %if.false3, !prof !1

if.true2:
call void @bar(i32 10) // direct call to bar
br label %if.merge

if.false3:
call void %fp(i32 10), !prof !2
br label %if.merge

if.merge:
ret void

}

!0 = !{!"branch_weights", i32 3000, i32 3000}
!1 = !{!"branch_weights", i32 2500, i32 500}
!2 = !{!"indirect_call_targets", i64 500, !”other”, i64 500}

12

Example of indirect invoke transformation with one target
promoted

== Basic Block Before ==

entry:

invoke void @_ZN11EtherAppReqD1Ev(%class.EtherAppReq* %this)

to label %invoke.cont unwind label %lpad, !prof !6

!6 = !{!"indirect_call_targets", i64 39458265, !"_ZN11EtherAppReqD2Ev",
i64 39458265}

== Basic Blocks After ==

entry:

%0 = bitcast void (%class.EtherAppReq*)* @_ZN11EtherAppReqD1Ev to i8*

%1 = bitcast void (%class.EtherAppReq*)* @_ZN11EtherAppReqD2Ev to i8*

%2 = icmp eq i8* %0, %1

br i1 %2, label %if.true, label %if.false

if.true:

invoke void @_ZN11EtherAppReqD2Ev(%class.EtherAppReq* %this)

to label %if.merge unwind label %lpad

if.false:

invoke void @_ZN11EtherAppReqD1Ev(%class.EtherAppReq* %this)

to label %if.merge unwind label %lpad, !prof !7

if.merge:

br label %invoke.cont

!7 = !{!"indirect_call_targets", i64 0}

13

ICP heuristics

Which call sites to consider?

For a given call site, which targets to consider for promotion?

Should we add inline hints to promoted targets?

Should we consider other profile information?

14

Call site hotness heuristic

We should consider all indirect call sites for promotion if there is no concern for
size expansion

Option callHotnessThreshold to filter out cold indirect calls

Cold indirect call count < callHotnessThreshold * (Sum of indirect call counts)

callHotnessThreshold = 0.001 by default

15

Call target hotness heuristic

Promote the most frequent target if

target count > targetHotnessThreshold * (call site count)

targetHotnessThreshold = 40% by default

Promote the second most frequent target if

the most frequent target is promoted &&

target count > target2HotnessThreshold * (call site count)

target2HotnessThreshold = 30% by default

Option enable-second-target to allow promotion of the second target

16

Inline hints and inline heuristic

Clang adds inline hint to a direct call if its profile count is > 30% of the most
frequent call count

Add inline hint to the promoted target if

target count > inlineHintThreshold * (Sum of call sites counts)

inlineHintThreshold = 1% by default

Inliner gives a small bonus to a call with inline hint

− A direct call coming from ICP needs to overcome the overhead of compare and conditional
branch instructions

− Sophisticated profile-based inliner will likely take this into account

17

ICP impact on SPEC2000/2006

Benchmark
Number of static indirect calls

considered/promoted
Speedup (%) Code size increase (%)

eon (C++) 28/28 9 0.6

h264ref (C) 33/33 6 0.2

namd (C++) 12/12 2 6.6

omnetpp (C++) 37/37 3 0.3

povray (C++) 7/6 4 0.2

sjeng (C) 1/1 2 0.0

QC Snapdragon 3.7 LLVM compiler

QC A57-based device in AArch64 mode, indirect predictor with path history

4 second most frequent targets promoted in eon for 4% improvement

18

ICP enables other optimizations - future work

Better inlining

Function placement

− IC profiling allows complete information for indirect call nodes in the application call graph

ThinLTO, AutoFDO – advanced link-time frameworks

− ICP allows better partitioning of call graph and optimizations on hot partitions

Investigate interaction with indirect branch target prediction hardware and other
micro-architectural features

Consider function entry and basic block profile information

19

Acknowledgements

Betul Buyukkurt (QuIC), David Li (Google), Teresa Johnson (Google)

Questions?

