lvan Baev, Qualcomm Innovation Center

—————
~~~~~
~~~~~
~,

Promotion

QUALCOM/W

Outline

o

Motivation

Indirect call promotion transformation and heuristics
Results

Related optimizations

o

o

o

Motivation: reduce indirect branch mispredictions

> Object-oriented programs are ubiquitous
— Virtual function calls usually implemented with indirect branch instructions

> Indirect calls can be common in C programs too
— 104 static indirect calls in gap benchmark

> Indirect branch is more difficult to predict than conditional branch in hardware
— It requires prediction of target address instead of prediction of branch direction
— Branch direction can take only two values: taken or not-taken
— Indirect branch target prediction can involve N possible target addresses

Motivation: reduce indirect branch mispredictions

16
14] .
E Conditional branches
12 B Indirect branches
10 —
i 8
= _
6 -
4
2 |
O _|
F P& eSS & L. L& N & O
@ O & & P P @S & F N VS SN
0. & X " O A O A& o A NI\
NN dQ) S c}oﬁ Q;\Q\ ,%Q’b O\{}. ") %\(Q & & & §§\QQ\ %&% \e
N ®\$\(\ \OQ ,$
& &
O Q

UT-Austin/Intel study with Intel Core Duo T2500 processor with a specialized indirect branch predictor [H. Kim et al., ISCA, 2007]

Motivation: impact of profile-based optimizations

° Inlining

> Indirect call promotion

> Code (basic blocks, functions) placement optimizations
- Data (globals, structures) placement optimizations

> Profile-enhanced classical optimizations (if-conversion, partial redundancy
elimination, scheduling, register allocation, etc.)

Impact of selected IP and profile-based optimizations

1.2 I I I I I I I I I I I I I
-2 ,-IPS,-FO& O I
Inlining
1.1 Ind Calls N _|
P Alias IS
Copy Prop
1 - —]
0.9 - —
0.8 - —
B —
0.6 = <= >
L)
Bt So o %o
o s, A =

Google study with Open64 compiler on Intel Pentium 4 [X. Li et al., CGO, 2010]

Indirect call promotion (ICP) — definition and opportunities

o

ICP replaces an indirect call with:
— A compare instruction, conditional branch, and direct call to the hottest target
— The direct call is often inlined

> ICP reduces indirect branch misprediction penalty

> Enhances the impact of inter-procedural optimizations — e.g. inlining or function
placement

- Enlarges the scope of optimizations around indirect calls - e.g. loop or global
optimizations

Example of indirect call transformation with two targets

promoted

define void @main(void (i32)* %fp) {
entry:

call void %fp(i32 10)

ret void

}
%fp may go to functions @foo, @bar, ...

deit‘ine void @main(void (i32)* %fp) {
entry:
%0 = bitcast void i323* %pr to i8*
%1 = bitcast void (i32)* @foo to i8*
%2 = |cmP eq 18* %0, %1l _
br il %2, label %if.true, label %if.false

if.true:
call void @foo(i32 10) // direct call to foo
br label %if.merge

if.false: o _
%3 = bitcast void (i32)* %fp to i8*
%4 = bitcast void (i32)* @bar to i8*
%5 = |cmF eq 18* %3, %4 _
br il %5, label %if.true2, label %if.false3

if.true2: _ _
call void @bar(i32 10) // direct call to bar
br label %if.merge

if.false3: _
call void %fp(i32 10)
br label %if.merge

if. merge:
ret void

ICP design goals

> Provide a general solution as an LLVM transformation pass

> Provide many tuning options for deployment in an LLVM-based compiler
depending on customer requirements and workloads

- Clear interfaces to allow development in parallel:

— Interface with indirect call profiling - through indirect call metadata
{""indirect_call_targets", i64 6000, !"foo", i64 3000, !"bar", i64 2500, "other”, i64 500}

— Interface with inliner - defer any inlining decisions to Inliner which has a complete view of the
application

Indirect call profiling

o

For each indirect call/invoke we record the number of times their target functions
are invoked

Instrument at clang level by extending the existing profiling infrastructure

Extended to value profiling
— Currently reviewed and upstreamed in several patches

With early inline and late instrumentation we might instrument at LLVM IR level

o

o

o

Example of indirect call transformation with two targets

promoted

define void @main(void (i32)* %fp) {
entry:

call void %fp(i32 10), !prof 1

ret void

}

11 = {!"indirect_call_targets", i64 6000, !"foo",
164 3000, !"bar", i64 2500, "other”, i64 500}

de{ine void @main(void (i32)* %fp) {
entry:
%0 = bitcast void i32;* %fgo to i8*
%1 = bitcast void (i32)* @foo to i8*
%2 = |cmP eq i8* %0, %1 _
br il %2, label %if.true, label %if.false, !prof !0

if.true:
call void @foo(i32 10) // direct call to foo
br label %Iif.merge

if.false:
%3 = bitcast void (i32)* %fp to i8*
%4 = bitcast void (i32)* @bar to i8*
%5 = |cm53 eq i8* %3, %4 _
br il %5, label %if.true2, label %if.false3, !prof !1

if.true2: _ _
call void @bar(i32 10) // direct call to bar
br label %if.merge

if.false3: _
call void %fp(i32 10), !prof 12
br label %if.merge

if.merge:
ret void

{1"branch_weights", i32 3000, i32 3000}
: %:'branch weights”, 132 2500, i32 500

10
11
12

'Indirect_call_targets", i64 500, !”oth}er”, i64 500}

Example of indirect invoke transformation with one target
promoted

== Basic Blocks After ==

== Basic Block Before == entry:
%0 = bitcast void (%class.EtherAppReq*)* @ _ZN11EtherAppReqD1Ev to i8*
entry: %1 = bitcast void (%class.EtherAppReq*)* @ _ZN11EtherAppReqD2Ev to i8*
invoke void @_ZN11EtherAppReqD1Ev(%class.EtherAppReg* %this) %2 = icmp eq i8* %0, %1
to label %invoke.cont unwind label %lpad, !prof |6 bril %2, label %if.true, label %if.false
16 = {!"indirect_call_targets”, i64 39458265, !"_ZN11EtherAppRegqD2EV", if true:
i64 39458265}

invoke void @ _ZN11EtherAppReqD2Ev(%class.EtherAppReq* %this)
to label %if.merge unwind label %lpad

if false:
invoke void @ _ZN11EtherAppReqD1Ev(%class.EtherAppReqg* %this)

to label %if.merge unwind label %lpad, !prof !7

if. merge:
br label %invoke.cont

17 = {!"indirect_call_targets", i64 0}

|ICP heuristics

=]

=]

=]

=]

Which call sites to consider?

For a given call site, which targets to consider for promotion?
Should we add inline hints to promoted targets?

Should we consider other profile information?

Call site hotness heuristic

> We should consider all indirect call sites for promotion if there is no concern for
Size expansion

> Option callHotnessThreshold to filter out cold indirect calls
Cold indirect call count < callHotnessThreshold * (Sum of indirect call counts)
callHotnessThreshold = 0.001 by default

Call target hotness heuristic

> Promote the most frequent target if
target count > targetHotnessThreshold * (call site count)
targetHotnessThreshold = 40% by default

> Promote the second most frequent target if
the most frequent target is promoted &&
target count > target2HotnessThreshold * (call site count)
target2HotnessThreshold = 30% by default

> Option enable-second-target to allow promotion of the second target

Inline hints and Inline heuristic

> Clang adds inline hint to a direct call if its profile count is > 30% of the most
frequent call count

> Add inline hint to the promoted target if
target count > inlineHintThreshold * (Sum of call sites counts)
iInlineHintThreshold = 1% by default

> Inliner gives a small bonus to a call with inline hint

— Adirect call coming from ICP needs to overcome the overhead of compare and conditional
branch instructions

— Sophisticated profile-based inliner will likely take this into account

ICP impact on SPEC2000/2006

28/28
33/33
12/12
37137
716
1/1

N B W N OO ©

QC Snapdragon 3.7 LLVM compiler
QC A57-based device in AArch64 mode, indirect predictor with path history

4 second most frequent targets promoted in eon for 4% improvement

0.2
6.6
0.3
0.2
0.0

17

ICP enables other optimizations - future work

> Better inlining

> Function placement
- IC profiling allows complete information for indirect call nodes in the application call graph

o ThinLTO, AutoFDO - advanced link-time frameworks
— ICP allows better partitioning of call graph and optimizations on hot partitions

> Investigate interaction with indirect branch target prediction hardware and other
micro-architectural features

> Consider function entry and basic block profile information

Acknowledgements

Betul Buyukkurt (QulC), David Li (Google), Teresa Johnson (Google)

Questions?

