
WebAssemblyWebAssembly
Here Be Dragons

JF Bastien
Google

@jfbastien

Dan Gohman
Mozilla

@sunfishcode

Presentation given at the 2015 LLVM Developer’s Meeting on October 29th in San
Jose, California.

¶ JF narrates:
WebAssembly is a tale of four browser vendors, seeking new languages and
capabilities while staying fast, secure and portable. The old JavaScript wizard still has
many spells under its belt, but it seeks a companion on its quest to reach VM utopia.
WebAssembly is that companion.

¶ Dan intones:
In this quest, mad alchemist Dan and jester JF will detail their exploration of LLVM-
land. You’ll get to witness firsthand their exploration of ISel and MI, hear of their
wondrous encounter with MC, and gasp at the Spell of Restructuring wherein
SSA+CFG is transmuted into regs+AST. Will our adventurers conquer the Target and
capture the virtual ISA?

Join us in this exciting tale to which you are the hero!

Presenters:
● Dan Gohman, Mozilla.
● JF Bastien, Google.

Note to the reader: we use the following markers throughout the speaker notes:

http://llvm.org/devmtg/2015-10/
https://twitter.com/sunfishcode
https://twitter.com/sunfishcode
https://twitter.com/jfbastien
https://twitter.com/jfbastien

⏩ denotes when we click to animate inside slides.
¶ denotes when we change who’s talking.

Languages: C/C++ to start with, but we want to be polyglots.

Personality traits: whimsy

Ideals: speed, security, portability, ephemerality.

Bonds: the Web should be able to do everything native code can.

Flaws: ?

WebAssembly

Specification

STRENGTH

DEXTERITY

CONSTITUTION

INTELLIGENCE

WISDOM

CHARISMA

ARMOR
CLASS INITIATIVE SPEED

VM

0

Neutral Good
Class

Race

XP

Alignment

What is WebAssembly?

¶ Dan: Let’s meet our hero!

As one does for anything new, let’s build a character sheet! ⏩
● Character name: WebAssembly
● Level: 0 (working on building a minimum viable product).
● Class: Specification.
● Race: ISA.
● Alignment: Neutral Good.
● Experience points: start at 0, we’ll get some experience as we get closer to

launch.
● Background:

○ Born from the union of Emscripten/asm.js and PNaCl;
○ Cousin of JavaScript;
○ Godparents Chromium, Mozilla, Edge, WebKit;
○ Designed on Github.
○ Born under W3C Community Group.

⏩ Basic attributes:
● Strength: leveraging the power of the Web.
● Dexterity: portability.
● Constitution: designed for security-in-depth from the start.
● Intelligence: very low! WebAssembly is a low-level language. It’s up to the

https://dnd.wizards.com/articles/features/character_sheets
https://github.com/WebAssembly/design/blob/master/MVP.md
http://emscripten.org
http://asmjs.org
http://gonacl.com
https://twitter.com/jfbastien/status/611201861245399041
http://blog.mozilla.org/luke/2015/06/17/webassembly
http://blogs.msdn.com/b/mikeholman/archive/2015/06/17/working-on-the-future-of-compile-to-web-applications.aspx
https://bugs.webkit.org/show_bug.cgi?id=146064
https://github.com/WebAssembly/design
https://www.w3.org/community/webassembly/participants

● compiler on the developer’s machine to optimize, a WebAssembly VM only
does basic things such as instruction selection and register allocation.

¶ JF goes for the remaining __attribute__((*))!
● Wisdom: this is a bit self serving… but we’re on stage giving a keynote at the

LLVM developer’s conference, so some people must think this is a wise idea.
● Charisma: it’s of the Web, the internet loves it.

⏩ Others:
● Armor class: Internet-proof. Security is our thing. Learn more on security from

JF’s CppCon talk.
● Initiative: the announcement seems to have taken folks by surprise (more

than we expected!). Either we rolled high or had a large base modifier.
● Speed: near-native. PNaCl and asm.js have shown code could go pretty fast,

often on par with native, and we think WebAssembly can surpass either.
● ⏩ Languages: C/C++ to start with, but we want to be polyglots.
● Personality traits: whimsy.
● Ideals: speed, security, portability, ephemerality. Note the last 3 are the Web’s

ideals, WebAssembly adds speed.
● Bonds: the Web should be able to do everything native code can.
● Flaws: it would be a bit silly to design WebAssembly with purposeful flaws.

We’ll see as it matures.

Bring the latest and greatest C++14 to the web, portably and efficiently (see goals).
WebAssembly also wants to adventure in the non-Web parts of the world. It should
also work on servers and tiny IoT devices.

Call to action: what can you do to be the hero?

https://www.youtube.com/watch?v=H-R-yW1-fbQ
https://www.youtube.com/watch?v=H-R-yW1-fbQ
https://news.ycombinator.com/item?id=9732827
http://techcrunch.com/2015/06/17/google-microsoft-mozilla-and-others-team-up-to-launch-webassembly-a-new-binary-format-for-the-web/#.gqnmpu:cxl8
http://arstechnica.com/information-technology/2015/06/the-web-is-getting-its-bytecode-webassembly/
http://www.cnet.com/news/the-secret-alliance-that-could-give-the-web-a-massive-speed-boost/
http://thenextweb.com/dd/2015/06/18/google-apple-microsoft-and-mozilla-team-up-to-create-faster-browsers/
http://blogs.unity3d.com/2015/06/18/webgl-webassembly-and-feature-roadmap/
http://llvmweekly.org/issue/77
https://github.com/WebAssembly/design/blob/master/HighLevelGoals.md
https://github.com/WebAssembly/design/blob/master/NonWeb.md

Hardcore developer details

❖ Inventory check
❖ Cantrips

¶ JF con’t.

Let’s dive into the details.

¶ Dan: WebAssembly’s first surprise encounter, and with a real experienced C++
programmer. “I know how these things go, you take away my pointers! Engarde!”

¶ JF takes action.
⏩ What’s in our current bag of holdings? Let’s do an inventory check:

● “linear memory” is virtual memory. Cache locality.
● Pointers for serious.
● Function pointers too, in a way.
● Even pointer to member functions if you’re into that type of thing.
● vtables.
● APIs on the Web, based on SDK + helper libraries that “just work”:

○ OpenGL → WebGL (GLES3 will soon be in Firefox and Chrome).
○ SDL → WebAudio.
○ C++/POSIX filesystems: whatever the web has… It’s still improving in

that area.
○ Networking: WebSocket / WebRTC.

¶ Dan seizes the conch shell!

⏩ Expected to quickly learn the following cantrips:

● Threads/atomics/shared memory.
● SIMD.
● Zero-cost EH.
● Dynamic linking.

This will round out a fairly complete C++ platform.

https://github.com/WebAssembly/design/blob/master/PostMVP.md#threads
https://github.com/WebAssembly/design/blob/master/PostMVP.md#threads
https://github.com/WebAssembly/design/blob/master/PostMVP.md#fixed-width-simd
https://github.com/WebAssembly/design/blob/master/PostMVP.md#fixed-width-simd
https://github.com/WebAssembly/design/blob/master/PostMVP.md#zero-cost-exception-handling
https://github.com/WebAssembly/design/blob/master/PostMVP.md#zero-cost-exception-handling
https://github.com/WebAssembly/design/blob/master/FutureFeatures.md#dynamic-linking
https://github.com/WebAssembly/design/blob/master/FutureFeatures.md#dynamic-linking

 WebAssembly

with LLVM
upstream!

virtual ISA!

But how do you do this?

Learned from Emscripten / PNaCl mistakes.
WebAssembly is developed straight in upstream LLVM under
lib/Target/WebAssembly, mistakes and design changes included.
We’re fixing other parts of the LLVM codebase too, making life easier for other virtual
ISAs.

¶ JF jumps in!

Virtual ISA: what’s that? We talk about it a lot like it a big mythical beast.
● Compile on the developer’s machine, then lower to different ISAs on the user’s

machine. There’s a second compiler that runs once we know what the
architecture is. In browsers it’ll share code with the JavaScript engine. There
are 10 implementations of this in progress, 3 of the prototypes use LLVM!

● Browser as an OS (or in general “embedder”: WebAssembly isn’t just a
browser thing).

● We must make certain assumptions about the target for code layout and
performance:

○ 8-bit bytes.
○ Two’s complement integers.
○ IEEE 754-2008 32-bit and 64-bit floating point.
○ Developers choose either 32-bit or 64-bit pointers.
○ Little-endian machine.

https://groups.google.com/d/topic/llvm-dev/PkDjkA-LgFk/discussion
https://github.com/WebAssembly/design/blob/master/NonWeb.md
https://github.com/WebAssembly/design/blob/master/NonWeb.md
https://github.com/WebAssembly/design/blob/master/NonWeb.md

○ ...and more.
● How do we stay sane? Develop an extensive test suite.
● What other virtual ISAs are in or proposed for LLVM?

○ NVPTX
○ BPF
○ AMDGPU
○ CppBackend
○ SPIR-V
○ HSAIL

Undefined behavior, implementation defined, unspecified, etc. WHAT DOES IT MEAN?
C++ developers all know of UB, they’re afraid that it’ll snatch their children in the night
and that demons will fly out of their nose.

● Clang and LLVM already eliminate a lot of the leeway C++ gives compilers.
● Progressive refining of undefined behavior.
● WebAssembly nails most of the rest down.

○ Dividing by zero traps.
○ Out of bounds accesses trap.
○ A malicious program can’t harm the user directly (developers should

still be careful with the data their WebAssembly modules contains).
● Some still remains, for example threads can still race but offer limited local

nondeterminism.

Key takeaway: Developers can really think of this as an ISA.

It turns out LLVM IR is a compiler IR.

https://github.com/WebAssembly/design/blob/master/Portability.md
https://github.com/WebAssembly/testsuite
https://github.com/WebAssembly/design/blob/master/CAndC%2B%2B.md#undefined-and-implementation-defined-behavior

Compiler Internals: Instruction Selection
defm ADD : BinaryInt<add>;
defm SUB : BinaryInt<sub>;
defm MUL : BinaryInt<mul>;
defm DIV_S : BinaryInt<sdiv>;
defm DIV_U : BinaryInt<udiv>;
defm REM_S : BinaryInt<srem>;
defm REM_U : BinaryInt<urem>;
defm AND : BinaryInt<and>;
defm IOR : BinaryInt<or>;
defm XOR : BinaryInt<xor>;
defm SHL : BinaryInt<shl>;
defm SHR_U : BinaryInt<srl>;
defm SHR_S : BinaryInt<sra>;

defm EQ : ComparisonInt<SETEQ>;
defm NE : ComparisonInt<SETNE>;
defm LT_S : ComparisonInt<SETLT>;
defm LE_S : ComparisonInt<SETLE>;
defm LT_U : ComparisonInt<SETULT>;
defm LE_U : ComparisonInt<SETULE>;
defm GT_S : ComparisonInt<SETGT>;
defm GE_S : ComparisonInt<SETGE>;
defm GT_U : ComparisonInt<SETUGT>;
defm GE_U : ComparisonInt<SETUGE>;

defm CLZ : UnaryInt<ctlz>;
defm CTZ : UnaryInt<cttz>;
defm POPCNT : UnaryInt<ctpop>;

def : Pat<(ctlz_zero_undef I32:$src), (CLZ_I32 I32:$src)>;
def : Pat<(ctlz_zero_undef I64:$src), (CLZ_I64 I64:$src)>;
def : Pat<(cttz_zero_undef I32:$src), (CTZ_I32 I32:$src)>;
def : Pat<(cttz_zero_undef I64:$src), (CTZ_I64 I64:$src)>;

def LOAD_I32 : I<(outs I32:$dst), (ins I32:$addr),
 [(set I32:$dst, (load I32:$addr))]>;
def LOAD_I64 : I<(outs I64:$dst), (ins I32:$addr),
 [(set I64:$dst, (load I32:$addr))]>;
def LOAD_F32 : I<(outs F32:$dst), (ins I32:$addr),
 [(set F32:$dst, (load I32:$addr))]>;
def LOAD_F64 : I<(outs F64:$dst), (ins I32:$addr),
 [(set F64:$dst, (load I32:$addr))]>;

def LOAD8_S_I32 : I<(outs I32:$dst), (ins I32:$addr),
 [(set I32:$dst, (sextloadi8 I32:$addr))]>;
def LOAD8_U_I32 : I<(outs I32:$dst), (ins I32:$addr),
 [(set I32:$dst, (zextloadi8 I32:$addr))]>;
def LOAD16_S_I32 : I<(outs I32:$dst), (ins I32:$addr),
 [(set I32:$dst, (sextloadi16 I32:$addr))]>;
def LOAD16_U_I32 : I<(outs I32:$dst), (ins I32:$addr),
 [(set I32:$dst, (zextloadi16 I32:$addr))]>;
def LOAD8_S_I64 : I<(outs I64:$dst), (ins I32:$addr),
 [(set I64:$dst, (sextloadi8 I32:$addr))]>;
def LOAD8_U_I64 : I<(outs I64:$dst), (ins I32:$addr),
 [(set I64:$dst, (zextloadi8 I32:$addr))]>;
def LOAD16_S_I64 : I<(outs I64:$dst), (ins I32:$addr),
 [(set I64:$dst, (sextloadi16 I32:$addr))]>;
def LOAD16_U_I64 : I<(outs I64:$dst), (ins I32:$addr),
 [(set I64:$dst, (zextloadi16 I32:$addr))]>;
def LOAD32_S_I64 : I<(outs I64:$dst), (ins I32:$addr),
 [(set I64:$dst, (sextloadi32 I32:$addr))]>;
def LOAD32_U_I64 : I<(outs I64:$dst), (ins I32:$addr),
 [(set I64:$dst, (zextloadi32 I32:$addr))]>;

def : Pat<(i32 (extloadi8 I32:$addr)), (LOAD8_U_I32 $addr)>;
def : Pat<(i32 (extloadi16 I32:$addr)), (LOAD16_U_I32 $addr)>;
def : Pat<(i64 (extloadi8 I32:$addr)), (LOAD8_U_I64 $addr)>;
def : Pat<(i64 (extloadi16 I32:$addr)), (LOAD16_U_I64 $addr)>;
def : Pat<(i64 (extloadi32 I32:$addr)), (LOAD32_U_I64 $addr)>;

defm ADD : BinaryFP<fadd>;
defm SUB : BinaryFP<fsub>;
defm MUL : BinaryFP<fmul>;
defm DIV : BinaryFP<fdiv>;
defm SQRT : UnaryFP<fsqrt>;

defm ABS : UnaryFP<fabs>;
defm NEG : UnaryFP<fneg>;
defm COPYSIGN : BinaryFP<fcopysign>;

defm CEIL : UnaryFP<fceil>;
defm FLOOR : UnaryFP<ffloor>;
defm TRUNC : UnaryFP<ftrunc>;
defm NEAREST : UnaryFP<fnearbyint>;

def : Pat<(frint f32:$src), (NEAREST_F32 f32:$src)>;
def : Pat<(frint f64:$src), (NEAREST_F64 f64:$src)>;

defm EQ : ComparisonFP<SETOEQ>;
defm NE : ComparisonFP<SETUNE>;
defm LT : ComparisonFP<SETOLT>;
defm LE : ComparisonFP<SETOLE>;
defm GT : ComparisonFP<SETOGT>;
defm GE : ComparisonFP<SETOGE>;

def : Pat<(seteq f32:$lhs, f32:$rhs), (EQ_F32 f32:$lhs, f32:$rhs)>;
def : Pat<(setne f32:$lhs, f32:$rhs), (NE_F32 f32:$lhs, f32:$rhs)>;
def : Pat<(setlt f32:$lhs, f32:$rhs), (LT_F32 f32:$lhs, f32:$rhs)>;
def : Pat<(setle f32:$lhs, f32:$rhs), (LE_F32 f32:$lhs, f32:$rhs)>;
def : Pat<(setgt f32:$lhs, f32:$rhs), (GT_F32 f32:$lhs, f32:$rhs)>;
def : Pat<(setge f32:$lhs, f32:$rhs), (GE_F32 f32:$lhs, f32:$rhs)>;
def : Pat<(seteq f64:$lhs, f64:$rhs), (EQ_F64 f64:$lhs, f64:$rhs)>;
def : Pat<(setne f64:$lhs, f64:$rhs), (NE_F64 f64:$lhs, f64:$rhs)>;
def : Pat<(setlt f64:$lhs, f64:$rhs), (LT_F64 f64:$lhs, f64:$rhs)>;
def : Pat<(setle f64:$lhs, f64:$rhs), (LE_F64 f64:$lhs, f64:$rhs)>;
def : Pat<(setgt f64:$lhs, f64:$rhs), (GT_F64 f64:$lhs, f64:$rhs)>;
def : Pat<(setge f64:$lhs, f64:$rhs), (GE_F64 f64:$lhs, f64:$rhs)>;

All the same: up to instruction selection, pretty much everything is the same as for the
rest of LLVM’s targets.
The land of LLVM is a land of plenty.
C++ vtables and varargs may be slightly different but this isn’t be completely novel.

This is mostly easy; it helps when we get to design our own instruction set :-).

¶ Dan agrees. Rolls a d20; critical hit!

⏩ Put InstrInteger.td, InstMemory.td and InstFloat.td on the screen.
This is all of WebAssembly’s integer, load and floating-point operations. Look: it’s
simple!

SelectionDAG is the way to do isel in LLVM.
Legalization: yes please. And it’s what every other target uses, so it’s well tested and
has lots of optimizations built in.

https://github.com/WebAssembly/design/blob/master/AstSemantics.md

Compiler Internals: Register Allocation

Register coloring

Reduced code size

Going down a level...

Register allocation: that’s what MI is all about.
Minimize the total number of virtual registers.
⏩ Virtual register coloring as hinting for the WebAssembly register allocator.
Pre-coalesce for faster and better code generation in the browser.

Our adventurer has too many registers in his knapsack. How will he pack them?

Ideas welcome! How can you be the hero?

¶ JF’s turn comes up. He shows his colors (red primary, splashing some green).

Naming local variables is one of the biggest contributors to code size.
⏩ Use expression trees effectively to reduce redundancy.

Compiler Internals: AST

(module
 (import $print_i32 "stdio" "print" (param i32))
 (import $print_f32 "stdio" "print" (param f32))
 (import $print_i64 "stdio" "print" (param i64))
 (import $print_f64 "stdio" "print" (param f64))
 (export "fib" $fib)
 (func $fib
 (param i64)
 (result i64)
 (local i64 i64 i64 i64 i64 i64 i64 i64
 i32 i64 i64 i64 i64 i64 i32 i64 i64)
 (block $BB0_2
 (set_local 16 (get_local 0))
 (set_local 8 (i64.const 3))
 (set_local 9 (i64.lt_s
 (get_local 16) (get_local 8)))
 (set_local 17 (i64.const 1))
 (br_if $BB0_2 (get_local 9))
 (loop $BB0_1
 (set_local 10 (i64.const -1))
 (set_local 11 (i64.add
 (get_local 16) (get_local 10)))
 (set_local 12 (call $fib (get_local 11)))
 (set_local 13 (i64.const -2))
 (set_local 16 (i64.add
 (get_local 16) (get_local 13)))
 (set_local 17 (i64.add
 (get_local 12) (get_local 17)))
 (set_local 14 (i64.const 2))
 (set_local 15 (i64.gt_s
 (get_local 16) (get_local 14)))
 (br_if $BB0_1 (get_local 15))
)
)
 (return (get_local 17))
)
)

.text

.file "./fib.c"

.globl fib

.type fib,@function
fib: # @fib

.param i64

.result i64

.local i64, i64, i64, i64, i64, i64, i64, i64,
 i32, i64, i64, i64, i64, i64, i32, i64, i64
BB#0: # %entry

block $BB0_2
get_local 0
set_local 16, pop
i64.const 3
set_local 8, pop
i64.lt_s (get_local 16), (get_local 8)
set_local 9, pop
i64.const 1
set_local 17, pop
br_if $BB0_2, (get_local 9)

BB0_1: # %cond.false
 # =>This Inner Loop Header: Depth=1

loop $BB0_2
i64.const -1
set_local 10, pop
i64.add (get_local 16), (get_local 10)
set_local 11, pop
call $fib, (get_local 11)
set_local 12, pop
i64.const -2
set_local 13, pop
i64.add (get_local 16), (get_local 13)
set_local 16, pop
i64.add (get_local 12), (get_local 17)
set_local 17, pop
i64.const 2
set_local 14, pop
i64.gt_s (get_local 16), (get_local 14)
set_local 15, pop
br_if $BB0_1, (get_local 15)

BB0_2: # %cond.end
return (get_local 17)

func_end0:
.size fib, func_end0-fib

Expression trees allow us to reassociate code and use recent values.
We go even further, expressing control flow as ASTs instead of CFGs. This moves
some of the restructuring to developer’s machine instead of being the user’s device.
We’re also thinking that making statement == expression might work out well for our
goals.
Why? Encoding size.
⏩
Look at those beautiful s-expressions, we could just feed them to a LISP and eval
everything and C++ would just execute out of that environment and...

¶ Dan jumps in. WOH THERE!

The JF appears to be confused. ⏩
The output looks like assembly!
MC.
Syntax is just syntax, these are interchangeable.
Tried bundling. Almost made sense, but awkward.

● It requires many passes be aware of bundling.
● Bundling can’t embed things like control flow.

Language Frontends

C++ ABI “v2”?

¶ JF Of course, most developers don’t want to write assembly by hand, but with just a
backend you shall not pass!

¶ Dan Unless you have a frontend. ⏩

Using clang’s out of the box feature set for most things
Get rid of C++ overhead which other targets are stuck with.

⏩ C++ ABI v2

There’s been discussion about what a C++ ABI “v2” might look like, beyond the “v1”
which is present-day Itanium. This is a fun chance to do new ABI design, which isn’t
something that one often gets a chance to do. Clang has a few of these implemented,
and we’re using them in WebAssembly now, but several opportunities remain, with
some ideas in this thread:

http://sourcerytools.com/pipermail/cxx-abi-dev/2013-November/002619.html

As another C++ ABI “v2” feature, Clang can do RTTI type_info objects which aren't
unique across a program, but the code is currently ARM64-specific. It’d be nice to
implement this functionality for WebAssembly too. See this thread for more info:

http://sourcerytools.com/pipermail/cxx-abi-dev/2013-November/002623.html

¶ JF stumbles onto the battlefield.

http://sourcerytools.com/pipermail/cxx-abi-dev/2013-November/002619.html
http://sourcerytools.com/pipermail/cxx-abi-dev/2013-November/002619.html
http://sourcerytools.com/pipermail/cxx-abi-dev/2013-November/002623.html
http://sourcerytools.com/pipermail/cxx-abi-dev/2013-November/002623.html

Another notable idea of a C++ ABI “v2” feature; optimizing guard variable
synchronization:

http://sourcerytools.com/pipermail/cxx-abi-dev/2015-May/002848.html

Function pointers, CFI, reduce overhead?
Stronger type checking.
vtables?

We could do more with your help! Neither of us are C++ ABI experts.
This is a battleground for optimizations.

http://sourcerytools.com/pipermail/cxx-abi-dev/2015-May/002848.html
http://sourcerytools.com/pipermail/cxx-abi-dev/2015-May/002848.html

Powerful tools

❖ Debuggers
❖ Sanitizers
❖ Profilers

We’re developing LLVM as the first WebAssembly C/C++ compiler. Not to be
distasteful at the LLVM developer’s conference but we hope other compilers play
along as well.

⏩ Can do cool tricks with powerful tools, the first we’ll build is a toolchain.
Choose your own adventure; pick the libm that gives you the performance/precision
tradeoff right for your app!
Remember: everything is open source and built in the open. You can do anything in
WebAssembly. Anything at all. The only limit is yourself. Welcome ... to
WebAssembly.

¶ Dan tools in. /rimshot

We want a great C++ development story, and that means we’re planning for all the
tools that modern C++ developers depend on:

⏩ Debuggers, integrated in the browser and outside of the browser.
⏩ Sanitizers.
⏩ Profilers.
Tooling.md ideas.

http://zombo.com
http://zombo.com
http://zombo.com
http://zombo.com
http://zombo.com

Oracle of the Future

❖ More languages
❖ JIT-compilation
❖ GC
❖ And more!

Reiterate the “soon after” cantrips from slide 3:
● Threads/atomics/shared memory.
● SIMD.
● Zero-cost EH.
● Dynamic linking.

Dan challenges us: this is a good platform but what’s going to take it to the next level?
Do we know what’s out there?

We’ll try to acquire new magical artifacts and achieve true glory: ⏩
● Rust
● Go
● C#
● Python
● And anything else you fancy!

¶ JF peers into the future with his crystal ball. We’ve got this!

More features, more levelups! How are we going to do these other languages?
● ⏩ JIT-compilation: WebAssembly is a new ISA that compilers would need to

target.
● ⏩ GC
● Finer-grained memory control.
● Asynchronous signals.

https://github.com/WebAssembly/design/blob/master/PostMVP.md#threads
https://github.com/WebAssembly/design/blob/master/PostMVP.md#threads
https://github.com/WebAssembly/design/blob/master/PostMVP.md#fixed-width-simd
https://github.com/WebAssembly/design/blob/master/PostMVP.md#fixed-width-simd
https://github.com/WebAssembly/design/blob/master/PostMVP.md#zero-cost-exception-handling
https://github.com/WebAssembly/design/blob/master/PostMVP.md#zero-cost-exception-handling
https://github.com/WebAssembly/design/blob/master/FutureFeatures.md#dynamic-linking
https://github.com/WebAssembly/design/blob/master/FutureFeatures.md#dynamic-linking

● Many things are possible!

JF Bastien
Google

@jfbastien

Dan Gohman
Mozilla

@sunfishcode

Our adventurer is now back at the tavern, enjoying a good brew… What’s the next
quest?

We have a few things working, LLVM can generate toy code and execute it inside a
browser.
We have many other adventures ahead of us.
¶ JF and Dan: Will you join us?
Get started!

https://github.com/WebAssembly/wasm-e2e
https://github.com/WebAssembly/wasm-e2e
https://github.com/WebAssembly/wasm-e2e
https://github.com/llvm-mirror/llvm/tree/master/lib/Target/WebAssembly
http://llvm.org/docs/GettingStarted.html
http://llvm.org/docs/GettingStarted.html

