
1

Automated Performance-Tracking of LLVM-
Generated Code

Kristof Beyls
LLVMdev meeting October 2015

2

 Most of us care about Top-Of-Trunk always being in a releasable state.
For all/majority of platforms supported.
Or in other words – ToT always at least as good as the last release.

 Lots of different quality aspects – correctness, speed of generated code, size of
generated code, compilation speed, …

 This talk is on how to get to a well-working continuous integration setup to monitor
the speed of generated code:

 Signalling issues quickly and reliably
 With low false positive and low false negative rate
 In a way that is actionable
 Requiring as little as possible human effort
 Enabling a culture of acting on deltas

Why bother?

3

 Analysis of noise observed on a big.LITTLE Cortex®-A57/Cortex®-A53
system.

 Improvements made to test-suite and LNT based on those insights.
 Other improvements made in the last year?
 Further ideas.
 Conclusions

Overview

4

 Juno ARM development board
 4x Cortex-A53 (in-order)

2x Cortex-A57 (out-of-order)
Can run both AArch64 and AArch32.

 We don’t like noisy results
 We don’t like late results
 We don’t like false positives/negatives.
 We like actionable information.

 Not everyone has access to this platform – how can I
make results more meaningful for everyone?

I want to set up a low-noise perf tracking bot. What do I do?

5

 Take the programs in the test-suite & run them a lot of times on both cores.
 Most are relatively low-noise:

Q1: How much relative noise is there when running the same
binary multiple times?

6

Q2. Is the noise typically consistent between cores?

 For low-noise ones: Yes. D’uh!
 For high-noise ones: No.

7

Q3. Is noise typically distributed in the same way?

Normal

Skewed Normal

Bimodal

Skewed bimodal

Quad-modal?

 No!

8

Q4. Is there a difference between both cores?

 Yes!

9

 Most programs have noise less than 1% relative standard deviation (RSD).
 10% or more of the programs have more than 1% RSD noise.
 The noise is inherent to the nature of programs running on contemporary cores

 Many runs of the same program shows some programs on some cores are noisy, others are not.
I.e. the noise comes from a combination of address space layout randomization (ASLR) and micro-
architectural effects.

 There isn’t always a single number accurately describing the performance of a program.

 Noise distribution isn’t necessarily consistent across (program, core).
We shouldn’t make assumptions on distribution of noise when analyzing performance
numbers.

Summary of insights on the nature of noise observed

10

 Analysis of noise observed on a big.LITTLE Cortex®-A57/Cortex®-A53 system.
 Improvements made to test-suite and LNT based on those insights.
 Other improvements made in the last year?
 Further ideas.
 Conclusions

Overview

11

i1. Show multiple sample points by default.

12

i1. Is “min”/”max” the right aggregation function?

13

i1. Is “min”/”max” the right aggregation function?

14

 Which performance deltas are real, which ones are noise?

i2. Sparklines on daily report page

15

i2. Sparklines on daily report page

Real

Noise

Hmmm…

 Which performance deltas are real, which ones are noise?

16

 Out of the 300 programs in the test-suite; 20-ish run for less than 10ms. Do they do
enough work for the hardware to have a chance to produce low-noise data?

i3. Remove very short-running programs (< 10ms) in
benchmark mode?

6 programs not having loops at
all

REMOVED

10 programs which do very
little work
REMOVED

3 programs where code seems
optimized away completely
KEPT

SingleSource/UnitTests/Vector/constpool
SingleSource/UnitTests/Vector/simple
SingleSource/UnitTests/Vector/AArch64/aarch64_
neon_intrinsics
SingleSource/UnitTests/2005-07-15-Bitfield-ABI
SingleSource/UnitTests/2006-01-23-UnionInit
SingleSource/UnitTests/2007-04-10-BitfieldTest

MultiSource/Benchmarks/Prolangs-C/lloader
MultiSource/Benchmarks/McCat/15-trie
MultiSource/Benchmarks/Prolangs-C/cdecl
MultiSource/Benchmarks/MiBench/office-
stringsearch
MultiSource/Benchmarks/MiBench/telecom-adpcm
SingleSource/Benchmarks/Stanford/IntMM
SingleSource/Regression/C/matrixTranspose
SingleSource/Regression/C/sumarray2d
SingleSource/Regression/C/test_indvars:
SingleSource/UnitTests/SignlessTypes:

SingleSource/Benchmarks/Misc/lowercase
SingleSource/Benchmarks/Shootout/objinst
SingleSource/Benchmarks/Shootout-C++/objinst

17

 27 out of 300 programs cover 50% of total run-time.
 Many of those are in Polybench sub-suite. They spent all their time

printf-ing a large matrix.
Renato fixed that. Results in 5% faster test-suite, less noise.

i4. Can the test-suite produce useful benchmark results faster?

18

 In a fully parallel build,
some compile jobs will land on the big&fast core,
some compile jobs will land on the little&slower core.

 –exclude-stat-from-submission.
To avoid submitting compile time numbers on our big.LITTLE board.
Also should be used for other systems where one kind of metric just is unstable.

i5. Compile time is expected to be noisy when using all cores
on a heterogenous big.LITTLE board

19

 Make it easier to create regression tests for new functionality:
 Transformed database regression tests to create DB from SQL statements rather than binary dump.

Which in itself makes adding regression tests for new DB-based functionality straightforward.
 Made checking of webui output in regression test possible.
 Made running regression tests possible against both sqlite and postgres.

 Created an initial developer’s guide

 The combination of the above raises LNT development practices to roughly the same
level as other LLVM sub-projects.
There are still many missing tests for existing functionality; but it shouldn’t be too hard
to add them bit by bit now.

i6. Making it easier to develop LNT

20

 LNT
 Show all sample points by default.

Indicating min/max may not be the best aggregation function.
 Sparklines – with all sample points – on daily report page.
 –exclude-stat-from-submission.

Allowing to not submit metrics that are known to be noisy.

 test-suite
 Remove very short-running programs from benchmark mode
 Renato fixed most polybench benchmarks spending all their time in printf.

 llvm-juno-lnt-perf__LNT-AArch64-A53-O3__clang_DEV__aarch64:39
 make use Cortex-A53 rather than Cortex-A57.
 Keep ASLR enabled.

i7. Summary of improvements made based on analysis

21

 Analysis of noise observed on a big.LITTLE Cortex®-A57/Cortex®-A53
system.

 Improvements made to test-suite and LNT based on those insights.
 Other improvements made in the last year?
 Further ideas.
 Conclusions

Overview

22

O1. Recording hash of generated binary

23

 Improving signal-to-noise and actionability (by Chris Matthews):
 Better analysis algorithm to detect regressions – working, probably can be improved further.
 Performance change tracking ui & db – in development. Goal is to make the data LNT produces

more actionable.
 Llvm-bisect tool – stores clang binaries built by bots in a cache. Scripts can fetch these builds to

more quickly bisect issues.

 New metrics
 score, mem_bytes. bigger-is-better

 Stability fixes to the server llvm.org/perf
 REST and Ajax interface; offline computation in the webui; general bug fixes.

 Various ui polishings

O2. A few other major improvements

24

 Analysis of noise observed on a big.LITTLE Cortex®-A57/Cortex®-A53
system.

 Improvements made to test-suite and LNT based on those insights.
 Other improvements made in the last year?
 Further ideas.
 Conclusions

Overview

25

 Results can be publicly shared – for many commercial benchmarks, T&C don’t allow
that.

 Commercial benchmarks sometimes run for a long time; we want quick feedback.
 Should the test-suite in benchmarking mode be a set of micro-benchmark-ish-things?

See Chandler’s cppcon2015 presentation

 Is the test-suite representative enough of the “real world”?
 Not sure how to measure this well…

F1. What is the goal of running the test-suite as a benchmark?

26

 Total runtime on Cortex-A53: 5769.33s
 If we’d adapt the programs to run more quickly:

at most 100 ms = 26.94s (speedup: 214x)
at most 1 s = 232.02s (speedup: 24x)

F1. Can the test-suite produce useful benchmark results faster?

27

 No-one(?) has access to all the platforms LLVM supports.
 Does the test-suite provide good enough data on performance on a platform you don't have access

to, but for which public performance tracking bots give you feedback?
 For correctness testing, we have quite a few different public bots on different platforms.
 For performance tracking we only have few so far.

 Is the test-suite representative enough?
 For what kind of programs/areas/segments?

 Continuous deployment of ToT LNT/test-suite?
 Some public buildbots use ToT LNT.
 But the server at llvm.org/perf isn’t auto-updated.

F1. Public/community performance tracking vs in-house tracking

28

F2. Less effort to go from perf delta to understanding what
caused it

29

 Which commit?
 Could we integrate some kind of bisecting service on perf-tracking builders?
 Can it be built on top of the bisecting script and cache available now?
 Building on top of rerun functionality in LNT; if needed using cross-built binaries for slow perf

tracking bots?
r248018 | conghou | 2015-09-18 19:19:40 +0100 (Fri, 18 Sep 2015) | 7 lines

Scaling up values in ARMBaseInstrInfo::isProfitableToIfCvt() before they are
scaled by a probability to avoid precision issue.

 Exactly what kind of code change caused the delta?
 Could we store performance traces on the side, and get LNT to do some kind of analysis to

highlight the “hot” differences?
 Without needing access to the hardware where the performance change was seen?

F2. OK – 20% regression. What caused it?

30

b53 (r247972)

 ...
 5.15 │ ldrb.w r8, [ip, r5, lsl #1]
 9.05 │ cmp.w r8, #0
 3.55 │ beq.n 10d20
 5.29 │ ldrb r4, [r6, r5]
 1.67 │ eor.w lr, lr, r4
 4.94 │ strb.w lr, [r0, r1]
 1.88 │ adds r5, #1
 9.61 │ uxth r4, r5
 1.32 │ cmp r4, r2
 10.65 │ bne.n 10d0c
 ...

F2. Show annotated assembly diffs – e.g linux perf output

b54 (r248094)

...
 4.93 │ ldrb.w r8, [ip, r5, lsl #1]
 5.96 │ cmp.w r8, #0
 3.32 │ ittt ne
 3.32 │ ldrbne r4, [r6, r5]
 4.35 │ eorne. lr, lr, r4
 5.47 │ strbne lr, [r0, r1]
 8.98 │ adds r5, #1
 8.64 │ uxth r4, r5
 8.35 │ cmp r4, r2
 6.15 │ bne.n 10d0c
 ...

31

b53 (r247972)

 ...
 5.15 │ ldrb.w r8, [ip, r5, lsl #1]
 9.05 │ cmp.w r8, #0
 3.55 │ beq.n 10d20
 5.29 │ ldrb r4, [r6, r5]
 1.67 │ eor.w lr, lr, r4
 4.94 │ strb.w lr, [r0, r1]
 1.88 │ adds r5, #1
 9.61 │ uxth r4, r5
 1.32 │ cmp r4, r2
 10.65 │ bne.n 10d0c
 ...

F2. Show annotated assembly diffs – e.g linux perf output

b54 (r248094)

...
 4.93 │ ldrb.w r8, [ip, r5, lsl #1]
 5.96 │ cmp.w r8, #0
 3.32 │ ittt ne
 3.32 │ ldrbne r4, [r6, r5]
 4.35 │ eorne. lr, lr, r4
 5.47 │ strbne lr, [r0, r1]
 8.98 │ adds r5, #1
 8.64 │ uxth r4, r5
 8.35 │ cmp r4, r2
 6.15 │ bne.n 10d0c
 ...

32

b53 (r247972)

 ...
 5.15 │ ldrb.w r8, [ip, r5, lsl #1]
 9.05 │ cmp.w r8, #0
 3.55 │ beq.n 10d20
 5.29 │ ldrb r4, [r6, r5]
 1.67 │ eor.w lr, lr, r4
 4.94 │ strb.w lr, [r0, r1]
 1.88 │ adds r5, #1
 9.61 │ uxth r4, r5
 1.32 │ cmp r4, r2
 10.65 │ bne.n 10d0c
 ...

F2. Show annotated assembly diffs – e.g linux perf output

b54 (r248094)

...
 4.93 │ ldrb.w r8, [ip, r5, lsl #1]
 5.96 │ cmp.w r8, #0
 3.32 │ ittt ne
 3.32 │ ldrbne r4, [r6, r5]
 4.35 │ eorne. lr, lr, r4
 5.47 │ strbne lr, [r0, r1]
 8.98 │ adds r5, #1
 8.64 │ uxth r4, r5
 8.35 │ cmp r4, r2
 6.15 │ bne.n 10d0c
 ...

Danger of re-inventing performance analysis tools in LNT’s web-ui?

33

 Analysis of noise observed on a big.LITTLE Cortex®-A57/Cortex®-A53 system.
 Improvements made to test-suite and LNT based on those insights.
 Other improvements made in the last year?
 Further ideas.
 Conclusions

Overview

34

 Some really good progress this year:
 Signalling issues quickly and reliably
 With low false positive and low false negative rate
 In a way that is actionable
 Requiring as little as possible human effort
 Enabling a culture of acting on deltas

 Consider using LNT as your performance tracking infrastructure for down-stream
changes too. It’s not perfect yet, but amongst the best available.

 Come discuss this and more at the BoF at 2pm!

Conclusion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

