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This presentation describes advanced development work at Azul Systems and is 
for informational purposes only. Any information presented here does not 
represent a commitment by Azul Systems to deliver any such material, code, or 
functionality in current or future Azul products.
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Who are we?
The Project Team

Bean Anderson

Philip Reames

Sanjoy Das

Chen Li

Igor Laevsky

Artur Pilipenko

Azul Systems

● We make scalable virtual machines

● Known for low latency, consistent 
execution, and large data set 
excellence
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What are we doing?

We’re building a production quality JIT compiler for Java[1] based on LLVM.

[1]: Actually, for any language that compiles to Java bytecode
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Design Constraints and Liberties
● Server workload, targeting peak throughput

● Compile time is less important

○ We already have a “Tier 1” JIT and an interpreter

● Small team, maintainability and debuggability are key concerns
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An “in memory compiler”
● LLVM is not the JIT, it’s the optimizer, code generator, and dynamic loader

● The JIT magic’y stuff lives in the runtime

○ High quality profiling information already available

○ Has support for re-profiling and re-compiling methods

○ Has support for “deoptimization” (discussed later)

○ Same with compilation policy, code management, etc..
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An existing runtime with a flexible internal ABI
(within reason and with cause)
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Architectural Overview
● A “high level IR” embedded within LLVM IR

● Callbacks from mid level optimizer passes to the runtime

● Record and replay compiles outside of the VM
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Embedding a high level IR
● Starting off, we have “high level” operations represented using calls to known 

abstraction functions

call void @azul.lock(i8 addrspace(1)* %obj)

● Most of the frontend lowers directly to normal IR

● Abstraction inlining events form the boundaries of each optimization phase
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Why an embedded HIR?
● We didn’t really want to write another optimizer

● A split optimizer seemed likely to suffer from pass ordering problems.  

○ So does an embedded one, but at least it’s easier to change your mind

Over time, we’ve migrated to eagerly lowering more and 
more pieces.  
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Architecture (artistic rendition)

The Java Virtual Machine Runtime

LLVM’s Mid Level Optimizer

The Bytecode Frontend

Bytecode 

LLVM IR

Runtime
Information 

via 
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Record

Record

LLC

obj
file
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Architecture (artistic rendition)

LLVM’s Mid Level Optimizer

LLVM IR

Runtime
Information 

via 
callbacks

Replay

Replay

LLC

asm

code

./out.s

Query Database
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Code Management
● Generate and relocate object file in memory

● Most data sections are not relocated into permanent storage

○ Notable exception: .rodata*

○ Data sections like .eh_frame, .gcc_except_table, .llvm_stackmaps are parsed and 
discarded immediately after

● Runtime expects to patch code (patchable calls, inline call caches)
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Optimizing Java
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Java is not C
● All memory accesses are checked

○ Null checks, range checks, array store checks

○ Pointers are well behaved

● No undefined behavior to “exploit”

● Data passed by reference, not value

● s.m.Unsafe implies we’re compiling both C and Java at the same time
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int sum_it(MyVector v, int len) {
   int sum = 0;
   for (int i = 0; i < len; i++) 
      sum += v.a[i];
   return sum;
}

if (v == null) { 
  throw new NullPointerException(); 
}
a = v.a;
if (a == null) { 
  throw new NullPointerException(); 
}
if (i < 0 || i > a.length) { 
  throw new IndexOutOfBoundsException(); 
}
sum += a[i]
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Focus on improving existing passes
● lots of small changes
● mostly around canonicalization

Very few custom passes needed
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Speculative Optimization
● Overly aggressive, “wrong” optimizations:

○ Speculatively prune edges in the CFG

○ Speculatively assume invariants that may not hold forever

○ Often better to “ask for forgiveness” than to “ask for permission”

● Need a mechanism to fix up our mistakes ...
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int f() {

  return A::foo(this.a);

}

int f() {

  // No subclass of A overrides foo

  return this.a.foo()

}
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void f() {

  this.a.foo();

  this.a.foo();

}

A new class B is loaded here, which 
subclasses A and implements foo
Might now be an instance of B
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invoke @A::foo()

Normal Return 
Path

Exception Flow

Interpreter @ invokevirtual a.foo()

(Abstract VM State)

Any call can invalidate speculative assumptions in the caller frame

The runtime ensures we 
“return to” the right 
continuation.
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Speculative Optimization: Deoptimizing
● Deoptimize(verb): replace my (physical) frame with N interpreter frames, 

where N is the number of abstract frames inlined at this point

● We can construct interpreter frames from abstract machine state

● Abstract Machine State:

○ The local state of the executing thread (locals, stack slots, lock stack)

■ May contain runtime values (e.g. my 3rd local is in %rbx)

○ Writes to the heap, and other side effects
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Deoptimization: What the Runtime Needs

● The runtime needs to map the N interpreted frames to the compiled frame

● The frontend needs to emit this “map”, and LLVM needs to preserve it

● This map is only needed at call sites

● Call sites also need to be something like “sequence points”
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Deoptimization State: Codegen / Lowering

Four step process

1. (deopt args) = encode abstract state at call

2. Wrap call in a statepoint, stackmap or patchpoint

a. Warning: subtle differences between live through vs. live in

3. Run “normal” code generation

4. Read out the locations holding the abstract state from .llvm_stackmaps
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Deoptimization State: Early Representation

● We need a representation for the mid-level optimizer

● statepoint, patchpoint or stackmap are not ideal for mid level 
optimizations (especially inlining)

● Solution: operand bundles
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Deoptimization State: Operand Bundles

● “deopt” operand bundles (in progress, still very experimental)

○ call void @f(i32 %arg) [ “deopt”(i32 0, i8* %a, i32* null) ]

○ Lowered via gc.statepoint currently; other lowerings possible

● Operand bundles are more general than “deopt”

○ call void @g(i32 %arg) [ “tag-a”(i32 0, i32 %t), “tag-b”(i32 %m) ]

○ Useful for things other than deoptimization: value injection, frame introspection
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Specific Improvements
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● Despite best efforts (e.g. loop unswitching, GVN), some null checks remain

○ obj.field.subField++

● Standard Solution: issue an unchecked load, and handle the SIGSEGV

● Works because in practice NullPointerExceptions are very rare

Implicit Null Checks
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 testq   %rdi, %rdi

 je      is_null

 movl    32(%rdi), %eax

 retq

is_null:

 movl    $42, %eax

 retq

Implicit Null Checks

load_inst:

 movl    32(%rdi), %eax

 retq

is_null:

 movl    $42, %eax

 retq

S
I
G
S
E
G
V

Legality: the load faults if and only if %rdi is zero
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Implicit Null Checks

● .llvm_faultmaps maps faulting PC’s to handler PCs

● Inherently a profile guided optimization

● Possible to extend this to checking for division by zero

● In LLVM today for x86, see llc -enable-implicit-null-checks
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● We’ve made (and are still making) ScalarEvolution smarter

● -indvars has been sufficient so far, no separate range check elision pass

● Java has well defined integer overflow, so SCEV needs to be even smarter

Optimizing Range Checks
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The range check can fail only on the first iteration.     i <
s
 0 ⇔ M <

s
 0

SCEV’isms: Exploiting Monotonicity
for (i = M; i <

s
 N; i++)

{

  if (i <
s
 0) return;

  a[i] = 0;

}

for (i = M; i <
s
 N; i++

nsw
)

{

  if (M <
s
 0) return;

  a[i] = 0;

}
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j = 0

for (i = L-1; i >=
s
 0; i--)

{

  if (!(true)) throw();

  a[j++] = 0;

}  // backedge taken L-1 times

SCEV’isms: Correlated IVs
j = 0

for (i = L-1; i >=
s
 0; i--)

{

  if (!(j <
u
 L)) throw();

  a[j++] = 0;

}

33



SCEV’isms: Multiple Preconditions
if (!(k <

u
 L)) return;

for (int i = 0; i <
u
 k; i++)

{

  if (!(i <
u
 L)) throw();

  a[i] = 0;

}

Today this range check does not 
optimize away.
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Partially Eliding Range Checks: IRCE
  t = smin(n, a.length)

  for (i = 0; i <
s
 t; i++)

    a[i] = 42;  // unchecked

  for (i = t; i <
s
 n; i++) {

    if (i <
u
 a.length)

      a[i] = 42;

    else throw();

  }

for (i = 0; i <
s
 n; i++) {

  if (i <
u
 a.length)

    a[i] = 42;

  else throw();

}
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Dereferenceability
  if (arr == null) return;

loop:

  if (*condition) {

    t = arr->length;

    x += t

  }

  if (arr == null) return;

  t = arr->length;

loop:

  if (*condition)

    x += t

Subject to aliasing, of course.
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Dereferenceability
● Dereferenceability in Java has well-behaved control dependence

○ Non-null references are dereferenceable in their first N bytes (N is a function of the type)

○ We introduced dereferenceable_or_null(N) specify this

● Open Question: Arrays?

○ dereferenceable_or_null(<runtime value>) ?

37



Aliasing
● We haven’t needed a language specific AA implementation yet; we use TBAA 

and struct TBAA to convey basic facts

● Fairly coarse so far; not heavily leveraging the Java type system

● We generalized argmemonly to non-intrinsics

○ Really helpful for high level abstractions
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Constant Memory
● We use invariant.load for:

○ VM level final fields (e.g. length of an array)

○ Java level final fields (static final) of heap reference type

■ Primitive static finals can be directly constant folded

■ Instance finals are a bit tricky (forthcoming)
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Constant Memory: Open problems
● Memory which “becomes constant”

○ Inlining allocation functions and invariant.load

○ final instance fields in Java

● Subtly different (?) representations for the same thing

○ The backend’s notion of invariant.load is different than the IR’s

○ TBAA’s notion of isConstant vs. invariant.load
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Takeaways
● Embedded high level IR enables rapid development

● New support for operand bundles (i.e. deoptimization, frame introspection, 
frame interjection)

● Canonicalization required for effective optimization; per language work 
needed

● LLVM powerful building block for debuggable managed language compiler
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Questions?
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