
LLVM for a Managed Language
What we've learned

Sanjoy Das, Philip Reames

{sanjoy,preames}@azulsystems.com

LLVM Developers Meeting
Oct 30, 2015

This presentation describes advanced development work at Azul Systems and is
for informational purposes only. Any information presented here does not
represent a commitment by Azul Systems to deliver any such material, code, or
functionality in current or future Azul products.

2

Who are we?
The Project Team

Bean Anderson

Philip Reames

Sanjoy Das

Chen Li

Igor Laevsky

Artur Pilipenko

Azul Systems

● We make scalable virtual machines

● Known for low latency, consistent
execution, and large data set
excellence

3

What are we doing?

We’re building a production quality JIT compiler for Java[1] based on LLVM.

[1]: Actually, for any language that compiles to Java bytecode

4

Design Constraints and Liberties
● Server workload, targeting peak throughput

● Compile time is less important

○ We already have a “Tier 1” JIT and an interpreter

● Small team, maintainability and debuggability are key concerns

5

An “in memory compiler”
● LLVM is not the JIT, it’s the optimizer, code generator, and dynamic loader

● The JIT magic’y stuff lives in the runtime

○ High quality profiling information already available

○ Has support for re-profiling and re-compiling methods

○ Has support for “deoptimization” (discussed later)

○ Same with compilation policy, code management, etc..

6

An existing runtime with a flexible internal ABI
(within reason and with cause)

7

Architectural Overview
● A “high level IR” embedded within LLVM IR

● Callbacks from mid level optimizer passes to the runtime

● Record and replay compiles outside of the VM

8

Embedding a high level IR
● Starting off, we have “high level” operations represented using calls to known

abstraction functions

call void @azul.lock(i8 addrspace(1)* %obj)

● Most of the frontend lowers directly to normal IR

● Abstraction inlining events form the boundaries of each optimization phase

9

Why an embedded HIR?
● We didn’t really want to write another optimizer

● A split optimizer seemed likely to suffer from pass ordering problems.

○ So does an embedded one, but at least it’s easier to change your mind

Over time, we’ve migrated to eagerly lowering more and
more pieces.

10

Architecture (artistic rendition)

The Java Virtual Machine Runtime

LLVM’s Mid Level Optimizer

The Bytecode Frontend

Bytecode

LLVM IR

Runtime
Information

via
callbacks

Record

Record

LLC

obj
file

11

Architecture (artistic rendition)

LLVM’s Mid Level Optimizer

LLVM IR

Runtime
Information

via
callbacks

Replay

Replay

LLC

asm

code

./out.s

Query Database

12

Code Management
● Generate and relocate object file in memory

● Most data sections are not relocated into permanent storage

○ Notable exception: .rodata*

○ Data sections like .eh_frame, .gcc_except_table, .llvm_stackmaps are parsed and
discarded immediately after

● Runtime expects to patch code (patchable calls, inline call caches)

13

Optimizing Java

14

Java is not C
● All memory accesses are checked

○ Null checks, range checks, array store checks

○ Pointers are well behaved

● No undefined behavior to “exploit”

● Data passed by reference, not value

● s.m.Unsafe implies we’re compiling both C and Java at the same time

15

int sum_it(MyVector v, int len) {
 int sum = 0;
 for (int i = 0; i < len; i++)
 sum += v.a[i];
 return sum;
}

if (v == null) {
 throw new NullPointerException();
}
a = v.a;
if (a == null) {
 throw new NullPointerException();
}
if (i < 0 || i > a.length) {
 throw new IndexOutOfBoundsException();
}
sum += a[i]

16

Focus on improving existing passes
● lots of small changes
● mostly around canonicalization

Very few custom passes needed

17

Speculative Optimization
● Overly aggressive, “wrong” optimizations:

○ Speculatively prune edges in the CFG

○ Speculatively assume invariants that may not hold forever

○ Often better to “ask for forgiveness” than to “ask for permission”

● Need a mechanism to fix up our mistakes ...

18

int f() {

 return A::foo(this.a);

}

int f() {

 // No subclass of A overrides foo

 return this.a.foo()

}

19

void f() {

 this.a.foo();

 this.a.foo();

}

A new class B is loaded here, which
subclasses A and implements foo
Might now be an instance of B

20

invoke @A::foo()

Normal Return
Path

Exception Flow

Interpreter @ invokevirtual a.foo()

(Abstract VM State)

Any call can invalidate speculative assumptions in the caller frame

The runtime ensures we
“return to” the right
continuation.

21

Speculative Optimization: Deoptimizing
● Deoptimize(verb): replace my (physical) frame with N interpreter frames,

where N is the number of abstract frames inlined at this point

● We can construct interpreter frames from abstract machine state

● Abstract Machine State:

○ The local state of the executing thread (locals, stack slots, lock stack)

■ May contain runtime values (e.g. my 3rd local is in %rbx)

○ Writes to the heap, and other side effects

22

Deoptimization: What the Runtime Needs

● The runtime needs to map the N interpreted frames to the compiled frame

● The frontend needs to emit this “map”, and LLVM needs to preserve it

● This map is only needed at call sites

● Call sites also need to be something like “sequence points”

23

Deoptimization State: Codegen / Lowering

Four step process

1. (deopt args) = encode abstract state at call

2. Wrap call in a statepoint, stackmap or patchpoint

a. Warning: subtle differences between live through vs. live in

3. Run “normal” code generation

4. Read out the locations holding the abstract state from .llvm_stackmaps

24

Deoptimization State: Early Representation

● We need a representation for the mid-level optimizer

● statepoint, patchpoint or stackmap are not ideal for mid level
optimizations (especially inlining)

● Solution: operand bundles

25

Deoptimization State: Operand Bundles

● “deopt” operand bundles (in progress, still very experimental)

○ call void @f(i32 %arg) [“deopt”(i32 0, i8* %a, i32* null)]

○ Lowered via gc.statepoint currently; other lowerings possible

● Operand bundles are more general than “deopt”

○ call void @g(i32 %arg) [“tag-a”(i32 0, i32 %t), “tag-b”(i32 %m)]

○ Useful for things other than deoptimization: value injection, frame introspection

26

Specific Improvements

27

● Despite best efforts (e.g. loop unswitching, GVN), some null checks remain

○ obj.field.subField++

● Standard Solution: issue an unchecked load, and handle the SIGSEGV

● Works because in practice NullPointerExceptions are very rare

Implicit Null Checks

28

 testq %rdi, %rdi

 je is_null

 movl 32(%rdi), %eax

 retq

is_null:

 movl $42, %eax

 retq

Implicit Null Checks

load_inst:

 movl 32(%rdi), %eax

 retq

is_null:

 movl $42, %eax

 retq

S
I
G
S
E
G
V

Legality: the load faults if and only if %rdi is zero

29

Implicit Null Checks

● .llvm_faultmaps maps faulting PC’s to handler PCs

● Inherently a profile guided optimization

● Possible to extend this to checking for division by zero

● In LLVM today for x86, see llc -enable-implicit-null-checks

30

● We’ve made (and are still making) ScalarEvolution smarter

● -indvars has been sufficient so far, no separate range check elision pass

● Java has well defined integer overflow, so SCEV needs to be even smarter

Optimizing Range Checks

31

The range check can fail only on the first iteration. i <
s
 0 ⇔ M <

s
 0

SCEV’isms: Exploiting Monotonicity
for (i = M; i <

s
 N; i++)

{

 if (i <
s
 0) return;

 a[i] = 0;

}

for (i = M; i <
s
 N; i++

nsw
)

{

 if (M <
s
 0) return;

 a[i] = 0;

}

32

j = 0

for (i = L-1; i >=
s
 0; i--)

{

 if (!(true)) throw();

 a[j++] = 0;

} // backedge taken L-1 times

SCEV’isms: Correlated IVs
j = 0

for (i = L-1; i >=
s
 0; i--)

{

 if (!(j <
u
 L)) throw();

 a[j++] = 0;

}

33

SCEV’isms: Multiple Preconditions
if (!(k <

u
 L)) return;

for (int i = 0; i <
u
 k; i++)

{

 if (!(i <
u
 L)) throw();

 a[i] = 0;

}

Today this range check does not
optimize away.

34

Partially Eliding Range Checks: IRCE
 t = smin(n, a.length)

 for (i = 0; i <
s
 t; i++)

 a[i] = 42; // unchecked

 for (i = t; i <
s
 n; i++) {

 if (i <
u
 a.length)

 a[i] = 42;

 else throw();

 }

for (i = 0; i <
s
 n; i++) {

 if (i <
u
 a.length)

 a[i] = 42;

 else throw();

}

35

Dereferenceability
 if (arr == null) return;

loop:

 if (*condition) {

 t = arr->length;

 x += t

 }

 if (arr == null) return;

 t = arr->length;

loop:

 if (*condition)

 x += t

Subject to aliasing, of course.

36

Dereferenceability
● Dereferenceability in Java has well-behaved control dependence

○ Non-null references are dereferenceable in their first N bytes (N is a function of the type)

○ We introduced dereferenceable_or_null(N) specify this

● Open Question: Arrays?

○ dereferenceable_or_null(<runtime value>) ?

37

Aliasing
● We haven’t needed a language specific AA implementation yet; we use TBAA

and struct TBAA to convey basic facts

● Fairly coarse so far; not heavily leveraging the Java type system

● We generalized argmemonly to non-intrinsics

○ Really helpful for high level abstractions

38

Constant Memory
● We use invariant.load for:

○ VM level final fields (e.g. length of an array)

○ Java level final fields (static final) of heap reference type

■ Primitive static finals can be directly constant folded

■ Instance finals are a bit tricky (forthcoming)

39

Constant Memory: Open problems
● Memory which “becomes constant”

○ Inlining allocation functions and invariant.load

○ final instance fields in Java

● Subtly different (?) representations for the same thing

○ The backend’s notion of invariant.load is different than the IR’s

○ TBAA’s notion of isConstant vs. invariant.load

40

Takeaways
● Embedded high level IR enables rapid development

● New support for operand bundles (i.e. deoptimization, frame introspection,
frame interjection)

● Canonicalization required for effective optimization; per language work
needed

● LLVM powerful building block for debuggable managed language compiler

41

Questions?

42

