Exception handling In
LLVM, from Iltanium to
MSVC

Reid Kleckner
David Majnemer

Agenda

e Exception handling: what it is, where it came from
e Introduction to the landingpad model used in LLVM and GCC

o Elegant simplicity of the landingpad model

e [ntroduction to the MSVC model

o Problematic requirements of the MSVC model

e Introduction to the new LLVM IR model
o Compromise between block scoping and free-form control flow

What is exception handling?

Provides non-local control flow transfers to suspended frames

Returns alternative data not described by function return types

Non-local exits considered important as library layering accumulated
Bjarne et al design C++ exceptions from 1984-1989

“Exception handling for C++” is published by Bjarne and Andrew Koenig in
1989

How is exception handling implemented?

e Bjarne and Koenig outlined two implementation strategies in 1989

e Portable exception handling:
o Built on linked lists and setjmp/longjmp
o ldeal for C transliteration (CFront)
o Interoperates across EH-unaware code produced by other vendors
e [Efficient exception handling:
o Built on PC lookup tables that determine which EH actions to take
o Requires reliable stack unwinding mechanism
o Need call frame information (CFI) to restore non-volatile registers and locate return addresses

e Different vendors made different choices

Borland implements C++ and SEH in 1993

Implementation approach similar to “portable” EH described in ‘89
Windows toolchain ecosystem was diverse, needed interoperability
SEH allowed recovering from CPU traps (integer divide by zero, etc)

SEH also allowed resuming in the trapping context
o Usable for virtual memory tricks or making divide by zero produce a value

Microsoft adopted SEH for Windows, fs:00 becomes TLS slot for EH

HP landingpad model for Itanium

HP had years of experience getting C++ EH right in multiple compilers
o Major user of CFront, eventually transitioned to aC++

HP popularized the landingpad model through the Itanium C++ ABI
Uses “successive unwinding”: restores the register context of each frame on
the stack with cleanups until the right catch is reached

o Major departure from ‘89 models, which both pinned objects with destructors in memory

Language-specific data area (LSDA) contains two tables:
o Call site table: map from PC range to landingpad label plus action table index
o Action table: array of type information references and next action chains
o At most one landingpad label per call

GCC adopted the Itanium C++ ABI, LLVM followed later

LLVM IR for landingpads

e |nvokes are calls with an unwind
edge

e %ehvals represent an alternate
return value in EAX:EDX on x86

e Landingpad must be first non-phi
instruction in basic block

e Catch handler dispatch uses
compare and branch on selector

define void @f()
personality i32 (...)* @__gxx_personality vO {

invoke void @maythrow()
to label %normal unwind label %lpad
normal:

Ip-é.d:
%ehvals = landingpad { i8*, i32 }
catch i8* null

Landingpad selector dispatch example

define i32 @main() ... { catch.fallthrough:
entry: %5 = tail call i32
int main () { invoke void @maythrow() @llvm.eh.typeid.for(..@_ZTI1B...)
try { to label %try.cont unwind label %lpad %isB = icmp €q i32 %2, %5
maythrow(); try.cont: br i1 %isB, label %catch.B,
} catch (A) { reti32 0 label %eh.resume
puts("A"); lpad:
} catch (B) { %0 = landingpad { i8*, i32 } catch.A:
puts("B"); catch {i8*, i8* }* @_ZTIMA
Y catch {i8*, i8* }* @_ZTI1B catch.B:
} %1 = extractvalue { i8*, i32 } %0, 0
%2 = extractvalue {i8*, i32 } %0, 1
%3 = tail call i32 eh.resume:
@llvm.eh.typeid.for(..@_ZTI1A...) resume {i8%, 132 } %0
%isA = icmp eq i32 %2, %3 }

br i1 %isA, label %catch.A,
label %catch.fallthrough

Advantages of LLVM's landingpad model

Basic blocks are single-entry single-exit, simplifying dataflow and SSA
formation

Keeps control flow graph for EH dispatch in code (conditional branches)

o SimplifyCFG can and does tail merge similar catch handlers
o No unsplittable blocks, easier to find insertion points

Invokes inlined by chaining “ret” to normal label and “resume” to unwind label
Only one special control transfer: unwind edge from invoke
Unfortunately, Windows EH does not use landingpads

Windows exception handling model

e Tables map from program state number to “funclet” pointers
e State number tracked through PC tables and explicitly in memory

e Each funclet shares the parent frame via EBP/RBP

o Runtime provides the “establishing frame pointer” via regparm

o Funclet assumes SP has dynamically changed, similar to dynamic alloca
e Funclets implement three major actions:

o SEH filter: Should this exception be caught, retried, or propagated outwards
o Cleanup: Cleanup code, like C++ destructor calls or finally blocks
o Catch: User code from the catch block body

Windows exception handling phases

1. Exception is raised to OS
2. Walk stack, call each personality until the exception is claimed
o The SEH and CLR personalities call active filter funclets during this phase

3. Call each personality again to run cleanups
o Personality controls what happens if cleanups raise an exception

4. Personality of catching frame handles the exception
o C++ personality calls catch funclet, uses SEH to detect C++ rethrow

5. Personality resets register context to the parent frame

Windows exception handling implications

e Contrast to successive unwinding: Only one register context reset

e All EH occurs with the exceptional frame on the stack!
o The C++ exception object lives in the frame of the throw
o Stack pointer is reset at the closing curly of the catch block

e Successively unwinding to landingpads cannot be compatible with MSVC EH
o Mingw will never have MSVC-compatible exception handling

e Chose to use MSVC personality rather than invent new split-frame personality

Possible strategy: frontend outlines funclets

e Frontend outlining would satisfy the personality routine
e (Good separation of concerns, keep C++ knowledge in Clang

e Creates massive optimization barrier
o Local optimization problems become much harder interprocedural problems
o No ability to reason about escaped local variables used in funclets

e Personality provides frame pointer, would need to teach backend how to

reason about the layout of another function’s frame

o Lambdas and blocks are easy because we control the call site
o Parent function cannot be inlined, doing so would perturb the frame

e Ultimately decided to outline SEH filters in the frontend
o Difficult to optimize, impossible to reason about control flow

e Let's try backend outlining with landingpads...

Pattern match away landingpads

e Attempted to use landingpads and a pile of intrinsics, outline catches and
cleanups into new functions during WinEHPrepare
e Funclet bounds were inferred from intrinsic calls (@llvm.eh.begincatch, etc)

e SSA values live across funclet bounds were demoted (similar to SJLJ EH)
o Shared demoted stack allocations with @llvm.localescape / @llvm.localrecover

e Pattern matched selector comparisons to recover dispatch logic data

Landingpads, MSVC-style

throw:
invoke void @foo() ... unwind label %lp

Ip:
%sel = landingpad i32 catch %rtti* @A.type, catch %rtti* @B.type
%forA = call i32 @llvm.eh.typeid.for(%rtti* @A.type)
%isA = icmp eq i32 %sel, %forA
br i1 %isA, label %catch.A, label %catch.fallthrough

catch.fallthrough:
%forB = call i32 @llvm.eh.typeid.for(%rtti* @B.type)
%isB = icmp eq i32 %sel, %forB
br i1 %isA, label %catch.B, label %eh.resume

Landingpads, MSVC-style

throw:
invoke void @foo() ... unwind label %lp

Ip:
%sel = landingpad i32 catch %rtti* @A.type, catch %rtti* @B.type
%forA = call i32 @llvm.eh.typeid.for(%rtti* @A.type)
%isA = icmp eq i32 %sel, %forA
br i1 %isA, label %catch.A, label %catch.fallthrough

catch.fallthrough:
%forB = call i32 @llvm.eh.typeid.for(%rtti* @B.type)
%isB = icmp eq i32 %sel, %forB
br i1 %isA, label %catch.B, label %eh.resume

Landingpads, MSVC-style: hard mode

throw:
invoke void @foo() ... unwind label %lp

Ip:
%sel = landingpad i32 catch %rtti* @A.type, catch %rtti* @B.type
%forA = call i32 @llvm.eh.typeid.for(%rtti* @A.type)
%forB = call i32 @llvm.eh.typeid.for(%rtti* @B.type)
%isA = icmp eq i32 %sel, %forA
%isB = icmp eq i32 %sel, %forB
%isAorB = or i1 %isA, %isB
br i1 %isAorB, label %catch.AorB, label %eh.resume

Landingpads, MSVC-style: hard mode

throw:
invoke void @foo() ... unwind label %lp

Ip:
%sel = landingpad i32 catch %rtti* @A.type, catch %rtti* @B.type
%forA = call i32 @llvm.eh.typeid.for(%rtti* @A.type)
%forB = call i32 @llvm.eh.typeid.for(%rtti* @B.type)
%isA = icmp eq i32 %sel, %forA
%isB = icmp eq i32 %sel, %forB
%isAorB = or i1 %isA, %isB
br i1 %isAorB, label %catch.AorB, label %eh.resume

Lesson

Turning apple sauce back into apples does not work!

Other lessons learned

e Discovered lexical scoping requirements in tables
o Previously believed we could produce denormalized tables: try ranges around every invoke

e LLVM IR does not have scope information! It is a graph
o Lack of nesting information ensured our demise

C++ personality scoping impositions

e The compiler is required to emit code+tables which are lexically nested
o Tables + runtime must agree on current state of the program

e TryBlockMap is an array of: tuple of states (TryLow, TryHigh, CatchHigh) +

array of catch handlers

o Intervals must be non-overlapping or contained within another interval
o Catch handlers must have distinct addresses, no reuse permitted

e Forces the compiler's output to resemble valid C++ source code
o Doesn’t necessarily need to have the same scopes as the source program

TryBlockMap state numbering constraints

try { Program state

f(0);

} catch (...) { 1
try {
f(1), ?

} catch (...) { 3

f(2);

} 4
) 5
try { 6

f(3);

} catch (...) { 7

f(4);

o M T

TryLow

TryHigh

Fully contained

CatchHigh

Non-overlapping

MSVC-style EH, take two

e New family of “pad” instructions representing funclet starts
o catchpad, cleanuppad

e New family of terminator instructions representing funclet returns
o catchret, cleanupret

e New family of instructions to inform LLVM of lexical nesting
o catchendpad, cleanupendpad

e And last, but not least, a new type: token

MSVC-style EH, take two

e SSA values with token type cannot be obscured

o Cannot be PHI'd, cannot be stored/loaded to memory, cannot be in a select, etc.

o Makes it possible to associate catchpad with catchret, cleanuppad with cleanupret
e Unwind edges inform us of lexical scopes

o Instructions which unwind to catchendpad are “exiting” a catch handler
o Instructions which unwind to cleanupendpad are “exiting” a cleanup

New EH: Catches

int main () {
try {
maythrow
} catch (A)
handleA();
)
(

();
{
} catch (B) {

handleB();

}
}

Throwing the Exception

int main () {
try {
maythrow();
} catch (A) {
handleA();
} catch (B) {
handleB();

}
}

invoke void @maythrow()
to label %try.cont
unwind label %dispatch.a

Catching the Exception

int main () { dispatch.a: o
try { %cpA = catchpad [%rtti. A* @A.type]
ma thI’OW()' to label %handle.a
y ’ unwind label %dispatch.b
} catch (A) {
handleA(); handle.a:
} catch (B) { invoke void @handleA()
handIeB()' to label %catchret.A
\ ’ unwind label %catchend
} catchret.a:

catchret %cpA to label %exit

Catching the Exception

int main () { dispatch.b: -
try { %cpB = catchpad [%rtti.B* @B.type]
ma thI’OW()' to label %handle.b
y ’ unwind label %catchend
} catch (A) {
handleA(); handle.b:
} catch (B) { invoke void @handleB()
handIeB()- to label %catchret.B
} ’ unwind label %catchend
} catchret.b:

catchret %cpB to label %exit

Catching the Exception: catchendpad

dispatch.a:
%cpA = catchpad [...] to label %handle.a unwind label %handle.b
handle.a:
invoke void @handleA() to ... unwind label %catchend
dispatch.b:
%cpB = catchpad [%rtti.B* @B.type] to label %handle.b unwind label %catchend
handle.b:
invoke void @handleB() to ... unwind label %catchend
catchend:
catchendpad unwind to caller

Result: it “just” works

e Forthe most part, the new IR survives LLVM’s optimizers

e New IR dramatically simplified WinEHPrepare
o Removed ~2500 lines of broken code, currently only ~1200 lines of working code

e SimplifyCFG still merges blocks in two funclets ending in unreachable
o WinEHPrepare has to undo this

e WinEHPrepare still demotes SSA values live across funclet boundaries

o No pattern matching necessary
o Register allocator would do better spill placement

Future work

e Inlining into cleanups currently disabled
o Need to associate call sites with parent funclet
o Use operand bundles? Outline in WinEHPrepare?

e Funclet parent relationship is implicit
o Relationship is discovered via unwind edges
o Experiment with explicit parents?

e Push funclet spill insertion down into register allocator
e Make catchpad a switch? Make it splittable?

Conclusion

e Clang now has MSVC compatible exception handling
e Clang has partial support for SEH, does not model non-call exceptions
o Need a way to model edges from potentially trapping instructions

e New EH representation preserves core LLVM invariants (SSA!)
o Relatively few changes required to most passes

e Work ongoing to simplify new representation

