
Large scale libc++
deployment

Evgenii Stepanov, Google
Ivan Krasin, Google

Containers of incomplete types
class A { std::deque<A> d; };

class B { std::set::iterator p; }

Super-popular patterns. Some algorithms are much harder to write w/o this.

Supported in: libstdc++, stlport, boost.

hash_set & hash_map: done

deque: ABI-breaking change http://reviews.llvm.org/D10677

http://reviews.llvm.org/D10677

ABI stability
Libc++ generally avoids ABI-breaking changes.

● Helps shipping libc++ in productions systems.
● Blocks several desired changes.
● Some users don’t care for ABI stability!

Solution: ABI versioning.

● LIBCXX_ABI_VERSION=XX
● LIBCXX_ABI_UNSTABLE=ON

always_inline
Control over which symbols are part of the ABI.

Almost 5900 uses in libc++.

Cons:

● Does not always work.
○ Current implementation does not inline unreachable call sites.
○ Incompatible function attributes prevent inlining.

● Breaks -O0.
○ Aggressive inlining w/o alloca merging => huge stack frames.
○ 15% testsuite speedup with always_inline removed!

internal_linkage
always_inline = internal linkage (good) + inlining (bad) [if called directly]

RFC: __attribute__((internal_linkage))

Think C-style “static” on class methods. And even classes and namespaces.

http://reviews.llvm.org/D13925

http://reviews.llvm.org/D13925
http://reviews.llvm.org/D13925

Container assignment requirements
Allocator-aware container X: X<T> a; a = t;

Standard & libc++: T is CopyInsertable into X and CopyAssignable.

libstdc++: T is CopyInsertable into X

struct A { A& operator=(const A&) = delete; };

struct A { const int x; };

libstdc++: PASS, libc++: FAIL

Constexpr pair & initializer_list constructors
constexpr pair(const T1& x, const T2& y);

constexpr initializer_list();

Standard & libc++: constexpr since C++14.

Libstdc++: constexpr since C++11.

Replacement for __gnu_cxx::random_sample
random_sample appears in libstdc++ & stlport, but not in libc++.

std::experimental::sample (library fundamentals TS), implemented in libc++.

std::tuple extension
Constructor accepts less values than the number of tuple elements.

SFINAE issues: confusion between:

● Copy constructor
● Single element constructor

May end in infinite recursion via construction of tuple<tuple…> instead of a copy.

http://reviews.llvm.org/D12502 by EricWF

http://reviews.llvm.org/D12502
http://reviews.llvm.org/D12502

Misc differences
● std::pow<float, float> works in libstdc++ but not in libc++. Invalid code.
● std::vector<bool>::const_reference is not bool - libc++ not standard compliant.
● Different iteration order of hash-based containers.

Conclusions
● High quality implementation.
● Adopting a few extensions would migration easier:

○ Container assignment should not require the element to be copy assignable. Const class
members are very common.

○ Complete element type should not be a requirement for container instantiation.

