

Simulating nanoscale dragons

Towards fully open source GPU accelerated
molecular dynamics simulation

Vedran Miletić, HITS gGmbH
Szilárd Páll, KTH

Frauke Gräter, HITS gGmbH

Molecular dynamics simulation

● GROMACS simulates proteins, i.e. nanoscale dragons*

*careful, they can still bite

≈

Layers of GPU computing

GPU accelerated app (e.g. GROMACS) and libraries

Layers of GPU computing

GPU accelerated app (e.g. GROMACS) and libraries

CUDA OpenCL

Layers of GPU computing

GPU accelerated app (e.g. GROMACS) and libraries

CUDA OpenCL

NVIDIA proprietary compiler AMD proprietary
compiler

AMD proprietary
driverNVIDIA proprietary driver

Layers of GPU computing

GPU accelerated app (e.g. GROMACS) and libraries

CUDA OpenCL

NVIDIA proprietary compiler AMD proprietary
compiler

LLVM, Mesa/DRM, and
radeon/nouveau

AMD proprietary
driverNVIDIA proprietary driver

Clang and libclc

Layers of GPU computing

GPU accelerated app (e.g. GROMACS) and libraries

CUDA OpenCL

NVIDIA proprietary compiler AMD proprietary
compiler

LLVM, Mesa/DRM, and
radeon/nouveau

AMD proprietary
driverNVIDIA proprietary driver

Clang and libclc

Contributed by StreamComputing

Layers of GPU computing

GPU accelerated app (e.g. GROMACS) and libraries

CUDA OpenCL

NVIDIA proprietary compiler AMD proprietary
compiler

LLVM, Mesa/DRM, and
radeon/nouveau

AMD proprietary
driverNVIDIA proprietary driver

Clang and libclc

Contributed by StreamComputing

Our work

If using proprietary stack is OK,
NVIDIA/Intel do it better than AMD.

Source: top500.org statistics for November 2015.

Open source OpenCL stack

● Anyone can improve code
– Hopefully less bugs, better performance

Open source OpenCL stack

● Anyone can improve code
– Hopefully less bugs, better performance

● Develop what you care about, no “company priorities”

Road to openness

● Remove the unused OpenCL image functions from
GROMACS
– Done by Szilard Pall, accepted upstream

Road to openness

● Remove the unused OpenCL image functions from
GROMACS
– Done by Szilard Pall, accepted upstream

● Implement global atomic compare-and-swap in LLVM
AMDGPU target
– Custom lowering to {BUFFER,FLAT}_ATOMIC_CMPSWAP
– Reeviewed by AMDGPU target maintainers
– Will be merged as soon as it has tests

Work in progress

● Add erf() / erff() to libclc

Work in progress

● Add erf() / erff() to libclc
● Handle struct arguments in OpenCL kernels correctly

– Few possible approaches, cf. Beignet for Intel iGPUs

Work in progress

● Add erf() / erff() to libclc
● Handle struct arguments in OpenCL kernels correctly

– Few possible approaches, cf. Beignet for Intel iGPUs

● Running, with result correctness issues

Joys of AMDGPU target development

● LLVM ABI breakage, LLVM doesn't compile, ...
● Occasional target-specific regressions

Joys of AMDGPU target development

● LLVM ABI breakage, LLVM doesn't compile, ...
● Occasional target-specific regressions
● Limitations regarding Volcanic Islands
● Overall resemblance to early days of Mozilla

The future is open and is here and now

GPU accelerated app (e.g. GROMACS) and libraries

CUDA OpenCL, C++17

NVIDIA proprietary compiler

LLVM, Mesa/DRM, and
radeon/nouveauNVIDIA proprietary driver

Clang, libclc, HCC/HIP

Acknowledgments

● Tom Stellard, AMD
● Matt Arsenault, AMD
● Edward O'Callaghan, Freenode channel #radeon
● Serge Martin, Freenode channel #radeon

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

