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Molecular dynamics simulation

● GROMACS simulates proteins, i.e. nanoscale dragons*

*careful, they can still bite
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If using proprietary stack is OK,
NVIDIA/Intel do it better than AMD.

Source: top500.org statistics for November 2015.



  

Open source OpenCL stack

● Anyone can improve code
– Hopefully less bugs, better performance



  

Open source OpenCL stack

● Anyone can improve code
– Hopefully less bugs, better performance

● Develop what you care about, no “company priorities”



  

Road to openness

● Remove the unused OpenCL image functions from 
GROMACS
– Done by Szilard Pall, accepted upstream



  

Road to openness

● Remove the unused OpenCL image functions from 
GROMACS
– Done by Szilard Pall, accepted upstream

● Implement global atomic compare-and-swap in LLVM 
AMDGPU target
– Custom lowering to {BUFFER,FLAT}_ATOMIC_CMPSWAP
– Reeviewed by AMDGPU target maintainers
– Will be merged as soon as it has tests



  

Work in progress

● Add erf() / erff() to libclc
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Work in progress

● Add erf() / erff() to libclc
● Handle struct arguments in OpenCL kernels correctly

– Few possible approaches, cf. Beignet for Intel iGPUs

● Running, with result correctness issues



  

Joys of AMDGPU target development

● LLVM ABI breakage, LLVM doesn't compile, ...
● Occasional target-specific regressions



  

Joys of AMDGPU target development

● LLVM ABI breakage, LLVM doesn't compile, ...
● Occasional target-specific regressions
● Limitations regarding Volcanic Islands
● Overall resemblance to early days of Mozilla



  

The future is open and is here and now

GPU accelerated app (e.g. GROMACS) and libraries

CUDA OpenCL, C++17

NVIDIA proprietary compiler

LLVM, Mesa/DRM, and
radeon/nouveauNVIDIA proprietary driver

Clang, libclc, HCC/HIP
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