
1

A Journey of OpenCL 2.0

Development in Clang

Anastasia Stulova
anastasia.stulova@arm.com

Media Processing Group
ARM

mailto:anastasia.stulova@arm.com

2

 OpenCL intro

 OpenCL in Clang

 Overview of OpenCL 2.0

 OpenCL 2.0 implementation

 Summary and discussions

Agenda

3

 WI – work-item is a single sequential unit of work with its

private memory (PM)

 WG – work-group is a collection of WIs that can run in parallel

and access local memory shared among all WIs in the same WG

OpenCL programming model and terminology

Host:

- Creates application

- Cross compiles for

Device

- Sends work to Device

- Copy data to/from

Device global memory

Device

WG

:

WI

Local Mem

PM

WI

PM

WI

PM

WG

:

WI

Local Mem

PM

WI

PM

WI

PM

Global Memory

Offload

C + OpenCL API OpenCL Language

4

OpenCL language intro

 C99 based

 Parallel units of work – kernels

 Explicitly assign object to

memory using address space

qualifier with each type

 Special types: images, events,

pipes, …

 Access qualifiers - read/write

only applies to some types

 No standard C includes or libs,

but defines its own libs

C99

OpenCL

5

OpenCL for compiler writer

 How to handle invalid targets?

 Conflicts between C and

OpenCL unforeseen by Spec

(especially in undefined

behaviour)!

 How to generate IR generically

with absence of enough info on

various backends?

 Missing explicit IR constructs

are substituted with metadata

and intrinsics!

6

First implementation in Clang (OpenCL 1.1/1.2)

Parser

Sema

CodeGen

Tests - Accept new

keywords and

constructs

- Reusing existing

AST structure,

but creating

new node

classes i.e. types

- Handle new

elements

- Modify C semantic

- Reuse existing IR

with very small

new bits i.e.

addrspacecast

Most important

diagnostics only

Not very good

coverage

7

 Hierarchical/Dynamic parallelism - device side enqueue (work

creation bypassing host) using ObjC blocks

 Reduce difficulty of writing code with address spaces (abstract

away from memory model as much as possible, late binding)

 Simplify communications among kernels (avoid going outside of

device via host)

 Program scope variables persist across kernel invocations

 Pipe communication using streaming pattern

 C11 atomics with memory visibility scope

 New image types and access qualifier

OpenCL 2.0 feature overview

8

Generic address space

 Address Space (AS) in OpenCL

is almost a part of a type

 Nothing is allowed with objects

of distinct ASes including

casting, operations etc.

 One of the largest changes

affected Parser, Sema and

CodeGen of many C paths

 Generic helps writing code

more conveniently

 Easy to support in Clang

reusing existing AS functionality

void foo(local int *lptr) {...}

void foo(global int *gptr) {...}

kernel void bar(local int *lptr, global int *gptr){

 foo(lptr);

 foo(gptr);

}

void foo(int *gen) {...} // only one foo is needed,

use late binding

kernel void bar(local int *lptr, global int *gptr){

 foo(lptr); // local to generic AS conversion

 foo(gptr); // global to generic AS conversion

}

OpenCL2.0

9

PointerType 0xa4e41b0 '__generic int *'

`-QualType 0xa4e4198 '__generic int' __generic

 `-BuiltinType 0xa48df20 'int'

Added diagnostics:

- Conversion rules

error: casting '__local int *' to type '__global int *‘

changes address space of pointer

- Operation validity

error: comparison between ('__constant int *' and '__generic

int *') which are pointers to non-overlapping address spaces

Generic address space in Clang

file.cl:

…

generic int *gptr;

…

Parser

void Parser::ParseDeclarationSpecifiers(...)

{

 switch (Tok.getKind()) {

 …

 case tok::kw_generic:

 ParseOpenCLQualifiers(DS.getAttributes());

 …

}

AST Sema CodeGen

- Some targets can map generic directly to specific AS

(conversions addrspacecast A -> A should be easy to

eliminate)

- Other targets will have a unique value (dynamic translation

with addrspacecast G -> A, not used CL < 2.0)

file.ll:

%gptr = alloca i32

addrspace(4)*

10

 Workable solution in order not to modify previous scheme:

 AS is handled as a type attribute while parsing a type

 If absent look at scope and type being parsed

 But too early to be able to consider object kind: NULL - (void*)0 no AS

 We could introduce private AS explicitly as unique qualifier

 Affects how AS is represented by previous standards

 Type printing issue (difference with the original type)

 int x = &f; // warning: incompatible pointer to integer conversion initializing '__global int' with

an expression of type …

Default address space

private int i;

 Scope

Type

global local

pointer LangAS::generic LangAS::generic

scalar LangAS::global LangAS::private

OpenCL <2.0: OpenCL >=2.0:

int i;
BuiltinType

0xa4d9f20 'int'

11

 Map CL to C11 atomic types in Clang:
 Sema.cpp - Sema::Initialize():

 // typedef _Atomic int atomic_int

 addImplicitTypedef("atomic_int", Context.getAtomicType(Context.IntTy));

 Only subset of types are allowed

 Added Sema checks to restrict operations (only allowed through

builtin functions):
 atomic_int a, b; a+b; // disallowed in CL

 _Atomic int a, b; a+b; // allowed in C11

 Use C11 builtin functions in Clang to implement CL2.0 functions

 Missing memory visibility scope as LLVM doesn’t have this construct
 C atomic_exchange_explicit(volatile A *obj, C desired, memory_order order, memory_scope scope); // CL

 C atomic_exchange_explicit(volatile A *obj, C desired, memory_order order); // C11

 Can be added as metadata or IR extension

Atomic types

12

 Syntax like a global variable in C, but its value persists among

different kernel executions

 Disallowed in earlier standards => Sema modification to allow

 In earlier standards we added implicit local WG storage class for

local AS variables:

 local int x; => Clang added local WG storage class

 static local x; => Results in 2 storage classes but C allows only one

 Removed local WG storage as this can be checked by an AS qualifier

Program scope variable

13

Pipe

 Classical streaming pattern

 OpenCL code specifies how

elements are written/read

 Host (C/C++) code sets up

pipe and connections to

kernels

kernel void producer(write_only pipe int p) {

 int i = …;

 write_pipe(p, &i);

}

kernel void consumer(read_only pipe int p) {

 int i ;

 read_pipe(p, &i);

}

Device

pipe = clCreatePipe(context, 0, sizeof(int), 10 /* # packets*/…);

producer = clCreateKernel(program, “producer”, &err);

consumer = clCreateKernel(program, “consumer”, &err);

err = clSetKernelArg (producer, 0, sizeof(pipe), pipe);

err = clSetKernelArg (consumer, 0, sizeof(pipe), pipe);

err = clEnqueueNDRangeKernel(queue, producer, …);

err = clEnqueueNDRangeKernel(queue, consumer, …);

Host

14

Pipe related restrictions:

error: type 'pipe' can only be used as a

function parameter in OpenCL

 Code repetition in Clang wrapper style types (i.e. AtomicTypes,
PointerTypes, etc) and factory creation code in ASTContext

 refactoring needed!

 Pipe builtin functions:
 CL: int read_pipe (read_only pipe gentype p, gentype *ptr)

 gentype is any builtin or user defined type

 Generic programming style behaviour in C99

 Implemented as Clang builtin function with custom check
 Buildins.def: LANGBUILTIN(read_pipe, "i.", "tn”, OCLC_LANG)

 CodeGen to call i32 @__read_pipe(%opencl.pipe_t* %p, i8* %ptr)

Pipe type

file.cl:

…

pipe int p;

…

PipeType 0xa4e41b0 ‘pipe int‘

`-BuiltinType 0xa48df20 'int'

file.ll:

%opencl.pipe_t = type

opaque

…

%opencl.pipe_t* %p

Parser AST Sema CodeGen

15

 All images are special Clang builtin types

 Handled in a similar way => a lot of copy/paste code

 OpenCL <2.0: 6 different types
 image1d_t, image1d_array_t, image1d_buffer_t, image2d_t, image2d_array_t, image3d_t

 OpenCL >=2.0: 6 new types:
 image_2d_depth_t, image_2d_array_depth_t, image_2d_msaa_t, image_2d_array_msaa_t,

image_2d_msaa_depth_t, image_2d_array_msaa_depth_t

 Access qualifier:

 OpenCL <2.0: read_only/write_only

 OpenCL >=2.0 adds read_write

 Access qualifier + image type = unique type

Images

16

Image problem

 Not implemented correctly

 Access qualifiers are ignored

after parsing:

 No diagnostics wrt image access

 No access qualifiers in IR

 Several attempts to correct

 Current review setup to

correct functionality:

 http://reviews.llvm.org/D17821

void write(write_only image2d_t img);

kernel void foo(read_only image2d_t img)

{

 write(img); // accepted code

}

But write on write_only is OK

In OpenCL <2.0

call void @write(%opencl.image2d_t* %img);

OpenCL 2.0 requires to call different writes

for each write_only and read_write image

17

 OpenCL builtin function

 enqueue_kernel(…, void (^block)(local void *, ...))

 block has an ObjC syntax

 block can have any number of local void* arguments

 Kind of variadic prototype

 No standard compilation approach

 To diagnose correctly needs to be added as Clang builtin function with a

custom check

Device side enqueue

18

 Loop unroll hint attribute added

 Diagnostics and CodeGen code shared with pragma C loop hint

implementation

 NOSVM attribute (but ignored)

 Still fixing AS issues in CodeGen and Sema

 Added ObjC blocks restrictions in OpenCL

 int ̂ bl(int, ...) = ̂ int(int I, ...) // error: invalid block prototype, variadic arguments are not allowed

in OpenCL

Misc features

19

 Finalise remaining issues: default AS, atomics, images

 Add support for missing device side enqueue and other misc

 Improve tests and diagnostics for previous standards

 Refactoring of problematic parts

Generic AS Default AS Atomics

Program scope
variables

Images
Device side
enqueue

OpenCL 2.0 current state & future work

20

 Good progress on OpenCL2.0 (completion planned in rel3.9)

 Beneficial to derive from production quality C frontend

 Some parts are difficult as there is no standard mechanism in Clang

 Best use of existing C/OpenCL functionality but not affecting old

functionality much

 Clang AST and internals are tailored quite well to OpenCL but IR

is still very ad-hoc

 Would it make sense to add more constructs to LLVM IR or improve

support for alternative formats such as SPIR-V?

Summary

21

 ARM: Anastasia Stulova

 Intel: Alexey Bader, Xiuli PAN

 AMD: Liu Yaxun

 Tampere University of Technology: Pekka Jääskeläinen

 Others: Pedro Ferreira

Contributors:

