
1

A Journey of OpenCL 2.0

Development in Clang

Anastasia Stulova
anastasia.stulova@arm.com

Media Processing Group
ARM

mailto:anastasia.stulova@arm.com

2

 OpenCL intro

 OpenCL in Clang

 Overview of OpenCL 2.0

 OpenCL 2.0 implementation

 Summary and discussions

Agenda

3

 WI – work-item is a single sequential unit of work with its

private memory (PM)

 WG – work-group is a collection of WIs that can run in parallel

and access local memory shared among all WIs in the same WG

OpenCL programming model and terminology

Host:

- Creates application

- Cross compiles for

Device

- Sends work to Device

- Copy data to/from

Device global memory

Device

WG

:

WI

Local Mem

PM

WI

PM

WI

PM

WG

:

WI

Local Mem

PM

WI

PM

WI

PM

Global Memory

Offload

C + OpenCL API OpenCL Language

4

OpenCL language intro

 C99 based

 Parallel units of work – kernels

 Explicitly assign object to

memory using address space

qualifier with each type

 Special types: images, events,

pipes, …

 Access qualifiers - read/write

only applies to some types

 No standard C includes or libs,

but defines its own libs

C99

OpenCL

5

OpenCL for compiler writer

 How to handle invalid targets?

 Conflicts between C and

OpenCL unforeseen by Spec

(especially in undefined

behaviour)!

 How to generate IR generically

with absence of enough info on

various backends?

 Missing explicit IR constructs

are substituted with metadata

and intrinsics!

6

First implementation in Clang (OpenCL 1.1/1.2)

Parser

Sema

CodeGen

Tests - Accept new

keywords and

constructs

- Reusing existing

AST structure,

but creating

new node

classes i.e. types

- Handle new

elements

- Modify C semantic

- Reuse existing IR

with very small

new bits i.e.

addrspacecast

Most important

diagnostics only

Not very good

coverage

7

 Hierarchical/Dynamic parallelism - device side enqueue (work

creation bypassing host) using ObjC blocks

 Reduce difficulty of writing code with address spaces (abstract

away from memory model as much as possible, late binding)

 Simplify communications among kernels (avoid going outside of

device via host)

 Program scope variables persist across kernel invocations

 Pipe communication using streaming pattern

 C11 atomics with memory visibility scope

 New image types and access qualifier

OpenCL 2.0 feature overview

8

Generic address space

 Address Space (AS) in OpenCL

is almost a part of a type

 Nothing is allowed with objects

of distinct ASes including

casting, operations etc.

 One of the largest changes

affected Parser, Sema and

CodeGen of many C paths

 Generic helps writing code

more conveniently

 Easy to support in Clang

reusing existing AS functionality

void foo(local int *lptr) {...}

void foo(global int *gptr) {...}

kernel void bar(local int *lptr, global int *gptr){

 foo(lptr);

 foo(gptr);

}

void foo(int *gen) {...} // only one foo is needed,

use late binding

kernel void bar(local int *lptr, global int *gptr){

 foo(lptr); // local to generic AS conversion

 foo(gptr); // global to generic AS conversion

}

OpenCL2.0

9

PointerType 0xa4e41b0 '__generic int *'

`-QualType 0xa4e4198 '__generic int' __generic

 `-BuiltinType 0xa48df20 'int'

Added diagnostics:

- Conversion rules

error: casting '__local int *' to type '__global int *‘

changes address space of pointer

- Operation validity

error: comparison between ('__constant int *' and '__generic

int *') which are pointers to non-overlapping address spaces

Generic address space in Clang

file.cl:

…

generic int *gptr;

…

Parser

void Parser::ParseDeclarationSpecifiers(...)

{

 switch (Tok.getKind()) {

 …

 case tok::kw_generic:

 ParseOpenCLQualifiers(DS.getAttributes());

 …

}

AST Sema CodeGen

- Some targets can map generic directly to specific AS

(conversions addrspacecast A -> A should be easy to

eliminate)

- Other targets will have a unique value (dynamic translation

with addrspacecast G -> A, not used CL < 2.0)

file.ll:

%gptr = alloca i32

addrspace(4)*

10

 Workable solution in order not to modify previous scheme:

 AS is handled as a type attribute while parsing a type

 If absent look at scope and type being parsed

 But too early to be able to consider object kind: NULL - (void*)0 no AS

 We could introduce private AS explicitly as unique qualifier

 Affects how AS is represented by previous standards

 Type printing issue (difference with the original type)

 int x = &f; // warning: incompatible pointer to integer conversion initializing '__global int' with

an expression of type …

Default address space

private int i;

 Scope

Type

global local

pointer LangAS::generic LangAS::generic

scalar LangAS::global LangAS::private

OpenCL <2.0: OpenCL >=2.0:

int i;
BuiltinType

0xa4d9f20 'int'

11

 Map CL to C11 atomic types in Clang:
 Sema.cpp - Sema::Initialize():

 // typedef _Atomic int atomic_int

 addImplicitTypedef("atomic_int", Context.getAtomicType(Context.IntTy));

 Only subset of types are allowed

 Added Sema checks to restrict operations (only allowed through

builtin functions):
 atomic_int a, b; a+b; // disallowed in CL

 _Atomic int a, b; a+b; // allowed in C11

 Use C11 builtin functions in Clang to implement CL2.0 functions

 Missing memory visibility scope as LLVM doesn’t have this construct
 C atomic_exchange_explicit(volatile A *obj, C desired, memory_order order, memory_scope scope); // CL

 C atomic_exchange_explicit(volatile A *obj, C desired, memory_order order); // C11

 Can be added as metadata or IR extension

Atomic types

12

 Syntax like a global variable in C, but its value persists among

different kernel executions

 Disallowed in earlier standards => Sema modification to allow

 In earlier standards we added implicit local WG storage class for

local AS variables:

 local int x; => Clang added local WG storage class

 static local x; => Results in 2 storage classes but C allows only one

 Removed local WG storage as this can be checked by an AS qualifier

Program scope variable

13

Pipe

 Classical streaming pattern

 OpenCL code specifies how

elements are written/read

 Host (C/C++) code sets up

pipe and connections to

kernels

kernel void producer(write_only pipe int p) {

 int i = …;

 write_pipe(p, &i);

}

kernel void consumer(read_only pipe int p) {

 int i ;

 read_pipe(p, &i);

}

Device

pipe = clCreatePipe(context, 0, sizeof(int), 10 /* # packets*/…);

producer = clCreateKernel(program, “producer”, &err);

consumer = clCreateKernel(program, “consumer”, &err);

err = clSetKernelArg (producer, 0, sizeof(pipe), pipe);

err = clSetKernelArg (consumer, 0, sizeof(pipe), pipe);

err = clEnqueueNDRangeKernel(queue, producer, …);

err = clEnqueueNDRangeKernel(queue, consumer, …);

Host

14

Pipe related restrictions:

error: type 'pipe' can only be used as a

function parameter in OpenCL

 Code repetition in Clang wrapper style types (i.e. AtomicTypes,
PointerTypes, etc) and factory creation code in ASTContext

 refactoring needed!

 Pipe builtin functions:
 CL: int read_pipe (read_only pipe gentype p, gentype *ptr)

 gentype is any builtin or user defined type

 Generic programming style behaviour in C99

 Implemented as Clang builtin function with custom check
 Buildins.def: LANGBUILTIN(read_pipe, "i.", "tn”, OCLC_LANG)

 CodeGen to call i32 @__read_pipe(%opencl.pipe_t* %p, i8* %ptr)

Pipe type

file.cl:

…

pipe int p;

…

PipeType 0xa4e41b0 ‘pipe int‘

`-BuiltinType 0xa48df20 'int'

file.ll:

%opencl.pipe_t = type

opaque

…

%opencl.pipe_t* %p

Parser AST Sema CodeGen

15

 All images are special Clang builtin types

 Handled in a similar way => a lot of copy/paste code

 OpenCL <2.0: 6 different types
 image1d_t, image1d_array_t, image1d_buffer_t, image2d_t, image2d_array_t, image3d_t

 OpenCL >=2.0: 6 new types:
 image_2d_depth_t, image_2d_array_depth_t, image_2d_msaa_t, image_2d_array_msaa_t,

image_2d_msaa_depth_t, image_2d_array_msaa_depth_t

 Access qualifier:

 OpenCL <2.0: read_only/write_only

 OpenCL >=2.0 adds read_write

 Access qualifier + image type = unique type

Images

16

Image problem

 Not implemented correctly

 Access qualifiers are ignored

after parsing:

 No diagnostics wrt image access

 No access qualifiers in IR

 Several attempts to correct

 Current review setup to

correct functionality:

 http://reviews.llvm.org/D17821

void write(write_only image2d_t img);

kernel void foo(read_only image2d_t img)

{

 write(img); // accepted code

}

But write on write_only is OK

In OpenCL <2.0

call void @write(%opencl.image2d_t* %img);

OpenCL 2.0 requires to call different writes

for each write_only and read_write image

17

 OpenCL builtin function

 enqueue_kernel(…, void (^block)(local void *, ...))

 block has an ObjC syntax

 block can have any number of local void* arguments

 Kind of variadic prototype

 No standard compilation approach

 To diagnose correctly needs to be added as Clang builtin function with a

custom check

Device side enqueue

18

 Loop unroll hint attribute added

 Diagnostics and CodeGen code shared with pragma C loop hint

implementation

 NOSVM attribute (but ignored)

 Still fixing AS issues in CodeGen and Sema

 Added ObjC blocks restrictions in OpenCL

 int ̂ bl(int, ...) = ̂ int(int I, ...) // error: invalid block prototype, variadic arguments are not allowed

in OpenCL

Misc features

19

 Finalise remaining issues: default AS, atomics, images

 Add support for missing device side enqueue and other misc

 Improve tests and diagnostics for previous standards

 Refactoring of problematic parts

Generic AS Default AS Atomics

Program scope
variables

Images
Device side
enqueue

OpenCL 2.0 current state & future work

20

 Good progress on OpenCL2.0 (completion planned in rel3.9)

 Beneficial to derive from production quality C frontend

 Some parts are difficult as there is no standard mechanism in Clang

 Best use of existing C/OpenCL functionality but not affecting old

functionality much

 Clang AST and internals are tailored quite well to OpenCL but IR

is still very ad-hoc

 Would it make sense to add more constructs to LLVM IR or improve

support for alternative formats such as SPIR-V?

Summary

21

 ARM: Anastasia Stulova

 Intel: Alexey Bader, Xiuli PAN

 AMD: Liu Yaxun

 Tampere University of Technology: Pekka Jääskeläinen

 Others: Pedro Ferreira

Contributors:

