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Goals and assumptions 

 Architecture with massive data parallelism 

 Has both scalar and vector units 

 Not all the data flow is naturally vector 

 Goal is to split vector and scalar flow and 

replace vector operations with scalar 

operations where it is possible 

 We save VREGs to those operations which 

really need them and speed up their execution 

with more threads. 
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Abstract parallel machine: registers 

 Vector unit  

 operates on vector registers 

 N 32bit lanes – one lane per thread 

 executes vector instructions 

 executes N threads in parallel 

 Scalar Unit 

 operates on 32bit scalar registers 

 executes scalar instructions 
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 Scalar to vector value broadcast is cheap 

 Divergent Control Flow is expensive 



Abstract parallel machine: memory 

 Private memory 

 each of N threads has dedicated private memory area 

 other threads have no access to the thread private 

memory 

 Shared memory 

 shared among the N threads 

 2 threads executing memory operation on shared 

memory 
 considered to access same value if the effective addresses in 

both memory operations are the same 

 scalar and vector data caches are not necessary coherent: 

writing value to shared memory via vector instruction does not 

invalidate respective scalar cache line, and vice versa 
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Scalarization across threads 

 What if at some point all the lanes of vector instruction 

operand contain equal values? 

 In this case we say that operand is Uniform 

 Vector operation taking uniform operands produces 

uniform result 

 We could change uniform vector operation to scalar 

 Saving VGPRs – more threads in parallel 

 Scalar L1 cache latency is smaller 

 Saturating SALU – more opportunities for the 

scheduler 

 The goal of the analysis is to split scalar and vector 

data/control flows 
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Scalarization: read-only property 

 Scalar and vector caches are not coherent 

 Write to an address via vector unit does not invalidate 

scalar cache line corresponding to this address 

 Changing vector memory operation to scalar is safe if 

and only if we prove that corresponding memory 

location cannot be written by another instruction 

  Scalarization requires read-only property 

 Read-only memory: “__constant” or “__readonly” in 

OpenCL 

 Read-only modifier:  “const” for arguments 

 Proven no writes in concrete memory location over all 

paths from the function entry to the read point: trace 

analysis + AA 

6 



Scalarization: structure 

 Operation uniformity analysis 

 Performed by LLVM-based high-level compiler 

 Implemented as a custom module pass 

 Result: each operation is attributed by the special value 

defining its 'width' 

 Constancy analysis: each operation is attributed with 

logical value defining if it may be written 

 Transformation itself is performed according to the 'width' 

and 'const' attributes of the operation. 
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Current implementation restrictions: AMD specific 

 AMD HSA compiler consists of 2 
levels: 
 LLVM-based high-level compiler generates 

HSAIL 
 Low-level Finalizer accepts HSAIL and 

generates GPU ISA 

 HSAIL by design does not assume 
vector flow: all the abstract registers 
are scalar 

 'Width' and 'Const' attributes are 
passed through the HSAIL to 
Finalizer 

 Finalizer performs scalarization 
according to the passed attributes 
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Current implementation restrictions: LLVM specific 

 We collect information over IR 

 We apply information on Machine Code 

 LLVM has no support for passing additional information over 

ISel: metadata is insufficient 

 In upcoming AMDGPU compiler we would explicitly select 

vector or scalar form for instruction according the collected 

'width' and 'const' attributes 
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Sources of non-uniformity 

Data dependency Control dependency 

 Explicitly reflected in SSA 

form 

 Thread-specific data 

introduced by restricted set 

of operations 

 Is not reflected explicitly 

 Needs some bookkeeping 
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Data dependency analysis 
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Data dependency analysis 
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Control dependency analysis 

 Basic block post-dominance frontier forms a set of blocks 

of which the given one is control-dependent 

 Post-dominance frontiers are computed by fast Cooper's 

algorithm 
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Control dependency analysis 

14 



Control dependency analysis 
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def 2 

def 1 

def 3 = PHI2(def 3, BB5, def 2, BB9) 

PDF(BB8) = {BB3, BB2} 

PDF(BB1) = { } 

PDF(BB5) = {BB2} 

CD(PHI1) = T({BB3, BB2}\{BB2}) = T(BB3) 

 

PDF(BB9) = {BB2} 

PDF(BB6) = { } 

CD(PHI2) = T({BB2}) 

def 3 = PHI1(def 1, BB8, def 0, BB1) 

def 0 

if (tid < 10) 

10 threads go BB3 
N-10 go BB9 



Putting things together 

 Walk call graph in post-order: 

 Callee is processed before caller 

 Each by-reference argument is attributed with 'width' to 

track non-uniform changing of pointers passed in 

 Call site analysis may lead to callee re-computation if 

we pass non-uniform value as an actual argument 

 For each node in a CG iterative analysis produces 

attributed IR 

 Further scalarization is performed according to the 

attributes 
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Example 
OpenCL code 
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__kernel void test(__global int * in1, __constant int * in2, __global int * out, int n) 

{ 

    int tid = get_global_id(0); 

    for (int i=0; i<n; i++) 

    { 

       out[tid] = in1[tid%n] + in2[i] / in2[n%i]; 

    } 

} 



Example 
Control flow graph 
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Example 
Uniform Slice 
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Example 
Uniform slice 
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Example 
Slice evaluation 

SSA name %i.02 %idxprom5 %arrayidx6 %inc %in2 %n 1 0 

Width all all all all all all all all 

 All operations of the slice have width ‘All’ i.e. are initially uniform  

 Analysis will stop at the first iteration 
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Example 
Non uniform slice 
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Example 
Non uniform slice 
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Example 

SSA 
name 

%arrayidx %idxprom %in1 %rem %conv %3 %2 %1 %0 %n get_global_id(0) 

width all all all all all all all all all all 1 

Non uniform slice evaluation 

SSA 
name 

%arrayidx %idxprom %in1 %rem %conv %3 %2 %1 %0 %n get_global_id(0) 

Width All All All All All All all 1 all all 1 

    

Instructions are processed in order so really the next iteration will be: 

SSA 
name 

%arrayidx %idxprom %in1 %rem %conv %3 %2 %1 %0 %n get_global_id(0) 

Width 1 1 all 1 1 1 1 1 all all 1 
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Example 
Control dependency 
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__kernel void test(__global int * in, __global int * out, int n) 

{ 

int idx = 0; 

int tid = get_global_id(0); 

for (int i=0; i<tid; i++) { 

 if (i%n) 

  idx += i; 

} 

out[0] = in[idx]; 

} 



Example 
Control dependency 
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Example 
Control dependency 
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What it costs and what it yields 
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 We implement the analysis in AMD OpenCL compiler 

 We test the performance on the Radeon R7 GPU 

 Performance gain: 

• 10% on HEVC benchmark 

• 3% on Compubench Face Detection test 

• 4% on Video Composition test 
 

 Small overhead: 

• Less than 5% of compile time increase for 20000 lines 

OpenCL source file 



Future work 

 In HSA compiler – fully employ analysis results in 

Finalizer 

 In AMDGPU compiler – explicitly select vector or 

scalar form of the instruction depending on the 

analysis results 

 Is This Upstreamable? 
 Yes, if the community is interested 

 Yes, if we have a way to legally pass user-defined 

instruction level metadata to Instruction Selection.  

 


