
Scalarization across threads

Alexander Timofeev

MARCH 2016

Goals and assumptions

 Architecture with massive data parallelism

 Has both scalar and vector units

 Not all the data flow is naturally vector

 Goal is to split vector and scalar flow and

replace vector operations with scalar

operations where it is possible

 We save VREGs to those operations which

really need them and speed up their execution

with more threads.

2

Abstract parallel machine: registers

 Vector unit

 operates on vector registers

 N 32bit lanes – one lane per thread

 executes vector instructions

 executes N threads in parallel

 Scalar Unit

 operates on 32bit scalar registers

 executes scalar instructions

3

32 32 32 32 32

VREG1

VREG2

Threads

 Scalar to vector value broadcast is cheap

 Divergent Control Flow is expensive

Abstract parallel machine: memory

 Private memory

 each of N threads has dedicated private memory area

 other threads have no access to the thread private

memory

 Shared memory

 shared among the N threads

 2 threads executing memory operation on shared

memory
 considered to access same value if the effective addresses in

both memory operations are the same

 scalar and vector data caches are not necessary coherent:

writing value to shared memory via vector instruction does not

invalidate respective scalar cache line, and vice versa

4

Scalarization across threads

 What if at some point all the lanes of vector instruction

operand contain equal values?

 In this case we say that operand is Uniform

 Vector operation taking uniform operands produces

uniform result

 We could change uniform vector operation to scalar

 Saving VGPRs – more threads in parallel

 Scalar L1 cache latency is smaller

 Saturating SALU – more opportunities for the

scheduler

 The goal of the analysis is to split scalar and vector

data/control flows

5

Scalarization: read-only property

 Scalar and vector caches are not coherent

 Write to an address via vector unit does not invalidate

scalar cache line corresponding to this address

 Changing vector memory operation to scalar is safe if

and only if we prove that corresponding memory

location cannot be written by another instruction

 Scalarization requires read-only property

 Read-only memory: “__constant” or “__readonly” in

OpenCL

 Read-only modifier: “const” for arguments

 Proven no writes in concrete memory location over all

paths from the function entry to the read point: trace

analysis + AA

6

Scalarization: structure

 Operation uniformity analysis

 Performed by LLVM-based high-level compiler

 Implemented as a custom module pass

 Result: each operation is attributed by the special value

defining its 'width'

 Constancy analysis: each operation is attributed with

logical value defining if it may be written

 Transformation itself is performed according to the 'width'

and 'const' attributes of the operation.

7

Current implementation restrictions: AMD specific

 AMD HSA compiler consists of 2
levels:
 LLVM-based high-level compiler generates

HSAIL
 Low-level Finalizer accepts HSAIL and

generates GPU ISA

 HSAIL by design does not assume
vector flow: all the abstract registers
are scalar

 'Width' and 'Const' attributes are
passed through the HSAIL to
Finalizer

 Finalizer performs scalarization
according to the passed attributes

8

OpenCL, MS AMP, …

HSAIL

GPU ISA

CLANG +

 LLVM

Finalizer

Current implementation restrictions: LLVM specific

 We collect information over IR

 We apply information on Machine Code

 LLVM has no support for passing additional information over

ISel: metadata is insufficient

 In upcoming AMDGPU compiler we would explicitly select

vector or scalar form for instruction according the collected

'width' and 'const' attributes

9

Sources of non-uniformity

Data dependency Control dependency

 Explicitly reflected in SSA

form

 Thread-specific data

introduced by restricted set

of operations

 Is not reflected explicitly

 Needs some bookkeeping

10

Data dependency analysis

11

Data dependency analysis

12

Control dependency analysis

 Basic block post-dominance frontier forms a set of blocks

of which the given one is control-dependent

 Post-dominance frontiers are computed by fast Cooper's

algorithm

13

Control dependency analysis

14

Control dependency analysis

15

1

2

3

4 8

5

6

7

9
def 2

def 1

def 3 = PHI2(def 3, BB5, def 2, BB9)

PDF(BB8) = {BB3, BB2}

PDF(BB1) = { }

PDF(BB5) = {BB2}

CD(PHI1) = T({BB3, BB2}\{BB2}) = T(BB3)

PDF(BB9) = {BB2}

PDF(BB6) = { }

CD(PHI2) = T({BB2})

def 3 = PHI1(def 1, BB8, def 0, BB1)

def 0

if (tid < 10)

10 threads go BB3
N-10 go BB9

Putting things together

 Walk call graph in post-order:

 Callee is processed before caller

 Each by-reference argument is attributed with 'width' to

track non-uniform changing of pointers passed in

 Call site analysis may lead to callee re-computation if

we pass non-uniform value as an actual argument

 For each node in a CG iterative analysis produces

attributed IR

 Further scalarization is performed according to the

attributes

16

Example
OpenCL code

17

__kernel void test(__global int * in1, __constant int * in2, __global int * out, int n)

{

 int tid = get_global_id(0);

 for (int i=0; i<n; i++)

 {

 out[tid] = in1[tid%n] + in2[i] / in2[n%i];

 }

}

Example
Control flow graph

18

Example
Uniform Slice

19

Example
Uniform slice

20

Example
Slice evaluation

SSA name %i.02 %idxprom5 %arrayidx6 %inc %in2 %n 1 0

Width all all all all all all all all

 All operations of the slice have width ‘All’ i.e. are initially uniform

 Analysis will stop at the first iteration

21

Example
Non uniform slice

22

Example
Non uniform slice

23

Example

SSA
name

%arrayidx %idxprom %in1 %rem %conv %3 %2 %1 %0 %n get_global_id(0)

width all all all all all all all all all all 1

Non uniform slice evaluation

SSA
name

%arrayidx %idxprom %in1 %rem %conv %3 %2 %1 %0 %n get_global_id(0)

Width All All All All All All all 1 all all 1

Instructions are processed in order so really the next iteration will be:

SSA
name

%arrayidx %idxprom %in1 %rem %conv %3 %2 %1 %0 %n get_global_id(0)

Width 1 1 all 1 1 1 1 1 all all 1

24

Example
Control dependency

25

__kernel void test(__global int * in, __global int * out, int n)

{

int idx = 0;

int tid = get_global_id(0);

for (int i=0; i<tid; i++) {

 if (i%n)

 idx += i;

}

out[0] = in[idx];

}

Example
Control dependency

26

Example
Control dependency

27

What it costs and what it yields

28

 We implement the analysis in AMD OpenCL compiler

 We test the performance on the Radeon R7 GPU

 Performance gain:

• 10% on HEVC benchmark

• 3% on Compubench Face Detection test

• 4% on Video Composition test

 Small overhead:

• Less than 5% of compile time increase for 20000 lines

OpenCL source file

Future work

 In HSA compiler – fully employ analysis results in

Finalizer

 In AMDGPU compiler – explicitly select vector or

scalar form of the instruction depending on the

analysis results

 Is This Upstreamable?
 Yes, if the community is interested

 Yes, if we have a way to legally pass user-defined

instruction level metadata to Instruction Selection.

