
Scalarization across threads

Alexander Timofeev

MARCH 2016

Goals and assumptions

 Architecture with massive data parallelism

 Has both scalar and vector units

 Not all the data flow is naturally vector

 Goal is to split vector and scalar flow and

replace vector operations with scalar

operations where it is possible

 We save VREGs to those operations which

really need them and speed up their execution

with more threads.

2

Abstract parallel machine: registers

 Vector unit

 operates on vector registers

 N 32bit lanes – one lane per thread

 executes vector instructions

 executes N threads in parallel

 Scalar Unit

 operates on 32bit scalar registers

 executes scalar instructions

3

32 32 32 32 32

VREG1

VREG2

Threads

 Scalar to vector value broadcast is cheap

 Divergent Control Flow is expensive

Abstract parallel machine: memory

 Private memory

 each of N threads has dedicated private memory area

 other threads have no access to the thread private

memory

 Shared memory

 shared among the N threads

 2 threads executing memory operation on shared

memory
 considered to access same value if the effective addresses in

both memory operations are the same

 scalar and vector data caches are not necessary coherent:

writing value to shared memory via vector instruction does not

invalidate respective scalar cache line, and vice versa

4

Scalarization across threads

 What if at some point all the lanes of vector instruction

operand contain equal values?

 In this case we say that operand is Uniform

 Vector operation taking uniform operands produces

uniform result

 We could change uniform vector operation to scalar

 Saving VGPRs – more threads in parallel

 Scalar L1 cache latency is smaller

 Saturating SALU – more opportunities for the

scheduler

 The goal of the analysis is to split scalar and vector

data/control flows

5

Scalarization: read-only property

 Scalar and vector caches are not coherent

 Write to an address via vector unit does not invalidate

scalar cache line corresponding to this address

 Changing vector memory operation to scalar is safe if

and only if we prove that corresponding memory

location cannot be written by another instruction

 Scalarization requires read-only property

 Read-only memory: “__constant” or “__readonly” in

OpenCL

 Read-only modifier: “const” for arguments

 Proven no writes in concrete memory location over all

paths from the function entry to the read point: trace

analysis + AA

6

Scalarization: structure

 Operation uniformity analysis

 Performed by LLVM-based high-level compiler

 Implemented as a custom module pass

 Result: each operation is attributed by the special value

defining its 'width'

 Constancy analysis: each operation is attributed with

logical value defining if it may be written

 Transformation itself is performed according to the 'width'

and 'const' attributes of the operation.

7

Current implementation restrictions: AMD specific

 AMD HSA compiler consists of 2
levels:
 LLVM-based high-level compiler generates

HSAIL
 Low-level Finalizer accepts HSAIL and

generates GPU ISA

 HSAIL by design does not assume
vector flow: all the abstract registers
are scalar

 'Width' and 'Const' attributes are
passed through the HSAIL to
Finalizer

 Finalizer performs scalarization
according to the passed attributes

8

OpenCL, MS AMP, …

HSAIL

GPU ISA

CLANG +

 LLVM

Finalizer

Current implementation restrictions: LLVM specific

 We collect information over IR

 We apply information on Machine Code

 LLVM has no support for passing additional information over

ISel: metadata is insufficient

 In upcoming AMDGPU compiler we would explicitly select

vector or scalar form for instruction according the collected

'width' and 'const' attributes

9

Sources of non-uniformity

Data dependency Control dependency

 Explicitly reflected in SSA

form

 Thread-specific data

introduced by restricted set

of operations

 Is not reflected explicitly

 Needs some bookkeeping

10

Data dependency analysis

11

Data dependency analysis

12

Control dependency analysis

 Basic block post-dominance frontier forms a set of blocks

of which the given one is control-dependent

 Post-dominance frontiers are computed by fast Cooper's

algorithm

13

Control dependency analysis

14

Control dependency analysis

15

1

2

3

4 8

5

6

7

9
def 2

def 1

def 3 = PHI2(def 3, BB5, def 2, BB9)

PDF(BB8) = {BB3, BB2}

PDF(BB1) = { }

PDF(BB5) = {BB2}

CD(PHI1) = T({BB3, BB2}\{BB2}) = T(BB3)

PDF(BB9) = {BB2}

PDF(BB6) = { }

CD(PHI2) = T({BB2})

def 3 = PHI1(def 1, BB8, def 0, BB1)

def 0

if (tid < 10)

10 threads go BB3
N-10 go BB9

Putting things together

 Walk call graph in post-order:

 Callee is processed before caller

 Each by-reference argument is attributed with 'width' to

track non-uniform changing of pointers passed in

 Call site analysis may lead to callee re-computation if

we pass non-uniform value as an actual argument

 For each node in a CG iterative analysis produces

attributed IR

 Further scalarization is performed according to the

attributes

16

Example
OpenCL code

17

__kernel void test(__global int * in1, __constant int * in2, __global int * out, int n)

{

 int tid = get_global_id(0);

 for (int i=0; i<n; i++)

 {

 out[tid] = in1[tid%n] + in2[i] / in2[n%i];

 }

}

Example
Control flow graph

18

Example
Uniform Slice

19

Example
Uniform slice

20

Example
Slice evaluation

SSA name %i.02 %idxprom5 %arrayidx6 %inc %in2 %n 1 0

Width all all all all all all all all

 All operations of the slice have width ‘All’ i.e. are initially uniform

 Analysis will stop at the first iteration

21

Example
Non uniform slice

22

Example
Non uniform slice

23

Example

SSA
name

%arrayidx %idxprom %in1 %rem %conv %3 %2 %1 %0 %n get_global_id(0)

width all all all all all all all all all all 1

Non uniform slice evaluation

SSA
name

%arrayidx %idxprom %in1 %rem %conv %3 %2 %1 %0 %n get_global_id(0)

Width All All All All All All all 1 all all 1

Instructions are processed in order so really the next iteration will be:

SSA
name

%arrayidx %idxprom %in1 %rem %conv %3 %2 %1 %0 %n get_global_id(0)

Width 1 1 all 1 1 1 1 1 all all 1

24

Example
Control dependency

25

__kernel void test(__global int * in, __global int * out, int n)

{

int idx = 0;

int tid = get_global_id(0);

for (int i=0; i<tid; i++) {

 if (i%n)

 idx += i;

}

out[0] = in[idx];

}

Example
Control dependency

26

Example
Control dependency

27

What it costs and what it yields

28

 We implement the analysis in AMD OpenCL compiler

 We test the performance on the Radeon R7 GPU

 Performance gain:

• 10% on HEVC benchmark

• 3% on Compubench Face Detection test

• 4% on Video Composition test

 Small overhead:

• Less than 5% of compile time increase for 20000 lines

OpenCL source file

Future work

 In HSA compiler – fully employ analysis results in

Finalizer

 In AMDGPU compiler – explicitly select vector or

scalar form of the instruction depending on the

analysis results

 Is This Upstreamable?
 Yes, if the community is interested

 Yes, if we have a way to legally pass user-defined

instruction level metadata to Instruction Selection.

