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Goals and assumptions 

 Architecture with massive data parallelism 

 Has both scalar and vector units 

 Not all the data flow is naturally vector 

 Goal is to split vector and scalar flow and 

replace vector operations with scalar 

operations where it is possible 

 We save VREGs to those operations which 

really need them and speed up their execution 

with more threads. 
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Abstract parallel machine: registers 

 Vector unit  

 operates on vector registers 

 N 32bit lanes – one lane per thread 

 executes vector instructions 

 executes N threads in parallel 

 Scalar Unit 

 operates on 32bit scalar registers 

 executes scalar instructions 
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 Scalar to vector value broadcast is cheap 

 Divergent Control Flow is expensive 



Abstract parallel machine: memory 

 Private memory 

 each of N threads has dedicated private memory area 

 other threads have no access to the thread private 

memory 

 Shared memory 

 shared among the N threads 

 2 threads executing memory operation on shared 

memory 
 considered to access same value if the effective addresses in 

both memory operations are the same 

 scalar and vector data caches are not necessary coherent: 

writing value to shared memory via vector instruction does not 

invalidate respective scalar cache line, and vice versa 

4 



Scalarization across threads 

 What if at some point all the lanes of vector instruction 

operand contain equal values? 

 In this case we say that operand is Uniform 

 Vector operation taking uniform operands produces 

uniform result 

 We could change uniform vector operation to scalar 

 Saving VGPRs – more threads in parallel 

 Scalar L1 cache latency is smaller 

 Saturating SALU – more opportunities for the 

scheduler 

 The goal of the analysis is to split scalar and vector 

data/control flows 
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Scalarization: read-only property 

 Scalar and vector caches are not coherent 

 Write to an address via vector unit does not invalidate 

scalar cache line corresponding to this address 

 Changing vector memory operation to scalar is safe if 

and only if we prove that corresponding memory 

location cannot be written by another instruction 

  Scalarization requires read-only property 

 Read-only memory: “__constant” or “__readonly” in 

OpenCL 

 Read-only modifier:  “const” for arguments 

 Proven no writes in concrete memory location over all 

paths from the function entry to the read point: trace 

analysis + AA 
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Scalarization: structure 

 Operation uniformity analysis 

 Performed by LLVM-based high-level compiler 

 Implemented as a custom module pass 

 Result: each operation is attributed by the special value 

defining its 'width' 

 Constancy analysis: each operation is attributed with 

logical value defining if it may be written 

 Transformation itself is performed according to the 'width' 

and 'const' attributes of the operation. 
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Current implementation restrictions: AMD specific 

 AMD HSA compiler consists of 2 
levels: 
 LLVM-based high-level compiler generates 

HSAIL 
 Low-level Finalizer accepts HSAIL and 

generates GPU ISA 

 HSAIL by design does not assume 
vector flow: all the abstract registers 
are scalar 

 'Width' and 'Const' attributes are 
passed through the HSAIL to 
Finalizer 

 Finalizer performs scalarization 
according to the passed attributes 
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Current implementation restrictions: LLVM specific 

 We collect information over IR 

 We apply information on Machine Code 

 LLVM has no support for passing additional information over 

ISel: metadata is insufficient 

 In upcoming AMDGPU compiler we would explicitly select 

vector or scalar form for instruction according the collected 

'width' and 'const' attributes 
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Sources of non-uniformity 

Data dependency Control dependency 

 Explicitly reflected in SSA 

form 

 Thread-specific data 

introduced by restricted set 

of operations 

 Is not reflected explicitly 

 Needs some bookkeeping 
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Data dependency analysis 
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Data dependency analysis 
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Control dependency analysis 

 Basic block post-dominance frontier forms a set of blocks 

of which the given one is control-dependent 

 Post-dominance frontiers are computed by fast Cooper's 

algorithm 
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Control dependency analysis 
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Control dependency analysis 
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def 2 

def 1 

def 3 = PHI2(def 3, BB5, def 2, BB9) 

PDF(BB8) = {BB3, BB2} 

PDF(BB1) = { } 

PDF(BB5) = {BB2} 

CD(PHI1) = T({BB3, BB2}\{BB2}) = T(BB3) 

 

PDF(BB9) = {BB2} 

PDF(BB6) = { } 

CD(PHI2) = T({BB2}) 

def 3 = PHI1(def 1, BB8, def 0, BB1) 

def 0 

if (tid < 10) 

10 threads go BB3 
N-10 go BB9 



Putting things together 

 Walk call graph in post-order: 

 Callee is processed before caller 

 Each by-reference argument is attributed with 'width' to 

track non-uniform changing of pointers passed in 

 Call site analysis may lead to callee re-computation if 

we pass non-uniform value as an actual argument 

 For each node in a CG iterative analysis produces 

attributed IR 

 Further scalarization is performed according to the 

attributes 
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Example 
OpenCL code 
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__kernel void test(__global int * in1, __constant int * in2, __global int * out, int n) 

{ 

    int tid = get_global_id(0); 

    for (int i=0; i<n; i++) 

    { 

       out[tid] = in1[tid%n] + in2[i] / in2[n%i]; 

    } 

} 



Example 
Control flow graph 
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Example 
Uniform Slice 
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Example 
Uniform slice 
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Example 
Slice evaluation 

SSA name %i.02 %idxprom5 %arrayidx6 %inc %in2 %n 1 0 

Width all all all all all all all all 

 All operations of the slice have width ‘All’ i.e. are initially uniform  

 Analysis will stop at the first iteration 
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Example 
Non uniform slice 
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Example 
Non uniform slice 
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Example 

SSA 
name 

%arrayidx %idxprom %in1 %rem %conv %3 %2 %1 %0 %n get_global_id(0) 

width all all all all all all all all all all 1 

Non uniform slice evaluation 

SSA 
name 

%arrayidx %idxprom %in1 %rem %conv %3 %2 %1 %0 %n get_global_id(0) 

Width All All All All All All all 1 all all 1 

    

Instructions are processed in order so really the next iteration will be: 

SSA 
name 

%arrayidx %idxprom %in1 %rem %conv %3 %2 %1 %0 %n get_global_id(0) 

Width 1 1 all 1 1 1 1 1 all all 1 
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Example 
Control dependency 
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__kernel void test(__global int * in, __global int * out, int n) 

{ 

int idx = 0; 

int tid = get_global_id(0); 

for (int i=0; i<tid; i++) { 

 if (i%n) 

  idx += i; 

} 

out[0] = in[idx]; 

} 



Example 
Control dependency 
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Example 
Control dependency 
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What it costs and what it yields 
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 We implement the analysis in AMD OpenCL compiler 

 We test the performance on the Radeon R7 GPU 

 Performance gain: 

• 10% on HEVC benchmark 

• 3% on Compubench Face Detection test 

• 4% on Video Composition test 
 

 Small overhead: 

• Less than 5% of compile time increase for 20000 lines 

OpenCL source file 



Future work 

 In HSA compiler – fully employ analysis results in 

Finalizer 

 In AMDGPU compiler – explicitly select vector or 

scalar form of the instruction depending on the 

analysis results 

 Is This Upstreamable? 
 Yes, if the community is interested 

 Yes, if we have a way to legally pass user-defined 

instruction level metadata to Instruction Selection.  

 


