
Run-time Type Checking in C with Clang and
Libcrunch

Chris Diamand
University of Cambridge, now ARM

Stephen Kell
Computer Laboratory, University of Cambridge

David Chisnall
Computer Laboratory, University of Cambridge

Overview

I What is libcrunch?
I Instrumenting casts
I Finding allocation sites
I Runtime
I Performance
I Status and todo
I Conclusion

Run-time type checking

...but C is statically-typed!

...mostly.

my_bar = (struct bar *) some_other_pointer;
my_bar->x = 3;

my_bar filled with garbage, but may not find out until later...
What’s at x’s location?

Run-time type checking

...but C is statically-typed! ...mostly.

my_bar = (struct bar *) some_other_pointer;
my_bar->x = 3;

my_bar filled with garbage, but may not find out until later...
What’s at x’s location?

Run-time type checking

...but C is statically-typed! ...mostly.

my_bar = (struct bar *) some_other_pointer;
my_bar->x = 3;

my_bar filled with garbage, but may not find out until later...
What’s at x’s location?

How to catch this?

Clang sanitizers:
I MemorySanitizer - uninitialised reads
I AddressSanitizer - out-of-bounds, use-after-free
I ThreadSanitizer, UndefinedBehaviourSanitizer

Other tools:
I Compiler warnings
I Valgrind (memcheck)

What is libcrunch?

Framework for tracking and checking types at run-time.

$ clangcrunchcc -o random random.c ...
$ LD_PRELOAD=/path/to/libcrunch.so ./random

random: Failed check __is_a(0x1bf57f0, 0x6056c0
a.k.a. "stat") at 0x4039f7 (randommain+0x16a5);
obj is 0 bytes into an allocation of a heap
sockaddr (deepest subobject: uint$16 at offset 0)
originating at (nil)

How does it work?

I Instrument pointer casts:
my_bar = (struct bar *) my_foo;

=⇒
my_bar = (warn_if_not(__is_aU(my_foo,

&__uniqtype_bar)),
(struct bar *) my_foo);

I Find and analyse allocation sites:
... = malloc(200 * sizeof(int));

=⇒
/path/to/test.c 5 malloc __uniqtype__int

I Linker magic and run-time.

How does it work?

I Instrument pointer casts:
my_bar = (struct bar *) my_foo;

=⇒
my_bar = (warn_if_not(__is_aU(my_foo,

&__uniqtype_bar)),
(struct bar *) my_foo);

I Find and analyse allocation sites:
... = malloc(200 * sizeof(int));

=⇒
/path/to/test.c 5 malloc __uniqtype__int

I Linker magic and run-time.

How does it work?

I Instrument pointer casts:
my_bar = (struct bar *) my_foo;

=⇒
my_bar = (warn_if_not(__is_aU(my_foo,

&__uniqtype_bar)),
(struct bar *) my_foo);

I Find and analyse allocation sites:
... = malloc(200 * sizeof(int));

=⇒
/path/to/test.c 5 malloc __uniqtype__int

I Linker magic and run-time.

How does it work?

I Instrument pointer casts:
my_bar = (struct bar *) my_foo;

=⇒
my_bar = (warn_if_not(__is_aU(my_foo,

&__uniqtype_bar)),
(struct bar *) my_foo);

I Find and analyse allocation sites:
... = malloc(200 * sizeof(int));

=⇒
/path/to/test.c 5 malloc __uniqtype__int

I Linker magic and run-time.

How does it work?
 C source code
typeA *p = malloc(...);
... (typeB *) p ...

clangcrunchcc wrapper

clang -fsanitize=crunch

LLVM IR with type checks
%0 = call noalias i8* @malloc(i64 ...) #2
%1 = call i32 @__is_aU(%0, i8* __uniqtype__typeB)
%2 = bitcast i8* %0 to %struct.typeB*

Allocation site type data
Allocation site analysis as
LLVM transform pass

LD_PRELOAD=libcrunch.so ./foo [args]

Warning, with location of allocation and invalid cast
(otherwise would be a segfault or data corruption)

Executable
Merge allocation sites with
program addresses, extract
types from debug information.

Instrumenting pointer casts

$ clang -fsanitize=crunch ...

%crunch_check =
call i32 @__is_aU(i8* bitcast

(i32* @blah to i8*),
i8* bitcast

(i8** @__uniqtype__int to i8*))
... ; Warn if check failed
%0 = bitcast i8* bitcast (i32* @blah to i8*) to i32*

Statically find allocation types

How do we know the type of an allocation in C?
struct foo *ptr =

(struct foo *) malloc(sizeof(struct foo));

Answer: What it’s first assigned to.

But we could miss exactly the type of bug we’re trying to catch:
// WRONG:
struct foo *ptr = malloc(sizeof(struct foo *));

Statically find allocation types

How do we know the type of an allocation in C?
struct foo *ptr =

(struct foo *) malloc(sizeof(struct foo));

Answer: What it’s first assigned to.

But we could miss exactly the type of bug we’re trying to catch:
// WRONG:
struct foo *ptr = malloc(sizeof(struct foo *));

Statically find allocation types

How do we know the type of an allocation in C?
struct foo *ptr =

(struct foo *) malloc(sizeof(struct foo));

Answer: What it’s first assigned to.

But we could miss exactly the type of bug we’re trying to catch:
// WRONG:
struct foo *ptr = malloc(sizeof(struct foo *));

A better solution

Look at the allocation’s size:

void *ptr = malloc(sizeof(struct foo));

Easy to infer that ptr points to a struct foo.

But tricky to implement in Clang:
size_t size = sizeof(int) * 10;
...
void *ptr = malloc(size);

How to find the definition of size from the AST?

A better solution

Look at the allocation’s size:

void *ptr = malloc(sizeof(struct foo));

Easy to infer that ptr points to a struct foo.

But tricky to implement in Clang:
size_t size = sizeof(int) * 10;
...
void *ptr = malloc(size);

How to find the definition of size from the AST?

A better solution

Look at the allocation’s size:

void *ptr = malloc(sizeof(struct foo));

Easy to infer that ptr points to a struct foo.

But tricky to implement in Clang:
size_t size = sizeof(int) * 10;
...
void *ptr = malloc(size);

How to find the definition of size from the AST?

Use an LLVM analysis

I Clang generates a dummy function call whenever it sees
sizeof.

I In an LLVM transform pass:
I Look for uses of all the allocation functions we know about
I Recurse over operands of the size parameter
I Hope we find a sizeof expression

Type ‘arithmetic’

Preserve sizeof information through arithmetic operations:
I sizeof(struct foo) * len: Array of foos
I sizeof(struct foo) + len: A foo before a

variable-length buffer
I sizeof(array) / sizeof(*array): The number of

elements in a constant array
Like dimensional analysis.

Allocations

mmap(), sbrk()

libc malloc() custom malloc()
custom heap (e.g.

Hotspot GC)

obstack

(+ malloc)
gslice

client code client code client code client code client code …

Uniqtypes

struct ellipse {
double maj, min;
struct point { double x, y; } ctr;

};

struct ellipse {
double maj, min;

struct { double x, y; } ctr ;

};

0__uniqtype__int 4“int”

__uniqtype__double 8“double”

2__uniqtype__point 160

0

3__uniqtype__ellipse 32“ellipse”

0 8

80 16

...

� use the linker to keep them unique
� → “exact type” test is a pointer comparison

� is a() is a short search

I Use the linker to keep them unique
I ⇒ ‘exact type’ test is a pointer comparison
I __is_a() is a short search

Memtables

0 0 0 0 0 0 0 0 0

index by high-order

bits of virtual address

......

pointers encoded

compactly as local

offsets (6 bits)

entries are one byte,

each covering 512B

of heap

interior pointer lookups may

require backward search

instrumentation adds a

trailer to each heap

chunk

Performance

SPECCPU2006:

bench normal /s crunch nopreload
bzip2 4.95 +6.8% +1.4%
gcc 0.983 +160% −%
gobmk 14.6 +11% +2.0%
h264ref 10.1 +3.9% +2.9%
hmmer 2.16 +8.3% +3.7%
lbm 3.42 +9.6% +1.7%
mcf 2.48 +12% (0.5%)
milc 8.78 +38% +5.4%
sjeng 3.33 +1.5% (1.3%)
sphinx3 1.60 +13% +0.0%

Status and wish-list

Status:
I Open-source:

I https://github.com/chrisdiamand/clangcrunch
I https://github.com/stephenrkell

I Works! (mostly)
I Could be faster

To-do:
I Eliminate compiler wrapper
I More languages (C++)
I Build system

Contributions welcome!
Questions?

https://github.com/chrisdiamand/clangcrunch
https://github.com/stephenrkell

