Developing and Shipping LLVM
and Clang with CMake

The lesser of two evils

Chris Bieneman

Agenaa

Transition from Autocont to CMake
Shipping LLVM & Clang

Putting the Build System to Work
Current State

Opportunities for Future Improvement

Road to One True Bullo

Why CMake"?

Cross-platform build configuration tool

Simple and powertful scripting language

Supports native development and IDEs on many platforms
Active and attentive open source community

casily available binaries and source packages

CMake Language

cmake minimum version(3.6)
nroject (HelloWorld)

aflUdk¥rutable(HelloWorld HelloWorld.cpp)
set(extra_sources Unix.cpp)

efiddm{X)
target _compile definitions(HelloWorld UNIX)

endif () ${extra sources})

CMake References

o http://llvm.org/docs/CMakePrimer.html

o http://llvm.org/docs/CMake.html

» http://llvm.org/docs/AdvancedBuilds.html

http://llvm.org/docs/CMakePrimer.html
http://llvm.org/docs/CMake.html
http://llvm.org/docs/AdvancedBuilds.html

Bumps In the Road

e Coordinating infrastructure updates
 Nobody wanted to think about it

e [ate surfacing downstream issues

What Worked"?

o Community, community, community!
 Regular status reports

e Face-to-face or IRC conversations

|_ots of Bugs

Bug 12157 - llvmconfig.cmake.in make cmake installations not relocatable

Bug 14109 - CMake build for compiler-rt should use just-built clang

Bug 15325 - CMake build does not contain the OCaml bindings

Bug 15493 - No option to build shared libLLVM-version.so in CMake

Bug 18496 - [cmake] .S assembly files not compiled by cmake in libclang_rt. ARCH

Bug 18722 - Option to use CMake with libc++ to compile clang

Bug 19462 - Use the INSTALL(EXPORT ...) to export CMake definitions

Bug 19465 - Cmake shared library format on osx

Bug 21559 - Some x86_64 don't run with Cmake on FreeBSD

Bug 21560 - Add support to cmake for using installed versions of LLVM and Clang

Bug 21561 - Update release scripts to use CMake

Bug 21562 - Add a CMake equivalent for make/platform/clang_darwin.mk in compiler_rt
Bug 21569 - Can't ‘'make install prefix=/tmp/llvm"' with CMake.

Bug 21570 - Cannot set default configuration options for CMake

Bug 22725 - lldb build with cmake fails with "Program error: Invalid parameters entered, -h for help.
Bug 24154 - CMake shared files are broken in llvm-3.7-dev

Bug 24157 - CMake built shared library does not export all public symbols

Bug 25664 - lib/*.dylib have invalid RPATH

Bug 25665 - cmake build system lacks a way to build libclang_rt without building libc++
Bug 25666 - requested re-export symbol std::set_unexpected(void (*)()) is not from a dylib, but from .../exception.cpp.o
Bug 25675 - cmake build doesn't install FileCheck, count, not, and lli-child-target

Bug 25681 - clang --version does not report revision like it does when built with automake

| ots of New Features

Multi-stage clang builds
Distribution targets

Per-tool install targets

CMake Caches
Ninja Pools

|_IT-based harness for profiling

clang

Clean
Modu

up a

€S S

Nnd standardization
Upport

Runtimes subdirectory
CMake Target Export fixes
ExternalProject wrappers

LLVM test-suite support

CMake version bumped to 3.4.3
Documentation!

LIT suite targets

| TO option (supports thin and
full)

Option to build instrumented
clang

Optimized tablegen support
Darwin Builtins support
Compiler-RT Embedded Darwin
support

Shipping LLVM and Clang

Bullding a Distribution

Build clang in two stages

Selectively choose which tools to install
Build configuration

o Optimization settings, vendor settings...

test-release.sh 1s over 500 lines!!!

Packaging LLVM & Clang

o Using°Nitfja‘Gererator
o DistributisExample is a CMake cache script
o CMaK&ScHpBts EXetlted before the root
CMakelists.txt
e |solated scope can only modity the cache

CMake Variable Scopes

All defined variables are effectively
passed by value into child scopes on
entry

Variables can be propagated up by using
the set command’s PARENT_SCOPE

option

Variables can also be set in the cache
using the set command’s CACHE option

Prefer using properties instead of cached
variables wherever possible

Macros, loops, and conditional statements
do not have their own scope!

CMake Caches

<clang>/cmake/caches/DistributionExample.cmake

This file sets up a CMakeCache for a simple distribution bootstrap build.

Only build the native target in stagel since it is a throwaway build.
set (LLVM_TARGETS_TO_BUILD Native ")

Optimize the stagel compiler, but don't LTO it because that wastes time.
set (CMAKE_BUILD TYPE Release ")

Setup vendor-specific settings.
set (PACKAGE_VENDOR LLVM.org)

Setting up the stage2 LTO option needs to be done on the stagel build so that
the proper LTO library dependencies can be connected.
set (BOOTSTRAP_LLVM_ENABLE_LTO ON)

Expose stage2 targets through the stagel build configuration.
set (CLANG_BOOTSTRAP_TARGETS
check-all
check-11lvm
check-clang
Llvm-config
test-suite
test-depends
Llvm—-test—-depends
clang-test—-depends
distribution
install-distribution
clang

IIII)

Setup the bootstrap build.
set (CLANG_ENABLE_BOOTSTRAP ON ")
set (CLANG_BOOTSTRAP_CMAKE_ARGS
—C ${CMAKE_CURRENT_LIST_DIR}/DistributionExample-stage2.cmake
IIII)

CMake Caches

<clang>/cmake/caches/DistributionExample-stage2.cmake

This file sets up a CMakeCache for the second stage of a simple distribution
bootstrap build.

set (CMAKE_BUILD_TYPE RelWithDebInfo ")
set (CMAKE_C_FLAGS_RELWITHDEBINFO

"-03 -gline-tables-only -DNDEBUG" ")
set (CMAKE_CXX_FLAGS_RELWITHDEBINFO

"-03 -gline-tables-only -DNDEBUG" ")

setup toolchain
set (LLVM_INSTALL_TOOLCHAIN_ONLY ON ")
set (LLVM_TOOLCHAIN_TOOLS

Llvm—dsymutil

Llvm-cov

Llvm—dwarfdump

Llvm-profdata

1Llvm—-objdump

1lvm—nm

Llvm-size

IIII)

set(LLVM_DISTRIBUTION_COMPONENTS
clang
LTO
clang-format
clang—-headers
builtins
runtimes
${LLVM_TOOLCHAIN_TOOLS}
IIII)

Packaging LLVM & Clang

* largets prefixed with stagen are mapped rom I3
STAQLS < tager-aistrivution
* This enables.gomplex multi-stage builds
o Distributign is.a.special.larget comprisead
components
o Configurable using
LLVM DISTRIBUTION COMPONENTS variable

 Build only what you install

Packaging LLVM & Clang

> cmake -G Ninja -C ../clang/cmake/caches/DistributionExample.cmake ../11lvm

> ninja stage2-distribution

* Installs the components built in the distribution
[arQel. stagez-instali-distribution

* Requires all components have install targets

e Aggregate of “install-${component}” targets

T1ps and Iricks

Boosting Productivity

o See Tilmann Scheller's 2015 EuroLLVM talk “Building Clang/LLVM
Efficiently”

o Use optimized host Clang (LTO + PGO)
 Use |d64, gold, or llo

e Build Shared Libraries (LLVM_BUILD SHARED=0n)

Boosting Productivity

Use Optimized Tablegen (LLVM_OPTIMIZED _TABLEGEN=0nN)
Build less stuft

During Iiteration test what you changed

Use Ninja

Object caching and Distributed builds

Optimizing Clang PGO

> cmake -G Ninja -C <path_to_clang>/cmake/caches/PGO.cmake <source dir>

> ninja stage2
 PGO build stages are stagel, stage2-instrumented, and

stage? (three stages)

 Builds a compiler, an instrumented compiler, profile data,
then an optimized compiler.

e “stageZ-instrumented-generate-profdata” will just build
the stage?-instrumented compiler and generate profdata.

Optimizing Clang PGO+LTO

> cmake -G Ninja -DPGO_INSTRUMENT_ LTO0=0n -C <path_to_clang>/cmake/caches/
PGO.cmake <source dir>

> ninja stageZ

e PGO_INSTRUMENT_LTO is handled by the PGO
cache and sets up LTO on the instrumented and
final builds

Bulld Less

Only include projects you care about
Only build backends you care about
Every test subdirectory has a target

Special "distribution” target is customizable

Status Report

Current Status

No missing functionality from autoconf

All infrastructure and downstream users have migrated
Autocont is gone!

Compiler-RT cross-targeting cleanup is ongoing

LLVM runtimes directory Is taking shape

| LDB build is also getting attention for Darwin support

~uture HiIgh Value
mprovements

Accurate Dependencies

e LIl test suites
* Accurately tracking dependencies per-test suite
 Huge reduction in iteration times
e TableGen inputs and outputs
* Not every compile action actually depends on Intrinsics_gen

o TableGen might run too often

Improving Runtime Bullds

o Continuing to expand support for runtime projects
o Single CMake command to install a full toolchain with runtimes
e Configuring for only one target at a time

 Doesn’'t mean you can't build for multiple targets from a single
CMake commanad

o Stop fighting against CMake’s cross compilation support

General Goodness

Adding PGO test data

Lit testing for CMake

Migrating bot configurations into CMake cache scripts
Remove LLVMBuild

Investigate CMake 3.6's CMAKE_NINJA_OUTPUT_PATH_PREFIX

Questions?

