Dealing with Register
Hierarchies

Matthias Braun (MatzeB) / LLVM Developers' Meeting 2016

DO D1
e Bell Do Be

FP Register

Register Allocation

- Rewrite program with unlimited number of virtual registers to use

actual registers

- Techniques: Interference Checks, Assignment, Spilling, Splitting,

=S5 o° o P

0
1
2
S

Rematerialization

= const 5 ro6 = const 5

= const 7/ rl = const 7/

= add %0, %1 ro = add ro, ril
turn %2 return ro

Reqgister Allocation for GPUs

- Hundreds of registers available, but using fewer increases
parallelism

- Mix of Scalar (single value) and Vector (multiple values) operations

- Load/Store instructions work on multiple registers
(high latency, high throughput)

Liveness lracking

- Linearize program 50 = def
cmp ...
| | jeq b2
* Number instructions
consecutively (Slotindexes)
bl: b2:
%1 = const 5 store %0
jmp b3 %1 = def

\ /

2% = add %1, 1

Liveness lracking

SlotIdx
+ Linearize program 0 %0 = def
1 cmp ...
| 2 jeq b2
- Number instructions ¢
consecutively (Slotindexes) 3 b1:
4 %1 = const 5
5 jmp b3
6 b2:
/] store %0
8 %1 = def
9 b3:

10 2% = add %1, 1

Liveness lracking

%0 %1 %2 Slotldx

Linearize program 0 %0 = def
1 cmp ...
| | 2 jeq b2
Number instructions ¢
consecutively (Slotindexes) 3 b1:
4 %1 = const 5
. . 5 jmp b3
Liveness as sorted list of
intervals (segments) 6 b3
/] store %0
8 %1 =def
N

;;1: [4:6)[8:9)[9:10) 102% = add %1, 1 & _|_

Modeling Register Hierarchies

lTuple Registers

lTuple Registers

lTuple Registers

< No relation between virtual registers but need to be consecutive

lTuple Registers

lTuple Registers

+ Register class contains tuples
- Allocator picks a single (tuple) register

- Parts called subregisters or lanes

- Select parts with subregister index (2 XXX Syntax) 4 Tuple Class

Construction

. reg_sequence defines multiple
subreglsters (for SSA)

v

Construction

. reg_sequence defines multiple
subreglsters (for SSA)

v

- TwoAddressinstruction pass
translates to COpy sequence

Construction

. reg_sequence defines multiple
subreglsters (for SSA)

v

- TwoAddressinstruction pass
translates to COpy sequence

- RegisterCoalescing pass
eliminates copies

Improving Register Allocation

Subregister Liveness

Subregister Liveness

Subregister Liveness

%1 %0
sub® subl sub2 sub3 sub® subl sub2 sub3

%0 = load x4

%1.sub0® = add %0.sub@, 1
%1l.subl = add %0.subl, 2
%1l.sub2 = add %0.sub2, 3
%1l.sub3 = add %0.sub3, 4

store_x4 %1

Can allocate vO and v1 to the same register tuple

Subregister Liveness: Lane Masks

- Lane Mask: 1 bit per subregister
+ Annotate subregister liveness parts with lane mask

- Start with whole virtual register; Split and refine as necessary

Subregister Liveness: Lane Masks

Lane Mask: 1 bit per subregister

Annotate subregister liveness parts with lane mask

Start with whole virtual register; Split and refine as necessary

%0 = load x4
store_x4 %0

%1 = load x4
%1.sub® = const 13
%1.sub3 const 42
store x4 %1

Lane Masks:

sub0:
subl:
sub?2:
subl sub?2:
sub3:
all:

0b0001
0b0010
0b0100
0b0110
0b1000
0b1111

Subregister Liveness: Lane Masks

Lane Mask: 1 bit per subregister

Annotate subregister liveness parts with lane mask

Start with whole virtual register; Split and refine as necessary

%0 %1
Lane Mask:
%0 = load x4
store_x4 %0

%1 = load x4
%1.sub® = const 13
%1.sub3 const 42
store x4 %1

Lane Masks:

sub0:
subl:
sub?2:

subl sub?2:
sub3:

: 0b1111

0b0001
0b0010
0b0100
0b0110
0b1000

Subregister Liveness: Lane Masks

Lane Mask: 1 bit per subregister

Annotate subregister liveness parts with lane mask

Start with whole virtual register; Split and refine as necessary

%0
Lane Mask:
%0 = load x4
store_x4 %0

%1 = load x4
%1.sub® = const 13
%1.sub3 const 42
store_x4 %1

0001 0101 1000

— H

Lane Masks:

sub0:
subl:
sub?2:

subl sub?2:
sub3:

: 0b1111

0b0001
0b0010
0b0100
0b0110
0b1000

Assignment Heuristics

To Assign
)
- Default: Assign in program order I

Assignment Heuristics

- Default: Assign in program order ||||||

To Assign

Assignment Heuristics

- Default: Assign in program order |||i||

To Assign

Assignment Heuristics

- Default: Assign in program order
-+ Wide pieces may not fit in holes
left by small ones

To Assign

Assignment Heuristics

rorlr2r3rdrb To Assign
1

- Default: Assign in program order

- Wide pieces may not fit in holes
left by small ones

Assignment Heuristics

- Default: Assign in program order
-+ Wide pieces may not fit in holes
left by small ones

To Assign

Assignment Heuristics

rorlr2r3rdrb To Assign

- Default: Assign in program order

- Wide pieces may not fit in holes
left by small ones

- Tweak: Prioritize bigger classes

Assignment Heuristics

rorlr2r3rdrb To Assign

- Default: Assign in program order

- Wide pieces may not fit in holes
left by small ones

- Tweak: Prioritize bigger classes

Assignment Heuristics

rorlr2r3rdrb To Assign

- Default: Assign in program order

- Wide pieces may not fit in holes
left by small ones

- Tweak: Prioritize bigger classes

Interference Checks: Register Units

- Tuples multiply number of registers

- Interference check of single reqister in target with 1-10 tuples:
45 aliases!

r3
r2,r3 r3,r4
r1,r2,r3 r2,r3,r4 r3,rd.r5

rO,r1,r2r3 r1,r2,r3,r4 r2,r3,rd,r5 r3,r4,r5,r6

Interference Checks: Register Units

‘ r1:r2:r3;r4
.rO;r1 ;r2;r3. .
- Each register mapped to one or more rC:S;r4;r:5
units: r.2;r3;r.4 :
Registers alias iff they share a unit ; r‘1;r2;r°3 '

. Liveness/Interference checks of s

actual registers uses register units o B
5 5 m :

uQ §u1 §u2§ u3 §u4 §u5

Usage, Results, Future Work

Use In LLVM

- Declare Subregister Indexes + Subregisters in XXXRegisterInfo.td

- TableGen computes register units and combined subregister
indexes/classes

- Enable fine grained liveness tracking by overriding
TargetSubtargetInfo::enableSubRegLiveness ()

- AllocationPriority part of register class specification

Results: Apple GPU Compiller

- Compared various benchmarks and captured application shaders

- Average 20% reduction in register usage (-6% up to 50%)!

- Speedup 2-3% (-4% up to 70%)

Results: AMDGPU Target

radeonsi LLVM Performance

Improvements

Fosted on January 1, 2015

| just pushed up a new branch to my LLVM repo thatjenables two important LLVM

codegen features (machine scheduling and subreg livenesjfor Sl+ targets, which should

improve performance of the radeonsi driver.

The biggest improvement that I'm seeing with this branch is the luxmark luxball OpenCL
demo which is jabout 60% faster on my Bonaire. Other tests I’'ve done show 10% - 25%
improvements in performance. | haven't done much OpenGL benchmarking, but | expect
these changes will have much bigger impact on the OpenCL benchmarks, so OpenGL
improvements may be in the lower end of that range. | still need more benchmark results

to know for sure.

Results: AMDGPU Target

radeonsi LLVM Performance
Improvements

FPosted on January 1, 2015

At S (W | all /
| just pushed up a new branch to my LLVM repo that enables two important LLVM

codegen features (machine scheduling and subreg livenes)ffer Si+ argets, which should

A\ w B

about 60% faster on my Bonaire. Other tests I've done show 10% -

improvements in performance. | haven't done much OpenGL benchmarking, but | expect
these changes will have much bigger impact on the OpenCL benchmarks, so OpenGL
improvements may be in the lower end of that range. | still need more benchmark results

to know for sure.

Future Work

- Support partially dead/undef operands

- Early splitting and rematerialization (before register limit)
- Partial registers spilling

- Consider partial liveness in register pressure tracking

-+ Missed optimizations (no obvious use/def relation for lanes)

Thank You for Your Attention!

Backup Slides

Register Hierarchies

CPU registers can overlap. Partial register accessible by subregister.
Also called lanes (Vector Regs)

RAX QO
EAX DO D1
s o]

AL AH
X86 GP Register ARM FP Register

movw OXABCD, %ax # Put 16bits into %ax
movb %al, x # Uses lower 8 bits: 0xCD
movb %ah, y # Uses upper 8 bits: 0OxAB

Register Allocation Pipeline

Subregister Indexes

- Subregister indexes relate wide/ 20 = load x4

small registers on virtual %1.sub@<undef> = add %0.sub2, 13

. %1l.subl = const 42
r99|3ters store_x2 %1

+ Writes may be marked undef if

other parts of register do not Register Allocation:
matter

4_r5_r6_r7 = load_x4
LLVM synthesizes combined 0= add r6, 13

indexes (sub0_low16bits) gi;;g;st@“il

Slot Indexes

- Position in a program; Each instruction is assigned a number (incremented
by 4 so we need to renumber less often when inserting instructions)

- Slots describe position in the instruction:

- Block/Base (Block begin/end, PHI-defs)
- EarlyClobber (early point to force interference with normal def/use)
+ Register (normal def/uses use this)

- Dead (liveness of dead definitions ends here)

Constraints & Classes

- A register class is set of registers; Models register constraints

- Class defined for each register operand of LLVM MI Instruction
MCInstrDesc)

- Each virtual register has a class

GR32 class

