
Using LLVM to guarantee
program integrity

Simon Cook

Background

• Compiling for security is becoming increasingly important
• Finding bugs through AddressSanitizer, MemorySanitizer, etc.
• Research programs such as LADA

• Use of security-enhancing hardware can added to existing
programs by extending their use in the compiler

Topics to Discuss

•Hardware

• C attributes

• Clang/Sema, Clang/Codegen

• LLVM Optimization Tweaks

• Instruction Lowering/Selection

• AsmPrinting

• Creating post-link tools using MC

What are we trying to protect?

• Instruction integrity
• Detection of any modification to program code at runtime

• Control flow integrity
• Ensuring that calls/branches only go to known locations and that

return values are correct

• If either of these are invalid the hardware should trap as
soon as possible

Encoding Instructions: Hardware

Each instruction becomes dependent on the previous one

Given an instruction 𝐼", and internal state 𝑆$, we can produce the encoded
instruction 𝐸" and output state 𝑆"

𝑒𝑛𝑐𝑜𝑑𝑒	 							, → 								,𝐼" 𝑆$ 𝐸" 𝑆"

𝑑𝑒𝑐𝑜𝑑𝑒	 							, → 								,𝐸" 𝑆$ 𝐼" 𝑆"

add r0, r1 0xbeef

At run time, the hardware can use the same state, and using the encoded
instruction, reproduce the original instruction

0xbeef add r0, r1

Encoding a Function

lsli $r10, $r2, 2 919a 4000
andi $r13, $r3, 5 5d87 4002
add $r2, $r13, $r10 aa82 0900
jmp $r0 0050

int foo(int x, int y) { return (4*x) + (y&5); }

𝐼"
𝐼.
𝐼/
𝐼0

lsli 0001 0203
andi 0405 0607
add 0809 0a0b
jmp 0c0d

𝑒	 								, →
𝑒	 								, →
𝑒	 								, →
𝑒	 								, →

𝐼" 𝑆$ 𝐸"
𝐼. 𝑆" 𝐸.
𝐼/ 𝑆. 𝐸/
𝐼0 𝑆/ 𝐸0

Encoding Branches

; BB#0:
movi $r10, 0 809e 4000
bne .LBB0_2, $r4, $r10 e2c6 0100

; BB#1:
mov $r2, $r3 9812

.LBB0_2:
jmp $r0 0050

int foo(int x, int y, bool z) { return z ? x : y; }

𝐼"
𝐼.

𝐼/

𝐼0

𝑒	 								, →
𝑒	 								, →

𝐼0 𝑆/ 𝐸0
𝐼0 𝑆2 𝐸0

For two cases, this may be solvable, but not for blocks with many direct predecessors

Encoding Branches

; BB#0:
movi $r10, 0 809e 4000
bne .LBB0_2, $r4, $r10 e2c6 0100
_correction_value_

; BB#1:
mov $r2, $r3 9812

.LBB0_2:
jmp $r0 0050

int foo(int x, int y, bool z) { return z ? x : y; }

𝐼"
𝐼.
𝐶

𝐼/

𝐼0

𝑒	 								, →
𝑒	 								, →

𝐼0 𝑆/ 𝐸0
𝐼0 𝐶 𝐸0

𝑒	 								, →
𝑒	 								, →

𝐼. 𝑆" 𝐸.
𝐶 𝑆" 𝐸3

Function Calls

int foo(int x) { return bar(x+2); }

subi $r1, $r1, 2 4a16
stw [$r1, 0], $r0 4038
addi $r2, $r2, 2 9214
bal bar, $r0 00c2 0000
ldw $r0, [$r1, 0] 0828
addi $r1, $r1, 2 4a14
jmp $r0 0050

𝐼"
𝐼.
𝐼/
𝐼0
𝐼4
𝐼5
𝐼6

• Calling bar pushes state to the encoding stack
• Returning pops this value, so calls can be treated as part of same BB

𝑆0

Scaling up to an entire program

foo.c
bar.c

baz.c

Clang: -mencode-instructions?

Pros

• Easy to enable, one flag
enables system for entire CU

Cons

• ABI break, flag required
across entire project

• Only affects C, assembly still
needs patching

• Potential concerns about code
size

In the end we decided not to go down this route

Clang: __attribute__((protected))

Pros

• Per function granularity

• Lower cost overhead for
“non-secure” functions

• ABI change is limited to those
functions it was requested for

Cons

• Only affects C, assembly still
needs patching

• Risk of user neglecting to add
attribute to all declarations of
a function

Clang Function Attribute

• Added as a TypeAttr
• We want to add error checking as pointers to protected functions are

not the same as to unprotected

• Extend FunctionType to support having protected as a property
• For calls, add protected as bit in ExtInfo
• This is not the same as a different calling convention, as we use

different CCs and want to turn this on independently
• For CodeGen, we map this down to a LLVM function attribute

“protected”

int (*__attribute__((protected)))()

• Function pointers present a challenge
• We need to know what 𝑆$ the target function is expecting
• If 𝑆$ based on address of function, we have no problem…
• … otherwise we need to calculate it

• Could use same for each function? Defeats security benefits.

• Calculate all possible call targets? Not necessarily possible.

• User should know, let’s ask them!
• Attribute becomes __attribute__((protected("somestring")))

Changes to Middle-End LLVM

•None, really…

•… except one small change to the inliner
• Avoid inlining secure functions into non-secure
• Merging non-secure into secure is generally safe

Instruction Selection

• Update call target nodes with custom flag field

• Flag field contains:
• Bit indicating whether function expects security
• 16-bit representation of group name

let isCall = 1 in
def JAL : Inst_rrr <0x2, 0x9, (outs),

(ins i64imm:$flags, GR64:$rD, GR64:$rB),
"jal\t $rD, $rB”,
[(AAPcall timm:$flags, GR64:$rD, GR64:$rB)]>;

Encoding Control Flow I

• Just before emission, SecurityAnalysisPass:
• Prepares a function for annotation
• Builds lists of branches/calls/jump tables
• Adds placeholders for correction values
• Generates report on code size impact

===--- CF encoding statistics for 'main' ---===
 Bytes added: 10
 Words added: 5
 NOP gaps added: 3

Enable/Disable insns added: 1

.debug_secure Record Format

• Start function:

• End function:

• Direct Call:

• Jump Table:

1 Function Start Address Group

2 Function End Address

6 Call Site Call Target

11 Count Target 1 Target 2

Encoding Control Flow II

• AsmPrinterHandler – Adds hooks to assembly printing
• Used by us for adding labels/emitting encoding at end of module
• beginInstruction
• endInstruction
• beginFunction
• endFunction
• endModule

Resolving Values

1. Reconstruct the control flow graph of all secure functions

2. Assign correction values/𝑆$ to all functions/groups

3. Encode each basic block, noting state of each reloc

4. Validate all values are known

5. Fill in relocations

6. Writeback

End result

simon@shadowfax$ llvm-objdump -d a.out

a.out: file format ELF32-aap

Disassembly of section .text:

Section has correction values, printing real instructions

foo:

 8000000: [8f39] 91 9a 40 00 lsli $r10, $r2, 2

8000004: [81ca] 5d 87 40 02 andi $r13, $r3, 5

8000008: [053b] aa 82 09 00 add $r2, $r13, $r10

800000c: [93e4] 00 50 jmp $r0

Thank you

