A New Architecture for
Building Software

Daniel Dunbar




Overview

o Compile time
e How software is built

* |lbuild

e A new architecture



Compile Time



Clang & Compile Times

* Designed to be a fast compiller
 [uned lex & parse
* | ow-overhead -O0 path
* Redesigned PCH implementation
* |Integrated assembler

* \ery successful



Keeping Up With Compile Time

Armo4 -O0

* Performance regresses
* Features are added & tuning can break
e Optimizing Clang is hard

* Occasional big wins

o Bootstrap with link-time optimization

e Enable order files

e Modules

e Fewer architectural wins

0.9
0.8

S S o

& & =

(@)

© s =

O O O



Improving Compile Time
» Distributed compilation

* Fancy caching

e |deally distributed & shared

* Do less Work  <{ (this tak)

e ... Ideally, O(N) less work




What If | Told You...

o 15% faster at type checking...

e ... Without any work!



Frontend Source Sharing

» Clang frontend can process multiple TUs Cocoa Type Check

o Shares file & source managers

e \Works today

1

e ... 85% faster with modules on

W/O MODULES W/ MODULES




Precompiled Preamble

* Used In libclang for interactive editing CGCleanup Compile

o Automatically build PCH for “preamble”

* Automatically reuse preamble when
unchanged

W/O MODULES W/ MODULES



| et’s Do It

e Seems easy...
* Shared compile flags”? Reuse frontend!
* Hotly edited file”? Cache preamble!

* Uh onh!
* No control over compiler invocation
 Maybe If there was a compiler service...

* [here must be a better way!



How Software Is Built



How Software Is Built

e Traditional UNIX compiler/build system model
o Compiler runs as separate process
* Primitive mechanisms for communicating dependencies
e Fixed input/output pipeline defined by command line

e Thisisan API ...

e ... and we haven’t changed it iIn decades

¢ We % breaking APIs




How Software Could Be Built

» Earlier examples are only the tip of the iceberg
* Ad hoc lookup tables
e Early exit via output signatures
 Redundant template instantiations
* Need ability to evolve build system/compiler AP

* [hese changes need to be easy



What About The Module Cache”?

* Clang’s module cache solves this problem
o Automatically builds modules when needed
e Shares result across build

* No build system changes required



An Nonexample: Module Cache

o Significant implementation complexity
* File locking for coordination
» (Custom cache consistency management, few debugging tools

e Custom cache eviction implementation (automatic pruning, tuning
parameters)

e Opague to build system scheduler



|deal Model for Building Software

o Support a flexible API between the compiler & build system

o (Goals:
e [£asy to share redundant work
o Compiler can optimize for entire build
o Build system can optimize via rich compiler AP

e (Consistent incremental builds & debuggable architecture



|deal Model for Building Software

* Need abllity to integrate bulld system and compller
* Requires:

V¥ Library-based compiler

> Extensible build system

> Compiler plugin



loulld



INntroducing llbuilo

* [lbuild is a new C++ library for building build systems
o Uses LLVM ADT/Support & a library-based design philosophy
e Open sourced as part of Swift project
e Used in the Swift Package Manager
e ... and Swift Playgrounds

e Contains a Ninja implementation



lbuild GGoals

 |gnore build description / input language
* Focus on building a powertul engine
* Support work being discovered on the fly
» Scale to millions of tasks
e Sophisticated scheduling
* Powerful debugging tools

e Support a pluggable task API



loulld Architecture

* Fexible underlying core engine
e Library for persistent, incremental computation
* Heavily inspired by a Haskell build system called Shake
* Low-level
* |nputs & outputs are byte-strings

e Functions are abstract

e Use C++ API between tasks

* Higher-level build systems are built on the core



lbuild Engine

* Minimal, functional model
o Key: Unambiguous name for a computation
 Value: The result of a computation
* Rule: How to produce a Value for a Key
 Task: A running instance of a Rule

* A task can request other input Keys as
part of its work

lIbuild make/ninja

stat(“/a/b.0”)

/a/b.o: /a/b.c

fork/exec




AN Example: Recursive Functions

» (Core engine can be used directly for general computation
* Recursive functions form a natural graph
e Each result depends on the recursive Inputs

e | et’s bulld Ackermann!

auto ack(int m, int n) —> int {
if (m == 0) {
return n + 1;
} else if (n == 0) {
return ack(m - 1, 1);
} else {
return ack(m - 1, ack(m, n - 1)):
s

h



‘Bullding” Ackermann

* Computing Ackermann with llbuild:
* Encode function invocation as key: ack(3,14)
* Encode integer result as value
* Rules map keys like ack(3,14) to a task

 Tasks implement the Ackermann function



Ackermann: Keys




Ackermann: Values




Ackermann: Rules




Ackermann: lasks




Ackermann: lasks

/// Compute the result for an individual Ackermann number.
struct AckermannTask : core::Task {

/// Called when the task is started.
virtual void start(core::BuildEnaine& enaine) override <

ATm=-1,7-17)



Ackermann: lasks

/// Compute the result for an individual Ackermann number.
struct AckermannTask : core::Task {

/// Called when a task’s requested input is available.
virtual void provideValue(core::BuildEngine& engine, uintptr_t inputID,
const core::ValueTvpe& value) override

(n+l U m =0
A(m,n) —-J Alm-1,1) ifm=>0andn=20
f

.




Ackermann: lasks

/// Compute the result for an individual Ackermann number.
struct AckermannTask : core::Task {

7// Called when all inputs are available.
' | nid inputsAvailable(core::BuildEnaine& enaine) ove

n+1 ifm =0
Alm,n) =< Alm-1,1) ifm=>=0andn =0
Am-1, Aim-1,n-1))  if m >0andn =0




4

42 times more
rules than
LLVM + Clang




lbulld Performance

o \Wall times for full parallel build

T — i
* |woO test projects:
OB L
 |[ouilld self-host
150
e |LLVM (x86 only)
75
0
Self-host L LVM

ninja llbuild



lbulld Performance

e \Wall times for null build

0.5
* [wo test projects: oa
o |lbuild itself T B
e |LLVM (x86 only) 0.2
—

0

Self-host LLVM

ninja llbuild



louild Scalability

* Designed to scale to large graphs
» Validate by looking for linear performance vs size

* Experiments done using the Ackermann function



louild Scalability

Initial Build (s) Null Build (s) # Memory Use (100 MiBs)



A New Architecture



A New Architecture

* Requires:
V¥ Library-based compiler
¥ Extensible build system

>¢ Compiller plugin



Clang Compiler Plugin

* A straw man proposal
* Focus on easiest path to vet concept
 Add a minimal new protocol for controllable compiler subprocess
e Use JSON (etc.) to send & receive commands
e Share subprocesses when available
o Dispatch individual compile requests as they arrive

* Restart subprocess on crashes, etc.



Current Model
& luia

(o o




Proposed Shared Frontend
~ buid

T




Proposed Shared Frontend

* Enables file & source manager sharing
 Amortizes module validation time
e Avoids need to make full compiler thread safe

e (Gives us a new API to break!



Summary

* The current compiler / build system split is a legacy APl
» Potentially large compile time wins by evolving

e |lbulld: https://github.com/apple/swift-llbuild

 As Ninja: Tlbuild ninja build (or In —s 1llbuild ninja)

* Docs: https://qithub.com/apple/swiftt-llbuild/tree/master/docs

 Ackermann: lib/Commands/BuildEngineCommand. cpp


https://github.com/apple/swift-llbuild
https://github.com/apple/swift-llbuild/tree/master/docs

This Slide Intentionally Left Blank



