
CodeView, the MS debug info format, in LLVM
Reid Kleckner

Google

(1 / 40)

Talk overview
1. Why use CodeView? What are PDBs and CodeView?
2. CodeView format basics
3. CodeView deduplication techniques
4. Implementation status in LLVM
5. Lessons for LLVM

(2 / 40)

Terminology: What is CodeView?
CodeView is stored inside object ��les and PDBs

DWARF
PDB is a container format written by linker and read by debugger

dSYM/DWP

CodeView :: DWARF
PDB :: dSYM
PDB :: DWP

(3 / 40)

Why add CodeView support to LLVM?
Windows has a rich ecosystem built around PDBs:

Visual Studio debugger
WinDBG
Stack dumpers built on dbghelp.dll
Windows Performance Analyzer (WPA) pro��ler
Symbol servers

(4 / 40)

Object file structure of CodeView
Type information lives in one .debug$T section
Symbol information (everything else) lives in .debug$S sections
Symbol section broken down into subsections:

Symbol records (most stuff), line table, string table, unwind info, etc

struct Point { int x, y; };
int main() {
 Point p{1, 2};
 printf("%d %d\n", p.x, p.y);
}

(5 / 40)

Why split out type information?
Type information is repeated in every TU

Often dominates link input size
Deduplicating type information:

Reduces PDB output size
Speeds up links (less IO)
Speeds up debugging (more compact PDB)

Splitting out type info makes this easier
DWARF type units are similar

(6 / 40)

Type deduplication strategy
Build a graph of type records
Type records will be our graph nodes
Type indices will be our graph edges
Merge type graphs to deduplicate

Problem: Graph isomorphism is slow!

(7 / 40)

Type record format
Sequence of 4-byte aligned record pre��xed by 16-bit length and 16-bit kind:

typedef struct TYPTYPE {
 unsigned short len;
 unsigned short leaf;
 unsigned char data[CV_ZEROLEN];
} TYPTYPE; // general types record

Described in cvinfo.h, published by Microsoft on GitHub
16-bit size means large records must be split or truncated
Compare bytes for equivalence
Amenable to memory-mapped IO, unlike DWARF abbreviations (8 / 40)

https://github.com/Microsoft/microsoft-pdb/blob/master/include/cvinfo.h#L1175

Type graph representation
Assign all types a "type index"
Simple types have reserved indices below 0x1000:

int, short, int*, void*, etc
Type records refer to other types by index
Assign the type index 0x1000 + N to the Nth type record

(9 / 40)

Cycles in type graph
Consider a linked list:

struct Foo { Foo *p; };

(10 / 40)

Make the type graph a DAG
Only records introduce cycles
Always refer to records by forward declaration

(11 / 40)

Make the type graph a DAG
Only records introduce cycles
Always refer to records by forward declaration

0x1000: struct Foo;
0x1001: Foo* # <0x1000>
0x1003: { Foo *p; }; # <0x1001>
0x1004: struct Foo <0x1003>

(12 / 40)

Make the type graph a DAG
Only records introduce cycles
Always refer to records by forward declaration

0x1000: struct Foo;
0x1001: Foo* # <0x1000>
0x1003: { Foo *p; }; # <0x1001>
0x1004: struct Foo <0x1003>

A type record may only use type indices smaller than its index
Type info stream is always a topologically sorted DAG
Type records using the same type indices should be bitwise identical

(13 / 40)

Deduplicating types and merging streams
Inputs: dst type stream, src type stream
recordmap: Map from dst type record contents to type index
src2dst: Map from src type index to dst type index

(14 / 40)

Deduplicating types and merging streams
For each type record r in src:

Rewrite type indices in r using src2dst
Look up any existing index for r in recordmap
If not found, append r to dst and update recordmap
Update src2dst to map from old index to new index

(15 / 40)

Type server optimization (/Zi)
Problem: Linker inputs are still too large due to type info

Solution: Move type merging work from linking to compilation

(16 / 40)

Type server optimization (/Zi)
Use the same type server PDB for many compilations (/Fd)
Start common mspdbsrv.exe process
For each type record, IPC with mspdbsrv to get type index

Insert type record into PDB if not already present
Link step merges type server PDBs as before, but with less input

Can apply this idea to code, see Paul Bowen-Hugget's talk

(17 / 40)

Issues with type servers
Not currently pursuing LLVM implementation
Compilation must block on IPC to get type index

Consider using content hash to identify types
IPC doesn't distribute well, blocking RPC would be a disaster
mspdbsrv IPC protocol is undocumented

Might revisit building llvm-pdbsrv in the future

(18 / 40)

Symbol information format
// Generic layout for symbol records
typedef struct SYMTYPE {
 unsigned short reclen; // Record length
 unsigned short rectyp; // Record type
 char data[CV_ZEROLEN];
} SYMTYPE;

Very familiar, with key differences:
No indices or other cross-record references
Symbol records "contain" other symbol records
Has relocations against .text, .data, etc

(19 / 40)

volatile int y = 0;
static void h(int x) { y = x; }
static void g(int x) { h(x); }
int f(int x) {
 if (x) {
 int z = y;
 g(x);
 x += z;
 }
 return x;
}

- S_GPROC32 f
 - S_LOCAL x
 - S_BLOCK32
 - S_LOCAL z
 - S_INLINESITE g
 - S_INLINESITE h
 - S_LOCAL x
 - S_INLINESITE_END
 - S_INLINESITE_END
 - S_END
- S_END

Symbol information example
Describes scopes with XML-like start/end record pairs

(20 / 40)

inline void f(void) {}
inline void g(void) {}
inline void h(void) {}
int main() { f(); g(); h(); }

$ clang -S t.cpp -g -gcodeview \
 --target=x86_64-windows -o - | \
 grep 'debug\$S'

.section .debug$S,"dr"

.section .debug$S,"dr",associative,"?f@@YAXXZ"

.section .debug$S,"dr",associative,"?g@@YAXXZ"

.section .debug$S,"dr",associative,"?h@@YAXXZ"

.section .debug$S,"dr"

COMDATs in CodeView
One .debug$S section per COMDAT function or global

(21 / 40)

inline void f(void) {}
inline void g(void) {}
inline void h(void) {}
int main() { f(); g(); h(); }

$ clang -c t.cpp -g \
 --target=x86_64-linux -o - | \
 llvm-objdump -r - | \
 grep -v '32 \.debug'

...
RELOCATION RECORDS FOR [.rela.debug_info]:
000000000000002b R_X86_64_64 .text+0
0000000000000044 R_X86_64_64 .text._Z1fv+0
000000000000005d R_X86_64_64 .text._Z1gv+0
0000000000000076 R_X86_64_64 .text._Z1hv+0

RELOCATION RECORDS FOR [.rela.debug_ranges]:
0000000000000000 R_X86_64_64 .text+0
0000000000000008 R_X86_64_64 .text+23
0000000000000010 R_X86_64_64 .text._Z1fv+0
0000000000000018 R_X86_64_64 .text._Z1fv+6
...

DWARF uses monolithic sections

(22 / 40)

LLVM implementation status
Basics: functions, globals, line tables
Optimized debug info:

Inlined call frames and line tables
Register allocated locals
Scalarized aggregates (SROA)

PDB writing under development

(23 / 40)

Canned demo time
Use ALL the optimized debug info features!

(24 / 40)

#include <stdio.h>
struct IntPair { int x, y; };
int __declspec(noinline)
g(int r) { return r + 1; }
int i, n = 4;
static inline int loop_csr() {
 struct IntPair o = {0, 0};
 for (i = 0; i < n; i++) {
 o.x = g(o.x);
 o.y = g(o.y);
 }
 return o.x + o.y;
}
int main() {
 return loop_csr();
}

...
 xorl %edi, %edi
 movl %ebx, %ebp
 xorl %esi, %esi
.LBB1_3:
 movl %edi, %ecx
 callq g
 movl %eax, %edi
 movl %esi, %ecx
 callq g
 movl %eax, %esi
 decl %ebp
 jne .LBB1_3
...

(25 / 40)

(26 / 40)

(27 / 40)

(28 / 40)

(29 / 40)

(30 / 40)

(31 / 40)

(32 / 40)

(33 / 40)

Optimized debug info works!

(34 / 40)

Optimized debug info works!
... but optimized debug info needs more work

Hopefully today's BoF was productive

(35 / 40)

What about LLD?
Why use LLD:

Enables LTO
Twice as fast as MSVC

PDB writing in LLD is under development
Building YAML roundtripping into llvm-pdbdump

(36 / 40)

Takeaways and lessons
Clang/LLVM CodeView support is feature complete, use it and ��le bugs!

PDB support in LLD is coming soon

(37 / 40)

Takeaways and lessons
Clang/LLVM CodeView support is feature complete, use it and ��le bugs!

PDB support in LLD is coming soon
Three debug info linking optimization techniques:

Merge the type graph with DAGs
Type server optimization
COMDAT elimination for symbol info

(38 / 40)

Takeaways and lessons
Clang/LLVM CodeView support is feature complete, use it and ��le bugs!

PDB support in LLD is coming soon
Three debug info linking optimization techniques:

Merge the type graph with DAGs
Type server optimization
COMDAT elimination for symbol info

LLVM should reuse the type merging algorithm for:
IR types, DI type metadata, and DWARF types

(39 / 40)

Takeaways and lessons
Clang/LLVM CodeView support is feature complete, use it and ��le bugs!

PDB support in LLD is coming soon
Three debug info linking optimization techniques:

Merge the type graph with DAGs
Type server optimization
COMDAT elimination for symbol info

LLVM should reuse the type merging algorithm for:
IR types, DI type metadata, and DWARF types

Questions?

(40 / 40)

