
1/16

GVN-Hoist: Hoisting Computations from
Branches

Sebastian Pop and Aditya Kumar

SARC: Samsung Austin R&D Center

November 3, 2016



2/16

CFGSimplify’s code hoisting

I hoists computations at the beginning of BB

I uses operands equality to detect same computations

I stops at first difference

I very fast: disabling it slows the compiler: 1688→ 1692 Bn insns

(callgrind compiling the test-suite on x86 64-linux)



3/16

CFGSimplify limits

Original program

i = 1/d;

if (i >= 0) {

u = a * i;

v = b * i;

} else {

u = b * i;

v = a * i;

}

−→

Expressions hoisted

i = 1/d;

x = a * i;

y = b * i;

if (i >= 0) {

u = x;

v = y;

} else {

u = y;

v = x;

}



3/16

CFGSimplify limits

Original program

i = 1/d;

if (i >= 0) {

u = a * i;

v = b * i;

} else {

u = b * i;

v = a * i;

}

−→

Expressions hoisted

i = 1/d;

x = a * i;

y = b * i;

if (i >= 0) {

u = x;

v = y;

} else {

u = y;

v = x;

}



4/16

GVN-Hoist: Hoisting Computations from Branches

I removes all limitations of CFGSimplify implementation

I works across several BBs: hoists to a common dominator

I hoist past ld/st side effects: uses Memory-SSA for fast
dependence analysis

I reduces code size

I reduces critical path length by exposing more ILP



5/16

Optimistic GVN-hoist Algorithm

1. compute value number of scalars, loads, stores, calls

2. compute insertion points of each type of instructions

3. hoist expressions and propagate changes by updating SSA



6/16

GVN: Value Numbering Example and Limitations

Simple program

a = x + y

b = x + 1

c = y + 1

d = b + c

e = a + 2

f = load d

g = load e

−→

Value Numbering

(a, 1)

(b, 2)

(c, 3)

(d, 4)

(e, 4)

Limitations to current GVN
implementation

(f, 5)

(g, 6)

// should be (g, 5)



6/16

GVN: Value Numbering Example and Limitations

Simple program

a = x + y

b = x + 1

c = y + 1

d = b + c

e = a + 2

f = load d

g = load e

−→

Value Numbering

(a, 1)

(b, 2)

(c, 3)

(d, 4)

(e, 4)

Limitations to current GVN
implementation

(f, 5)

(g, 6)

// should be (g, 5)



6/16

GVN: Value Numbering Example and Limitations

Simple program

a = x + y

b = x + 1

c = y + 1

d = b + c

e = a + 2

f = load d

g = load e

−→

Value Numbering

(a, 1)

(b, 2)

(c, 3)

(d, 4)

(e, 4)

Limitations to current GVN
implementation

(f, 5)

(g, 6)

// should be (g, 5)



7/16

GVN-Hoist Step 1: Collect Value Numbers

I scalars: use the existing GVN infrastructure

current GVN not accurate for loads and stores: use ad-hoc change

I loads: VN the gep

I stores: VN the gep and stored value

I calls: as stores, loads, or scalars (following calls’ side-effects)



8/16

GVN-Hoist Step 2: Compute Insertion Points

insertion point: location where all the operands are available

I compute a common insertion point for a set of instructions
having the same GVN (similar to VBEs but not as strict)

I partition the candidates into a smaller set of hoistable
candidates when no common insertion points can be found



9/16

GVN-Hoist Step 3: Move the Code

I scalars: just move one of the instructions to the hoisting point
and remove others; update SSA

I loads and stores: make geps available, then hoist; update SSA
and Memory-SSA



10/16

Cost models

tuned on x86 64 and AArch64 Linux: test-suite, SPEC 2k, 2k6, . . .

I limit the number of basic blocks in the path between initial
position and the hoisting point

I limit the number of instructions between the initial position
and the beginning of its basic block

I do not hoist GEPs (except at -Os)

I limit the number of dependent instructions to be hoisted



11/16

Knobs

I -enable-gvn-hoist: enable the GVN-hoist pass (default = on)

I -Os, -Oz: allow GEPs to be hoisted independently of ld/st

I -gvn-hoist-max-bbs: max number of basic blocks on the
path between hoisting locations (default = 4, unlimited = -1)

I -gvn-hoist-max-depth: hoist instructions from the beginning
of the BB up to the maximum specified depth (default = 100,

unlimited = -1)

I -gvn-hoist-max-chain-length: maximum length of
dependent chains to hoist (default = 10, unlimited = -1)

I -gvn-max-hoisted: max number of instructions to hoist
(default unlimited = -1)



12/16

GVN-Hoist: Evaluation

I < 1% compile time overhead: 1678→ 1692 Bn insns
(callgrind compiling the test-suite at -O3 on x86 64-linux)

I more hoists than CFG-simplify: 15048→ 25318
(compiling the test-suite for x86 64 at -O3)

Scalars hoisted 8960

Scalars removed 11940

Loads hoisted 16301

Loads removed 22690

Stores hoisted 50

Stores removed 50

Calls hoisted 7

Calls removed 7

Total Instructions hoisted 25318

Total Instructions removed 34687



13/16

Code size reduction

Code-size metric (.text) Number

Total benchmarks 497

Total gained in size 39

Total decrease in size 58

Median decrease in size 2.9%

Median increase in size 2.4%

I test-suite compiled at -O3 for x86 64-linux

I increase in size due to more inlining

I many effects due to early scheduling of the pass



14/16

Discussion

I schedule GVN-hoist pass several times?

I remove CFGSimplify’s hoisting?

I hoist + sink interactions (discuss with James Molloy)

I early scheduling in opt needs tuning with target info?

I make GVN-hoist more aggressive for -Os and -Oz?

I need a better GVN implementation?

I Memory-SSA is easy to use and fast: so please use it!
(thanks Danny, Georges, and others)


