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Optimization Diagnostics in LLVM

• Supported in LLVM

• Only a small number of passes emit them

• -Rpass options to enable them in the compiler output
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foo.c:8:5: remark: accumulate inlined into compute_sum[-Rpass=inline] 
    accumulate(arr[i], sum); 
    ^



Optimization Diagnostics in LLVM

• Supported in LLVM

• Only a small number of passes emit them

• -Rpass options to enable them in the compiler output

• For large programs, the output of -Rpass is noisy and unstructured
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Remarks for hot and cold
code are intermixed

Messages appear
in no particular order

Messages from successful and failed
optimizations are dumped together

How can we make
 this information

accessible and actionable?



Wish List

• All in one place: Optimizations Dashboard

• At a glance: See high-level interaction between optimizations for 
targeted low-level debugging

• Filtering: Noise-level should be minimized by focusing on the hot 
code

• Integration: Display hot code and the optimizations side-by-side 
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opt-viewer
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Approach

• Extend existing optimization remark infrastructure

• Add the new optimizations

• Add ability to output remarks to a data file

• Visualize data in HTML

• Targeting compiler developers initially
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Example

9



Work Flow

$ clang -O3 —fsave-optimization-record -c foo.c

$ utils/opt-viewer/opt-viewer.py foo.opt.yaml html

$ open html/foo.c.html
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Successful Optimizations
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Remarks 
appear inline under 
the referenced line

Name of the pass
Green for successful 

optimization

Further details 
about the optimization



Successful Optimizations
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Column aligned with 
the expression

HTML link to 
facilitate further 

analysis



Successful Optimizations
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Remarks in white 
are Analysis remarks

Optimizations can 
expose interesting 

analyses



Missed Optimizations
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Missed Optimizations

16

Red means failed 
optimization
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ORE.emit(OptimizationRemarkAnalysis("inline", "CanBeInlined", Call) 
         << NV("Callee", Callee) << " can be inlined into “ << NV("Caller", Caller) 
         << " with cost=" << NV("Cost", IC.getCost()) 
         << " threshold=“ << NV("Threshold", Threshold));

OptimizationRemarkEmitter

foo.c:8:5: remark: accumulate can be inlined into compute_sum with cost=-5 (threshold=487) [-Rpass-analysis=inline] 
    accumulate(arr[i], sum); 
    ^

LLVM Changes
Inliner LoopVectorizer

Pass pipeline

-Rpass-analysis=inline

old

new

IR IR
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ORE.emit(OptimizationRemarkAnalysis("inline", "CanBeInlined", Call) 
         << NV("Callee", Callee) << " can be inlined into “ << NV("Caller", Caller) 
         << " with cost=" << NV("Cost", IC.getCost()) 
         << " threshold=“ << NV("Threshold", Threshold));

OptimizationRemarkEmitter

YAML

LLVM Changes
Inliner LoopVectorizer

-fsave-optmization-record

Pass pipeline

enables source line 
 debug info  

(-gline-tables-only)

old

new

IR IR
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ORE.emit(OptimizationRemarkAnalysis("inline", "CanBeInlined", Call) 
         << NV("Callee", Callee) << " can be inlined into “ << NV("Caller", Caller) 
         << " with cost=" << NV("Cost", IC.getCost()) 
         << " threshold=“ << NV("Threshold", Threshold));

OptimizationRemarkEmitter

YAML

LLVM Changes
Inliner LoopVectorizer

-fsave-optmization-record

Pass pipeline

enables source line 
 debug info  

(-gline-tables-only)

old

new

IR IR

--- !Analysis 
Pass:            inline 
Name:            CanBeInlined 
DebugLoc:        { File: s.cc, Line: 8, Column: 5 } 
Function:        compute_sum 
Args: 
  - Callee:          accumulate 
    DebugLoc:        { File: s.cc, Line: 1, Column: 0 } 
  - String:          ' can be inlined into ' 
  - Caller:          compute_sum 
    DebugLoc:        { File: s.cc, Line: 5, Column: 0 } 
  - String:          ' with cost=' 
  - Cost:            '-5' 
  - String:          ' (threshold=' 
  - Threshold:       '487' 
  - String:          ')' 
...



opt-viewer
YAML

utils/opt-viewer/opt-viewer.py

index.html
foo.o.html
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Index
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Index
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Noisy:
Most of this code not hot

Sort by hotness



IR

Use PGO for Hotness
Inliner LoopVectorizer

OptimizationRemarkEmitter

YAML

LazyBlockFrequencyInfo

--- !Analysis 
Pass:            inline 
Name:            CanBeInlined 
DebugLoc:        { File: s.cc, Line: 8, Column: 5 } 
Function:        compute_sum 
Hotness:         3 
Args: 
  - Callee:          accumulate 
    DebugLoc:        { File: s.cc, Line: 1, Column: 0 } 
  - String:          ' can be inlined into ' 
  - Caller:          compute_sum 
    DebugLoc:        { File: s.cc, Line: 5, Column: 0 } 
  - String:          ' with cost=' 
  - Cost:            '-5' 
  - String:          ' (threshold=' 
  - Threshold:       '487' 
  - String:          ')' 
...

BlockFrequencyInfo
25

old

new
Pass pipeline

IR



Hotness

Relative to
maximum hotness,
NOT total time %
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Optimizations Recorded
Function Inliner 

Loop Vectorizer 

Loop Unroller 

LoopDataPrefetch
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LICM 

GVN 

Loop Idiom 

Loop Deletion 

SLP Vectorizer

… more to follow



Test Drive 
on 

LLVM test suite
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Improve & Evaluate

1. Does the information presented in this high-level view contain 
sufficient detail to reconstruct what happened?

2. Can we discover the interactions between optimizations?

3. With the improved visibility, can we quickly find real performance 
opportunities?
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DhryStone 
(SingleSource/Benchmark) 

Interaction of Optimizations
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DhryStone
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Inlining Context



DhryStone
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DhryStone
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DhryStone
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DhryStone
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DhryStone
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DhryStone
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DhryStone
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DhryStone
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DhryStone: Summary
• Without low-level debugging, quickly reconstructed what happened

• Even though it involved interaction between multiple optimizations

• Inlining and Alias Analysis/GVN

• Missed optimizations: Extra analysis to manage with false positives

1. Filter trivially false positives

2. Expose enough information for quick detection by user
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Freebench/distray 
(MultiSource/Benchmarks) 

Finding Performance Opportunity
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Not modified via LinP, 
maybe writes through other 

pointers



Not modified via LinD, 
maybe writes through other 

pointers





Reads and writes don’t alias



Reads and writes don’t alias
Loop versioning 

with array overlap checks?
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LICM-based LoopVersioning 
(-enable-loop-versioning-licm)
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LICM-based LoopVersioning 
(-enable-loop-versioning-licm)

Performance opportunity if we can 
improve this pass
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LICM-based LoopVersioning 
(-enable-loop-versioning-licm)

Performance opportunity if we can 
improve this passApproximate the opportunity by 

manually modifying the source







Dynamic Instruction Count 
Reduced by 

11%



Dynamic Instruction Count 
Reduced by 

11%
Performance headroom 

11%



Freebench/distray: Summary

• Found optimization opportunity while staying in the high-level view

• Reconstructed the reason for missed optimization

• High-level view exposed that the gain may be substantial

• Got immediate feedback of the desired effect on the prototype

• Identified the pass for low-level debugging
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Check Out More Examples

http://lab.llvm.org:8080/artifacts/opt-view_test-suite
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http://lab.llvm.org:8080/artifacts/opt-view_test-suite


Development Timeline

60

Code Author Tool

Compiler Developer Tool

Initial version on LLVM trunk

Now
New tools 

using 
Optimization 

Records 



Compiler Developer Tool: Status

• Written in Python

• Hook up new passes

• Improve diagnostics quality for existing passes

• Perform extra analysis for insightful messages

• Improve UI
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Compiler Developer Tool: Status

• Written in Python

• Hook up new passes

• Improve diagnostics quality for existing passes

• Perform extra analysis for insightful messages

• Improve UI
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Request fo
r H
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Code Author Tool: Wishlist
• Suggest specific actions

• E.g. for the LICM case: if the two pointers can never point to the 
same object consider using ‘restrict’ 

• Add new “recommendation” analysis passes to detect opportunity 
and suggest:

• Source annotation to enable off-by-default passes (aggressive 
loop transformations, non-temporal stores)

• Refactoring: data transformations
62
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Optimization Records: New Tools
• llvm-opt-report

• Performance regression analysis

• Optimization statistics with the ability to zoom into the particular 
optimization

• Bottom-up search for performance opportunities

• See all the LICM opportunities like in Freebench/distray
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Optimization Records: New Tools
• llvm-opt-report

• Performance regression analysis

• Optimization statistics with the ability to zoom into the particular 
optimization

• Bottom-up search for performance opportunities

• See all the LICM opportunities like in Freebench/distray
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SELECT   benchmark, hotspot, hotness 
FROM     optimizations 
WHERE    pass = ‘licm’ AND 
         type = ‘missed’ AND 
         name = ‘LoadWithLoopInvariantAddressInvalidated’ 
ORDER BY hotness



Optimization Records: New Tools
• llvm-opt-report

• Performance regression analysis

• Optimization statistics with the ability to zoom into the particular 
optimization

• Bottom-up search for performance opportunities

• See all the LICM opportunities like in Freebench/distray

• Allows finding opportunities that occur with high frequency but not 
in the hottest code
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Q&A
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SIBsim4 
(MultiSource/Applications) 

Finding Performance Opportunity
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SIBsim4
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SIBsim4
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SIBsim4
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SIBsim4
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SIBsim4
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SIBsim4
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SIBsim4

Look at
 the loads
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SIBsim4

Look at
 the loads
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SIBsim4
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SIBsim4

Look at
the stores
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SIBsim4

Look at
the stores

77



SIBsim4

Can ‘m’ and ’n’
 really alias?
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SIBsim4
Probably not!

exon_p_t m = mCol->e.exon[i];
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SIBsim4
We need to use ‘restrict’

or hoist manually

exon_p_t m = mCol->e.exon[i];
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SIBsim4
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SIBsim4
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SIBsim4
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SIBsim4
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