Compiler-assisted
Performance Analysis

Adam Nemet
Apple
anemet@apple.com

Hotspot

Bottleneck IZ{> User

Compiler
Optimization
X, Y

Hotspot Hotspot

Vs s

<= Legality
Bottleneck IZ{> User Compiler

<= Cost Model
V V

Compiler
Optimization Some Optimizations?
X, Y

Hotspot Hotspot

Vs s

<= Legality
Bottleneck IZ{> User Compiler

<= Cost Model
V V

Compiler
Optimization Some Optimizations?
X, Y

Hotspot Hotspot

& Disassemble @

<= Legality
Bottleneck IZ{> User h Compiler

<= Cost Model
V V

Compiler
Optimization Some Optimizations?
X, Y

Hotspot Hotspot

& -debug-only @

<= Legality
Bottleneck IZ{> User h Compiler

<= Cost Model
V V

Compiler
Optimization Some Optimizations?
X, Y

Hotspot Hotspot
@ Optimization @
Diagnostics

<= Legality
Bottleneck IZ{> User - Compiler

<= Cost Model
V V

Compiler
Optimization Some Optimizations?
X, Y

Optimization Diagnostics in LLVM

e Supported in LLVM
e Only a small number of passes emit them

e -Rpass options to enable them Iin the compiler output

foo.c:8:5: accumulate inlined into compute_sum[-Rpass=inline]
accumulate(arr[i], sum);

Optimization Diagnostics in LLVM

e Supported in LLVM
e Only a small number of passes emit them
e -Rpass options to enable them Iin the compiler output

* For large programs, the output of -Rpass is noisy and unstructured

/org/test=-suite/SingleSource/Benchmarks/Dhrystone/dry.c:474:7: Funcl can be inlined into Func2 with cost=10 (threshold=487) [-Rpass-analysis=inline]
if (Funcl(StrParIl[IntLoc], StrParI2[IntLoc+1]) == Identl)

/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:474:7: Funcl inlined into Func2 [-Rpass=inline]
/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:485:7: marked this call a tail call candidate [-Rpass=tailcallelim]
if (strcmp(StrParIl, StrParI2) > 0)
/org/test=-suite/SingleSource/Benchmarks/Dhrystone/dry.c:443:2: sext eliminated [-Rpass=gvn]
for (IntIndex = IntLoc; IntIndex <= (IntLoc+l); ++IntIndex)
/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:443:2: sext eliminated [-Rpass=gvn]
/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:446:33: load of type i32 not eliminated in favor of store because it is clobbered by store [-Rpass-missed=gvn]
Array2Par[IntLoc+20] [IntLoc] = ArraylPar[IntlLoc];
/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:446:33: load of type 132 not eliminated in favor of store because it is clobbered by store [-Rpass-missed=gvn]
/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:405:8: Func3 can be inlined into Proc6 with cost=0 (threshold=412) [-Rpass-analysis=inlinel]
if (! Func3(EnumParIn))
/org/test=suite/SingleSource/Benchmarks/Dhrystone/dry.c:405:B: Func3 inlined into Proc6 [-Rpass=inline]
/org/test=suite/SingleSource/Benchmarks/Dhrystone/dry.c:271:3: Proc5 can be inlined into Proc® with cost=10 (threshold=337) [-Rpass-analysis=inline]
Proc5();
/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:271:3: Proc5 inlined into Proc® [-Rpass=inline]
/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:292:3: Proc2 can be inlined into Proc® with cost=25 (threshold=225) [-Rpass—analysis=inline]
Proc2(&IntLocl);
/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:292:3: Proc2 inlined into Proc® [-Rpass=inline]
/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:288:5: Proc6é can be inlined into Proc® with cost==5 (threshold=412) [-Rpass-analysis=inline]
Proc6(Identl, &EnumlLoc);
/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:288:5: Proc6 inlined into Proc® [-Rpass=inline]
/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:287:19: Funcl can be inlined into Proc@® with cast=10 (threshald=487) [-Rpass-analysis=inline]
if (EnumLoc == Funcl(CharIndex, 'C'))
/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:287:19: Funcl inlined into Proc@® [-Rpass=inline]
/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:285:3: Procl can be inlined into Proc® with cost=15 (threshold=337) [-Rpass-—-analysis=inlinel]
Procl(PtrGlb);
/org/test=-suite/SingleSource/Benchmarks/Dhrystone/dry.c:285:3: Procl inlined into Proc® [-Rpass=inline]
/org/test=-suite/SingleSource/Benchmarks/Dhrystone/dry.c:284:3: Proc8 can be inlined into Proc® with cost=125 (threshold=225) [-Rpass-analysis=inline]
Proc8(ArraylGlob, Array2Glob, IntLocl, IntLoc3);
/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:284:3: Proc8 inlined into Proc® [-Rpass=inline]
/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:281:4: Proc7 can be inlined into Proc® with cost=-5 (threshold=337) [-Rpass—analysis=inline]
Proc7(IntLocl, IntLoc2, &IntLoc3);
/org/test=-suite/SingleSource/Benchmarks/Dhrystone/dry.c:281:4: Proc7 inlined into Proc® [-Rpass=inline]
/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:277:16: Func2 can be inlined into Proc@® with cost=90 (threshold=225) [-Rpass-analysis=inline]
BoolGlob = ! Func2(StringlLoc, String2lLoc);

4

/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:474:7: Funcl can be inlined into Func2 with cost=10 (threshold=487) [-Rpass-analysis=inline]
if (Funcl(StrParIl[IntLoc], StrParI2[IntLoc+1]) == Identl)

/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:474:7: Funcl inlined into Func2 [-Rpass=inline]
/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:485:7: marked this call a tail call candidate [-Rpass=tailcallelim]

if (strcmp(StrParIl, StrParI2) > 0) '

/org/test=-suite/SingleSource/Benchmarks/Dhrystone/dry.c:443:2: sext eliminated [-Rpass=gvn]
for (Int

Jorg/test—suites Messages appear of type 132 not & Remarks for hot and cold [-Rpass-nissed=gun]
ArrayzPa in no particular order code are intermixed

of type 132 not e
can be inlined intt

/org/test-suite/ [-Rpass-missed=gvn]
/org/test-suite/ .- .
if (! Func3(EnumParIn))

/org/test=-suite/SingleSaurce/E

/org/test-suite/SingleSource/E s=inline]
Proc5();

/org/test-suite/SingleSource/k H W n W m k

/org/test-suite/SingleSource/k s=inline]
Proc2(&IntLoc

/org/test=-suite/SingleSource/k

o artosuite Simtesourcer? t h i S i N fo rm at i on sminline]

/org/test-suite/SingleSource/k
/org/test-suite/SingleSource/k

@ accessible and actionable?

/org/test-suite/SingleSource/k
/org/test-suite/SingleSource/k inline]
Procl(PtrGlb)

/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c: 285 3: Procl inlined into Proc® [-Rpass=inline]
/org/test-suite/SingleSource/Benchmarks/Dhrystone/gds AsaccanahanininadinieReacnibhacs
Proc8(ArraylGlob, Array2Glob, Intl

pd=225) [-Rpass-analysis=inline]

forg/test-suite/SingleSource/Benchmarks/Dhrystone Messages from successful and failed o

/org/test-suite/SingleSource/Benchmarks/Dhrystone . . . 337) [-Rpass—analysis=inline]
Proc7(IntLocl, Intloc2, & optimizations are dumped together

/org/test=suite/SingleSource/Benchmarks/Dhrystone

/org/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c: :10: uncZ can be inlined i1nto Procd with cost=9¢ reshold=225) [-Rpass-analysis=inline]

BoolGlob = ! Func2(StringlLoc, String2Loc);
~ 4

Wish List

All in one place: Optimizations Dashboard

At a glance: See high-level interaction between optimizations for
targeted low-level debugging

Filtering: Noise-level should be minimized by focusing on the hot
code

Integration: Display hot code and the optimizations side-by-side

opt-viewer

Approacn

Extend existing optimization remark infrastructure
 Add the new optimizations

e Add ability to output remarks to a data file
Visualize data in HITML

Targeting compiler developers initially

Example

Line Source
volid accumulate(int x, int *a) {

*a += X3

int compute sum(int arr[], int n) {
int sum = 0;
for (int 1 = 0; 1 < n; ++1)

accumulate(arr[i], &sum);

1

2
3
A
5
6
/
3
9

return sum;

N
O

Work Flow

$ clang -03 —fsave-optimization-record —c fo00.C
$ utils/opt-viewer/opt-viewer.py foo.opt.yaml html

$ open html/foo.c.html

11

successful Optimizations

Line Optimization Source

1 volid accumulate(int x, int #*a) {
7 *a += X;
3 }
Vil Remarks
appear inline under , , Further detalls
O \ the referenced line /10t compute sum(int arr[], int n) { about the optimization
) int sum = 0;
7 for (int 1 = 0; 1 < n; ++1)
8
ling 'ate can be inlined into compute_sum with cost=-5 (threshold=487)
Green for successful Al -
. Name of the pass |~ gotimization Inlined into compute_sum

10 }

successful Optimizations

Line Optimization Source

1 volid accumulate(int x, int #*a) {
7 *a += X;
3 }
4
5 int compute sum(int arr[], int n) {
) int sum = 0;
7 for (int 1 = 0; 1 < n; ++1)

|~ ‘~-ize vectorized loop (vectorization width: 4, interleaved count: 2)
8 Column aligned with accumulate(arr[i], &sum);

the expression T : :
. accumulate can be Inlined into compute_sum with cost=-5 (threshold=487)

‘ inline accumulate inlined into compute sum
9 return sum;
10 } HTML link to

facilitate further
analysis

successful Optimizations

Line Optimization Source

volid accumulate(int x, int #*a) {

*a 4= x;

int compute sum(int arr[], int n) {
Optimizations can

expose interesting
for (int i = 0; i < n; ++1i) analyses

MO A OWODN -

int sum = 0;
Remarks in white
are Analysis remarks

_ _12ze vectorized loop (vectorization width: 4, interleaver’ count z)
8 accumulate(arr[i], &sum);

accumulate can be inlined into compute sum with cost=-5 (threshold=487
Inline accumulate inlined into compute_sum

9 return sum;

Missed Optimizations

Line Source
volid accumulate(int x, int *a);

int compute sum(int arr[], int n) {
int sum = 0;
for (int 1 = 0; 1 < n; ++1)
accumulate(arr[i], &sum);

return sum;

T

2
3
A
5
o
/
3

15

Missed Optimizations

Line Optimization Source

1 - accumulate(int x, int *a);
2 Red means failed
3 optimization Mate sum(int arr[], int n) {
4 rmt sum = 0;
5 for (int 1 = 0; 1 < n; ++1)
loop-vectorize |loop not vectorized
O accumulate(arr[i], &sum);
inline accumulate will not be inlined into compute_sum because its definition is unavailable
loop-vectorize loop not vectorized: call instruction cannot be vectorized

7/

return sum;

| LVM Changes

Pass pipeline

IR IR

ORE.emit(OptimizationRemarkAnalysis("inline", "CanBeInlined", Call)
<< NV("Callee", Callee) << " can be inlined into “ << NV("Caller", Caller)
<< " with cost=" << NV("Cost", IC.getCost())
<< " threshold=" << NV("Threshold", Threshold));

—Rpass—analysis=inline

foo0.c:8:5: remark: accumulate can be inlined into compute_sum with cost=-5 (threshold=487) [-Rpass—-analysis=inline]
accumulate(arr[i], sum);

22

| LVM Changes

Pass pipeline

IR IR

ORE.emit(OptimizationRemarkAnalysis("inline", "CanBeInlined", Call)
<< NV("Callee", Callee) << " can be inlined into “ << NV("Caller", Caller)
<< " with cost=" << NV("Cost", IC.getCost())
<< " threshold=" << NV("Threshold", Threshold));

—-fsave-optmization—-record

enables source line

debug info
(-gline-tables-only)

22

old

[LVM Changes

Pass pipeline

IR

Inliner LoopVectorizer = R
ORE.emit(OptimizationRemarkAnalysis("inline", "CanBeInlined", Call)

<< NV("Callee", Callee) << " can be inlined into “ << NV("Caller", Caller)

<< " with cost=" << NV("Cost'", IC.getCost())

<< " thresj——— 1Analysis

+ Pass: inline
VElUEE CanBelInlined
.. |Debugloc: { File: s.cc, Line: 8, Column: 5 }
Optimizal Function: compute_sum
Args:
— Callee: accumu late
~fsave—optmization-recor DebggLoc: f File: s.cc, Line: 1,IColumn: 0 }
— String: can be 1inlined 1into
enables source line - Caller: compute_sum |
debug info DebggL?c: f F}le: 5. CC, Line: 5, Column: 0 }
(—qline—tables—onlv) — String: with cost=
9 y — Cost: '-5'

— String: ' (threshold="'
— Threshold: '487"
- String: ')

. e
opt-viewer Thew

Source Location

index

24

Function Pass

Func2
Func2
Func?2
ProcO
ProcQO
ProcO
ProcO
ProcQ
ProcO
ProcO
ProcO
ProcO
ProcQ
ProcQ
ProcQ
ProcO

inline
inline
Inline
inline
inline
inline
inline
inline
Inline
inline
inline
inline
inline
inline
inline
Inline

index

Source Location Function Pass
Func2
Func2
jorg/test-suite/SingleSource/Benchmarkel/Nhrvctanaldn, oA 247 Eunc?
[org/test-suite/SingleSource/Benc
jorg/test-suite/SingleSource/Benc

Noisy:

[org/test-suite/SingleSource/Benc Most of this code not hot

I 1 WNINJ

(. | B I 1 S~ r— a F_ — F_ Y

[org/test-suite/SingleSource/Benc’
jorg/test-suite/SingleSource/Benc
Jorg/test-suite/SingleSource/Benc Sort by hotness
[org/test-suite/SingleSource/Benc

Frocu
Proc(O

ProcO
Proc(O
ProcO

24

inline
inline
Inline
inline
inline
inline
inline
inline
Inline
inline
inline
inline
inline
inline
inline
Inline

Use PGO for Hotness =

Pass pipeline

e
——— !Analysis
‘R Pass: inline
VEIUEE CanBelInlined
DebuglLoc: { File: s.cc, Line: 8, Column: 5 }
Function: compute_sum
Hotness: 3
v Args:
— Callee: accumulate
DebuglLoc: { File: s.cc, Line: 1, Column: 0 }
- String: ' can be inlined into '
— Caller: compute_sum
DebuglLoc: { File: s.cc, Line: 5, Column: 0 }
I — String: ' with cost="'
— Cost: '-5'
- String: ' (threshold="
— Threshold: '487"
\ - String: ') !
4

- 25

Source Location

Jorg/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:443:2 loop-vectorize
jorg/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:473:2 loop-vectorize
jorg/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:473:2 loop-vectorize
Jorg/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:443:2 loop-delete
Jorg/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:444:31 loop-idiom
Jorg/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:287:1S inline
Jorg/test-suite/SingleSource/Benchmarks/Dhrystone/dry.c:287:19 inline

N/ IEST- : NAIESO 2 /BRencnmark Bla elaldle A/4. : NINE

437 REG OneToFifty IntIndex;
438

439 Intloc = IntParil + 5; Relative to
440 ArraylPar[IntLoc] = IntParI2; maximum hOtneSS,

441 ArraylPar[IntLoc+l] = ArraylP

442 ArraylPar[In IntLoc; . NOT tOtaI time %

443 ntIndex = IntLoc; IntIndex <= (IntlLoc+l); +-IntIndex)

e loop deleted

loop- vectorized loop (vectorization width: 4, interleaved count: 2)
vectorize
444 Array2Par[IntLoc][IntTndex] = IntLoc;

loop-idiom formed memset
445 ~+Array2Par[IntLoc][IntLoc-1];

446 ArrayZPar[IntLoc+20][IntLoc] = ArraylPar[IntlLoc];

load of type 132 eliminated

447

A48
Display a menu

Optimizations Recorded

LICM
Function Inliner
GVN
L oop Vectorizer
Loop Idiom

Loop Unroller

Loop Deletion
L oopDataPretetch

SLP Vectorizer

... more to follow

28

lest Drive
on
| VM test suite

Improve & cvaluate

. Does the information presented in this high-level view contain
sufficient detail to reconstruct what happened?

. Can we discover the interactions between optimizations”

. With the improved visiblility, can we quickly find real performance
opportunities?

30

DhryStone
(SingleSource/Benchmark)

Interaction of Optimizations

31

DhryStone

Proc8(ArraylPar, Array2Par, IntParIl, IntParlI2) I I. ¥ C t t
ArraylDim ArraylPar; n Inlng ontex
Array2Dim Array2Par;

OneToFifty IntParlIl;

OneToFifty IntParl2;

{

REG OneToFifty IntLoc;
REG OneToFifty IntIndex;

IntLoc = IntParlIl + 5;

ArraylPar[IntLoc] IntParlI2;

ArraylPar[IntLoc+l] = ArraylPar[IntLoc];
ArraylPar[IntLoc+30] = IntLoc;

for (IntIndex = IntLoc; IntIndex <= (IntLoc+l); ++IntIndex)

52% loop-delete loop deleted
100% loop-vectorize vectorized loop (vectorization width: 4, interleaved count: 2)
Array2Par[IntLoc][IntIndex] = IntLoc;

52% loop-idiom formed memset
++Array2Par[IntLoc][IntLoc~1];
17% gvn load of type i32 not eliminated in favor of store because it is clobbered by store
17% gvn load of type i32 not eliminated in favor of store because it is clobbered by call
Array2Par[IntLoc+20][IntLoc] = ArraylPar[IntLoc];
34% gvn load of type i32 not eliminated in favor of store because it is clobbered by store

17% gvn load of type i32 eliminated
IntGlob = 5;

DhryStone

Proc8(ArraylPar, Array2Par, IntParIl, IntParI2)
ArraylDim ArraylPar;
Array2Dim Array2Par;
OneToFifty IntParlIl;
OneToFifty IntParl2;
{
REG OneToFifty IntLoc;
REG OneToFifty IntIndex;

IntLoc = IntParlIl + 5;

ArraylPar[IntLoc] = IntParl2;

ArraylPar[IntLoc+l] = ArraylPar[IntLoc];
ArraylPar[IntLoc+30] = IntLoc;

for (IntIndex = IntLoc; IntIndex <= (IntLoc+l); ++IntIndex)

100% loop-vectorize vectorized loop (vectorization width: 4, interleaved count: 2)
Array2Par[IntLoc][IntIndex] = IntLoc;

++Array2Par[IntLoc][IntLoc-1];

Array2Par[IntLoc+20][IntLoc] = ArraylPar[IntLoc];
load of type i32 not eliminated in favor of store because it is clobbered by store

IntGlob = 5;

DhryStone

Proc8 (ArraylPar, Array2Par, IntParIl, IntParI2)
ArraylDim ArraylPar;
Array2Dim Array2Par;
OneToFifty IntParIl;
OneToFifty IntParl2;
{
REG OneToFifty IntLoc;
REG OneToFifty IntIndex;

IntLoc = IntParlIl + 5;

ArraylPar[IntLoc] = IntParl2;

ArraylPar[IntLoc+l] = ArraylPar[IntLoc];
ArraylPar[IntLoc+30] = IntLoc;

for (IntIndex = IntLoc; IntIndex <= (IntLoc+l); ++IntIndex)

100% loop-vectorize vectorized loop (vectorization width: 4, interleaved count: 2)
444 Array2Par[IntLoc][IntIndex] = IntLoc;

445 ++Array2Par[IntLoc][IntLoc~1];

Array2Par[IntLoc+20][IntLoc] =jArraylPar[IntLoc];
load of type i32 not eliminated in favor of store because it is clobbered by store

IntGlob = 5;

DhryStone

Proc8 (ArraylPar, Array2Par, IntParIl, IntParI2)
ArraylDim ArraylPar;
Array2Dim Array2Par;
OneToFifty IntParIl;
OneToFifty IntParl2;
{
REG OneToFifty IntLoc;
REG OneToFifty IntIndex;

IntLoc = IntParlIl + 5;

ArraylPar[IntLoc] = IntParl2;

ArraylPar[IntLoc+l] = ArraylPar[IntLoc];
ArraylPar[IntLoc+30] = IntLoc;

for (IntIndex = IntLoc; IntIndex <= (IntLoc+l); ++

100% loop-vectorize vectorized loop (vectorization width: 4, interleaved count: 2)
444 Array2Par[IntLoc][IntIndex] = IntLoc;

445 +4Array2Par|[IntLoc][IntLoc~1]

Array2Par[IntLoc+20][IntLoc] =jJArraylPar[IntLoc]}

load of type i32 not eliminated in favor of store because it is clobbered by store

IntGlob = 5;

loop-delete

loop-idiom

gvn
gvn

DhryStone

Proc8(ArraylPar, Array2Par, IntParIl, IntParI2)
ArraylDim ArraylPar;

Array2Dim Array2Par;
OneToFifty IntParlIl;
OneToFifty IntParl2;

{

REG OneToFifty IntLoc;
REG OneToFifty IntIndex;

IntLoc = IntParlIl + 5;

ArraylPar[IntLoc] = IntParl2;

ArraylPar[IntLoc+l] = ArraylPar[IntLoc];
ArraylPar[IntLoc+30] = IntLoc;

for (IntIndex = IntLoc; IntIndex <= (IntLoc+l); ++IntIndex)

loop deleted

Array2Par[IntLoc][IntIndex] = IntLoc;

formed memset
++Array2Par[IntLoc][IntLoc~1];
load of type i32 not eliminated in favor of store because it is clobbered by store

load of type i32 not eliminated in favor of store because it is clobbered by call
Array2Par[IntLoc+20]1[IntLoc] ArraylPar[IntLoc];

load of type i32 eliminated

IntGlob = 5;

loop-delete

loop-idiom

gvn
gvn

DhryStone

Proc8(ArraylPar, Array2Par, IntParIl, IntParI2)
ArraylDim ArraylPar;

Array2Dim Array2Par;
OneToFifty IntParlIl;
OneToFifty IntParl2;

{

REG OneToFifty IntLoc;
REG OneToFifty IntIndex;

IntLoc = IntParlIl + 5;

ArraylPar[IntLoc] = IntParl2;

ArraylPar[IntLoc+l] = ArraylPar[IntLoc];
ArraylPar[IntLoc+30] = IntLoc;

for (IntIndex = IntLoc; IntIndex <= (IntLoc+l); ++IntIndex)

loop deleted

Array2Par[IntLoc][IntIndex] = IntLoc;

formed memset
++Array2Par[IntLoc][IntLoc~1];
load of type i32 not eliminated in favor of store because it is clobbered by store

load of type i32 not eliminated in favor of store because it is clobbered by call
Array2Par[IntLoc+20]1[IntLoc] ArraylPar[IntLoc];

load of type i32 eliminated

IntGlob = 5;

loop-delete

loop-idiom

gvn
gvn

DhryStone

Proc8(ArraylPar, Array2Par, IntParIl, IntParI2)
ArraylDim ArraylPar;

Array2Dim Array2Par;
OneToFifty IntParlIl;
OneToFifty IntParl2;

{

REG OneToFifty IntLoc;
REG OneToFifty IntIndex;

IntLoc = IntParlIl + 5;

ArraylPar[IntLoc] = IntParl2;

ArraylPar[IntLoc+l] = ArraylPar[IntLoc];
ArraylPar[IntLoc+30] = IntLoc;

for (IntIndex = IntLoc; IntIndex <= (IntLoc+l); ++IntIndex)

loop deleted

Array2Par[IntLoc][IntIndex] = IntLoc;

formed memset
++Array2Par[IntLoc][IntLoc~1];
load of type i32 not eliminated in favor of store because it is clobbered by store

load of type i32 not eliminated in favor of store because it is clobbered by call
Array2Par[IntLoc+20]1[IntLoc] ArraylPar[IntLoc];

load of type i32 eliminated

IntGlob = 5;

DhryStone

while (IntLocl < IntLoc2)

loop-unroll completely unrolled loop with 2 iterations

{
IntLoc3 = 5 * IntLocl - IntLoc2;

Proc7(IntLocl, IntLoc2, &IntLoc3);
inline Proc7 can be inlined into ProcO with cost=-5 (threshold=337)

inline Proc7 inlined into ProcO
++IntLocl;

}

Proc8fArraylGlob, Array2Glob,} IntLocl, IntLoc3);

inline Proc8 can be inlined into Proc0O with cost=125 (threshold=225)
inline Proc8 inlined into ProcO
Procl (PtrGlb);
inline Proc1 can be inlined into ProcO with cost=15 (threshold=337)
inline Proc1 inlined into ProcO
for (CharIndex = 'A’'; CharIndex <= Char2Glob; ++CharIndex)
licm load hoisted
gvn load of type i8 not eliminated in favor of store because it is clobbered by store
gvn load of type i8 eliminated

48

DhryStone

Proc8(ArraylPar, Array2Par, IntParIl, IntParI2)
ArraylDim ArraylPar;
Array2Dim Array2Par;
OneToFifty IntParlIl;
OneToFifty IntParl2;
{
REG OneToFifty IntLoc;
REG OneToFifty IntIndex;

IntLoc = IntParlIl + 5;

ArraylPar[IntLoc] = IntParl2;

ArraylPar[IntLoc+l] = ArraylPar[IntLoc];
ArraylPar[IntLoc+30] = IntLoc;

for (IntIndex = IntLoc; IntIndex <= (IntLoc+l); ++IntIndex)

loop-delete loop deleted

Array2Par[IntLoc][IntIndex] = IntLoc;

loop-idiom formed memset

++Array2Par[IntLoc][IntLoc~1];

gvn load of type i32 not eliminated in favor of store because it is clobbered by store
gvn load of type i32 not eliminated in favor of store because it is clobbered by call

Arrav2Par[IntLoc+20]1[IntLoc] =jArravlPar[IntLoc]:

load of type i32 eliminated
IntGlob = 5;

DhryStone: Summary

o Without low-level debugging, quickly reconstructed what happened
 Even though it involved interaction between multiple optimizations
 [nlining and Alias Analysis/GVN
 Missed optimizations: Extra analysis to manage with false positives
1. Filter trivially tfalse positives

2. Expose enough information for quick detection by user

51

Freebench/distray
(MultiSource/Benchmarks)

Finding Performance Opportunity

52

static double IntersectObjs(VECTOR *LinP, VECTOR *LinD,
VECTOR *Pnt, VECTOR *Norm, TEXTURE **txt)

237 for(objn = 0; objn < NUMOBJS; objn++) {

99% loop-vectorize loop not vectorized: vectorization is not beneficial and is not explicitly forced
238 Pos = objs[objn].pos;
239 Pos.X -= LinP->X; /* Translate object into "line-space" */
failed to hoist load with loop-invariant address because the loop may invalidate its value
240 Pos.y == LinP->y;
failed to hoist load with loop-invariant address because the loop may invalidate its value
241 .2 == LinP->2;
failed to hoist load with loop-invariant address because the loop may invalidate its value
getelementptr eliminated by PRE
1.0 / (LinD->x*LinD->x + LinD->y*LinD->y + LinD->z*LinD->2);
failed to hoist load with loop-invariant address because the loop may invalidate its value
failed to hoist load with loop-invariant address because the loop may invalidate its value
failed to hoist load with loop-invariant address because the loop may invalidate its value
load of type double not eliminated in favor of load because it is clobbered by store
load of type double not eliminated in favor of load because it is clobbered by store
B (Pos.x*LinD->x + Pos.y*LinD->y + Pos.z*LinD->2) * A;
C (objs[objn].r*objs[objn].r - Pos.x*Pos.X - Pos.y*Pos.y - Pos.z*Pos.z) * A;
if((A =C + B*B) > 0.0) { /* ...else no hit */
A = sqrt(A);
inline sqrt will not be inlined into IntersectObjs because its definition is unavailable
if((ttmp = B - A) < EPSILON) ttmp = B + A;
if((EPSILON<ttmp) && ((ttmp<t)||(t<0.0))) {
t = ttmp;
Pnt->x = LinD->x*t; /* Calculate intersection point */
slp-vectorizer Stores SLP vectorized
Pnt->y = LinD->y*t;
licm failed to hoist load with loop-invariant address because the loop may invalidate its value
gvn load of type double eliminated in favor of load
Pnt->z = LinD->z*t;
licm failed to hoist load with loop-invariant address because the loop may invalidate its value
gvn load of type double eliminated in favor of load
gvn load of type double not eliminated in favor of load because it is clobbered by store
gvn load of type double not eliminated in favor of load because it is clobbered by store
Pnt->x-Po0s.X; /* Calcualate surface normal */
licm failed to hoist load with loop-invariant address because the loop may invalidate its value
gvn load of type double eliminated in favor of fmul

PNL~->V~FQ *

static double IntersectObjs(VECTOR *LinP, VECTOR *LinD,
VECTOR *Pnt, VECTOR *Norm, TEXTURE **txt)

237 for(objn = 0; objn < NUMOBJS; objn++) {

99% loop-vectorize loop not vectorized: vectorization is not beneficial and is not explicitly forced
238 Pos = objs[obijn].pos;
239 - LinP->X;

240
failed to hoist load with loop-invariant address because the loop may invalidate its value
241 .2 == LinP->2;
failed to hoist load with loop-invariant address because the loop may invalidate its value
getelementptr eliminated by PRE
1.0 / (LinD->x*LinD->x + LinD->y*LinD->y + LinD->z*LinD->2);
failed to hoist load with loop-invariant address because the loop may invalidate its value
failed to hoist load with loop-invariant address because the loop may invalidate its value
failed to hoist load with loop-invariant address because the loop may invalidate its value
load of type double not eliminated in favor of load because it is clobbered by store
load of type double not eliminated in favor of load because it is clobbered by store
B (Pos.x*LinD->x + Pos.y*LinD->y + Pos.z*LinD->2) * A;
C (objs[objn].r*objs[objn].r - Pos.x*Pos.X - Pos.y*Pos.y - Pos.z*Pos.z) * A;
if((A =C + B*B) > 0.0) { /* ...else no hit */
A = sqrt(A);
inline sqrt will not be inlined into IntersectObjs because its definition is unavailable
if((ttmp = B - A) < EPSILON) ttmp = B + A;
if((EPSILON<ttmp) && ((ttmp<t)||(t<0.0))) {
t = ttmp;
Pnt->x = LinD->x*t; /* Calculate intersection point */
slp-vectorizer Stores SLP vectorized
Pnt->y = LinD->y*t;
licm failed to hoist load with loop-invariant address because the loop may invalidate its value
gvn load of type double eliminated in favor of load
Pnt->z = LinD->z*t;
licm failed to hoist load with loop-invariant address because the loop may invalidate its value
gvn load of type double eliminated in favor of load
gvn load of type double not eliminated in favor of load because it is clobbered by store
gvn load of type double not eliminated in favor of load because it is clobbered by store
Pnt->x-Po0s.X; /* Calcualate surface normal */
licm failed to hoist load with loop-invariant address because the loop may invalidate its value
gvn load of type double eliminated in favor of fmul

PNL~->V~FQ *

static double IntersectObjs(VECTOR *LinP, VECTOR *LinD,
VECTOR *Pnt, VECTOR *Norm, TEXTURE **txt)

237 for(objn = 0; objn < NUMOBJS; objn++) {
99% loop-vectorize loop not vectorized: vectorization is not beneficial and is not explicitly forced
238 Pos = objs[objn].pos;
239 Pos.Xx -= LinP->Xx; /* Translate object into "line-space" */
failed to hoist load with loop-invariant address because the loop may invalidate its value
240 Pos.y == LinP->y;
failed to hoist load with loop-invariant address because the loop may invalidate its value
241 .2 == LinP->2;
failed to hoist load with loop-invariant address because the loop may invalidate its value
getelementptr eliminated by PRE
1.0 / (LinD->x*LinD->x + LinD->y*LinD->y + LinD->z*LinD->2);
failed to hoist load with loop-invariant address because the loop may invalidate its value
failed to hoist load with loop-invariant address because the loop may invalidate its value
failed to hoist load with loop-invariant address because the loop may invalidate its value
load of type double not eliminated in favor of load because it is clobbered by store
load of type double not eliminated in favor of load because it is clobbered by store
B (Pos.x*LinD->x + Pos.y*LinD->y + Pos.z*LinD->2) * A;
C (objs[objn].r*objs[objn].r - Pos.x*Pos.X - Pos.y*Pos.y - Pos.z*Pos.z) * A;
if((A =C + B*B) > 0.0) { /* ...else no hit */
A = sqrt(A);
inline sqrt will not be inlined into IntersectObjs because its definition is unavailable
if((ttmp = B - A) < EPSILON) ttmp = B + A;
if((EPSILON<ttmp) && ((ttmp<t)||(t<0.0))) {
t = ttmp;
Pnt->x = LinD->x*t; /* Calculate intersection point */
slp-vectorizer Stores SLP vectorized
Pnt->y = LinD->y*t;
licm failed to hoist load with loop-invariant address because the loop may invalidate its value
gvn load of type double eliminated in favor of load
Pnt->z = LinD->z*t;
licm failed to hoist load with loop-invariant address because the loop may invalidate its value
gvn load of type double eliminated in favor of load
gvn load of type double not eliminated in favor of load because it is clobbered by store
gvn load of type double not eliminated in favor of load because it is clobbered by store
Pnt->x-POS.X; /* Calcualate surface normal */
licm a— failed to hoist load with loop-invariant address because the loop may invalidate its value
load of type double eliminated in favor of fmul

PNL~->V~FQ *

static double IntersectObjs(VECTOR *LinP, VECTOR *LinD,
VECTOR *Pnt, VECTOR *Norm, TEXTURE **txt)

237 for(objn = 0; objn < NUMOBJS; objn++) {
99% loop-vectorize loop not vectorized: vectorization is not beneficial and is not explicitly forced
238 Pos = objs[obijn].pos;
239 X -= LinP->Xx; /* Translate object into "line-space" */
failed to hoist load with loop-invariant address because the loop may invalidate its value
240 Y == LinP=>y;

failed to hoist load NOJ[modlfled Via LIHP value

241 .2 -= LinP=>2z;

failed to hoist load maybe writes ’[hrough other value

getelementptr elimi :
1.0 / (LinD->X*LinD->X + Li pointers
failed to hoist load with loop-invariant address because the loop may invalidate its value
failed to hoist load with loop-invariant address because the loop may invalidate its value
failed to hoist load with loop-invariant address because the loop may invalidate its value
load of type double not eliminated in favor of load because it is clobbered by store
load of type double not eliminated in favor of load because it is clobbered by store
B (Pos.x*LinD->x + Pos.y*LinD->y + Pos.z*LinD->2) * A;
C (objs[objn].r*objs[objn].r - Pos.xX*Pos.X - Pos.y*Pos.y - Pos.z*Pos.z) * A;
if((A =C + B*B) > 0.0) { /* ...else no hit */
A = sqrt(A);
inline sqrt will not be inlined into IntersectObjs because its definition is unavailable
if((ttmp = B - A) < EPSILON) ttmp = B + A;
if((EPSILON<ttmp) && ((ttmp<t)||(t<0.0))) {
t = ttmp;
Pnt->x = LinD->x*t; /* Calculate intersection point */
slp-vectorizer Stores SLP vectorized
Pnt->y = LinD->y*t;
licm failed to hoist load with loop-invariant address because the loop may invalidate its value
gvn load of type double eliminated in favor of load
Pnt->z = LinD->z*t;
licm failed to hoist load with loop-invariant address because the loop may invalidate its value
gvn load of type double eliminated in favor of load
gvn load of type double not eliminated in favor of load because it is clobbered by store
gvn load of type double not eliminated in favor of load because it is clobbered by store
Pnt->x-P0s.X; /* Calcualate surface normal */
licm failed to hoist load with loop-invariant address because the loop may invalidate its value
gvn load of type double eliminated in favor of fmul

PNL~->V~FQ

static double IntersectObjs(VECTOR *LinP, VECTOR *LinD,
VECTOR *Pnt, VECTOR *Norm, TEXTURE **txt)

237 for(objn = 0; objn < NUMOBJS; objn++) {
99% loop-vectorize loop not vectorized: vectorization is not beneficial and is not explicitly forced

238 Pos = objs[obijn].pos;
239 Pos.X -= LinP->X; /* Translate object into "line-space" */

failed to hoist load with loop-invariant address because the loop may invalidate its value
240 Pos.y == LinP->y;

failed to hoist load with loop-invariant address because the loop may invalidate its value
241 .2 == LinP->2;

failed to hoist load with loop-invariant address because the loop may invalidate its value

getelementptr eliminated by PRE

1.0 / (BinD=>x*LinbD-->x + [LinD->y*LinD->y + LinD->z*LinbDs->2);
failed to hoist load with loop-invariant address because the loop may invalidate its value
failed to hoist load with loop-invariant address because the loop may invalidate its value

faile NOt modlfled Via LIHD Iy invalidate its value

loac ybered by store

ocac Mmaylbe writes through other ibered by store

B (Pos.x*LinD->x + Pos.y*LinD->y + Pos.z*LinD+>z) * A; .
E (objs[objn].r*objs[objn].r - Pos.xXx*Pos.X - Pos.y*Pos, F)C)”qtearss
if((A =C + B*B) > 0.0) { /* ...else no hit */
A = sqrt(A);
inline sqrt will not be inlined into IntersectObjs because its definition is unavailable
if((ttmp = B - A) < EPSILON) ttmp = B + A;
if((EPSILON<ttmp) && ((ttmp<t)||(t<0.0))) {
t = ttmp;
Pnt->x = [LinD+->x*t; /* Calculate intersection point */
slp-vectorizer Stores SLP vectorized
Pnt->y = LinD->y*t;
licm failed to hoist load with loop-invariant address because the loop may invalidate its value
gvn load of type double eliminated in favor of load
Pnt->z = LinD->z*t;
licm failed to hoist load with loop-invariant address because the loop may invalidate its value
gvn load of type double eliminated in favor of load
gvn load of type double not eliminated in favor of load because it is clobbered by store
gvn load of type double not eliminated in favor of load because it is clobbered by store
Pnt->x-P0s.X; /* Calcualate surface normal */
licm failed to hoist load with loop-invariant address because the loop may invalidate its value
gvn load of type double eliminated in favor of fmul

PNL~->V~FQ

static double IntersectObjs(VECTOR *LinP, VECTOR #*LinD,
VECTOR *Pnt, VECTOR *Norm, TEXTURE **txt)

237 for(objn = 0; objn < NUMOBJS; objn++) {
99% loop-vectorize loop not vectorized: vectorization is not beneficial and is not explicitly forced
238 Pos = objs[objn].pos;
239 Pos.X -= LinP->X; /* Translate object into "line-space" */
failed to hoist load with loop-invariant address because the loop may invalidate its value
240 Pos.y == LinP->y;
failed to hoist load with loop-invariant address because the loop may invalidate its value
241 Pos.z -= LinP->2;
failed to hoist load with loop-invariant address because the loop may invalidate its value

oop-invariant address because the loop may invalidate its value
failed to hoist load with loop-invariant address because the loop may invalidate its value
failed to hoist load with loop-invariant address because the loop may invalidate its value
load of type double not eliminated in favor of load because it is clobbered by store
load of type double not eliminated in favor of load because it is clobbered by store
B (Pos.x*LinD->x + Pos.y*LinD->y + Pos.z*LinD+>z) * A;
C (objs[objn].r*objs[objn].r - Pos.x*Pos.X - Pos.y*Pos.y - Pos.z*Pos.z) * A;
if((A =C + B*B) > 0.0) { /* ...else no hit */
A = sqrt(A);
inline sqrt will not be inlined into IntersectObjs because its definition is unavailable
if((ttmp = B - A) < EPSILON) ttmp = B + A;
if((EPSILON<ttmp) && ((ttmp<t)||(t<0.0))) {
t = ttmp;
Pnt->x = [LinD->x*t; /* Calculate intersection point */
slp-vectorizer Stores SLP vectorized
Pnt->y = LinD->y*t;
licm failed to hoist load with loop-invariant address because the loop may invalidate its value
gvn load of type double eliminated in favor of load
Pnt->z = LinD->z*t;
licm failed to hoist load with loop-invariant address because the loop may invalidate its value
gvn load of type double eliminated in favor of load
gvn load of type double not eliminated in favor of load because it is clobbered by store
gvn load of type double not eliminated in favor of load because it is clobbered by store
Pnt->x-Po0s.X; /* Calcualate surface normal */
licm failed to hoist load with loop-invariant address because the loop may invalidate its value
gvn load of type double eliminated in favor of fmul

PNL~->V~FQ *

211 static double IntersectObjs(VECTOR *LinP, VECTOR *LinD,

212 VECTOR | *Pnt, VECTOR *Norm, TEXTURE **txt)
213 { _ : ,
s e Reads and writes don't alias
99% loop-vectorize loop not vectorized: vectorization is not beneficial and is not explicitly forced
238 Pos = objs[objn].pos;
239 Pos.X -= LinP->X; /* Translate object into "line-space" */
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
240 Pos.y == LinP->y;
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
241 Pos.z -= LinP->2;
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
20% gvn getelementptr eliminated by PRE
242 A=1.0 / (LinD->x*LinD->x + LinD->y*LinD->y + LinD->z*LinD->2z);
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
100% gvn load of type double not eliminated in favor of load because it is clobbered by store
100% gvn load of type double not eliminated in favor of load because it is clobbered by store
243 B = (Pos.x*LinD->x + Pos.y*LinD->y + Pos.z*LinD->2) * A;
244 C = (objs[objn].r*objs[objn].r - Pos.xX*Pos.X - Pos.y*Pos.y - Pos.z*Pos.z) * A;
245 if((A =C + B*B) > 0.0) { /* ...else no hit */
246 A = sqrt(A);
9% inline sqrt will not be inlined into IntersectObjs because its definition is unavailable
247 if((ttmp = B - A) < EPSILON) ttmp = B + A;
248 if((EPSILON<ttmp) && ((ttmp<t)||(t<0.0))) {
249 t = ttmp;
250 Pnt->x = LinD->x*t; /* Calculate intersection point */
5% slp-vectorizer Stores SLP vectorized
251 Pnt->y = LinD->y*t;
5% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
5% gvn load of type double eliminated in favor of load
252 Pnt->z = LinD->z*t;
5% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
5% gvn load of type double eliminated in favor of load
100% gvn load of type double not eliminated in favor of load because it is clobbered by store
100% gvn load of type double not eliminated in favor of load because it is clobbered by store
253 Norm->x = Pnt->xXx-P0OsS.X; /* Calcualate surface normal */
5% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
5% gvn load of type double eliminated in favor of fmul

NOTrmM- >y = PHL->V-P0O 2

211 static double IntersectObjs(VECTOR *LinP, VECTOR *LinD,

212 VECTOR | *Pnt, VECTOR *Norm, TEXTURE **txt) : :
- - | Loop versioning
... Wlth array Overlap CheCkS? SEEEEEEEEEEEE
99% loop-vectorize loop not vectorized: vectorization is not beneficial and is not explicitly forced
238 Pos = objs[objn].pos;
239 Pos.X -= LinP->X; /* Translate object into "line-space" */
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
240 Pos.y == LinP->y;
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
241 Pos.z -= LinP->2;
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
20% gvn getelementptr eliminated by PRE
242 A=1.0 / (LinD->x*LinD->x + LinD->y*LinD->y + LinD->z*LinD->2z);
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
100% gvn load of type double not eliminated in favor of load because it is clobbered by store
100% gvn load of type double not eliminated in favor of load because it is clobbered by store
243 B = (Pos.x*LinD->x + Pos.y*LinD->y + Pos.z*LinD->2) * A;
244 C = (objs[objn].r*objs[objn].r - Pos.xX*Pos.X - Pos.y*Pos.y - Pos.z*Pos.z) * A;
245 if((A =C + B*B) > 0.0) { /* ...else no hit */
246 A = sqrt(A);
9% inline sqrt will not be inlined into IntersectObjs because its definition is unavailable
247 if((ttmp = B - A) < EPSILON) ttmp = B + A;
248 if((EPSILON<ttmp) && ((ttmp<t)||(t<0.0))) {
249 t = ttmp;
250 Pnt->x = LinD->x*t; /* Calculate intersection point */
5% slp-vectorizer Stores SLP vectorized
251 Pnt->y = LinD->y*t;
5% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
5% gvn load of type double eliminated in favor of load
252 Pnt->z = LinD->z*t;
5% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
5% gvn load of type double eliminated in favor of load
100% gvn load of type double not eliminated in favor of load because it is clobbered by store
100% gvn load of type double not eliminated in favor of load because it is clobbered by store
253 Norm->x = Pnt->xXx-P0OsS.X; /* Calcualate surface normal */
5% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
5% gvn load of type double eliminated in favor of fmul

NOTrmM- >y = PHL->V-P0O 2

211 static double IntersectObjs(VECTOR *LinP, VECTOR *LinD,
212 VECTOR *Pnt, VECTOR *Norm, TEXTURE **txt) . .
213 { LICM-based LoopVersioning

(-enable-loop-versioning-licm) Fmmr

237 for(obin = 0:; obin < NUMOBJS; objn++) {
99% loop-vectorize loop not vectorized: vectorization is not beneficial and is not explicitly forced
238 Pos = objs[objn].pos;
239 Pos.X -= LinP->X; /* Translate object into "line-space" */
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
240 Pos.y == LinP->y;
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
241 Pos.z -= LinP->2;
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
20% gvn getelementptr eliminated by PRE
242 A=1.0 / (LinD->x*LinD->x + LinD->y*LinD->y + LinD->z*LinD->2);
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
100% gvn load of type double not eliminated in favor of load because it is clobbered by store
100% gvn load of type double not eliminated in favor of load because it is clobbered by store
243 B = (Pos.x*LinD->x + Pos.y*LinD->y + Pos.z*LinD->2z) * A;
244 C = (objs[objn].r*objs[objn].r - Pos.xXx*Pos.X - Pos.y*Pos.y - Pos.z*Pos.z) * A;
245 if((A =C + B*B) > 0.0) { /* ...else no hit */
246 A = sqrt(A);
9% inline sqrt will not be inlined into IntersectObjs because its definition is unavailable
247 if((ttmp = B - A) < EPSILON) ttmp = B + A;
248 if((EPSILON<ttmp) && ((ttmp<t)||(t<0.0))) {
249 t = ttmp;
250 Pnt->x = LinD->x*t; /* Calculate intersection point */
5% slp-vectorizer Stores SLP vectorized
251 Pnt->y = LinD->y*t;
5% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
5% gvn load of type double eliminated in favor of load
252 Pnt->z = LinD->z*t;
5% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
5% gvn load of type double eliminated in favor of load
100% gvn load of type double not eliminated in favor of load because it is clobbered by store
100% gvn load of type double not eliminated in favor of load because it is clobbered by store
253 Norm->X = Pnt->x-PoOS.X; /* Calcualate surface normal */
5% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
5% avn load of tvpe double eliminated in favor of fmul

211
212
213

EE S S SN NS S SN N SN E SN N SN NN E NSNS N NN NNEEEEEEEEEEEEEEEEE (

for(obin = 0:; obin < NUMOBJS; objn++) {
99% version-licm Loop memory access not suitable

237

238

239

240

241

242

243
244
245
246

247
248
249
250

251

252

253

99%

100%

100%

100%
20%

100%
100%
100%
100%
100%

9%

5%

5%
5%

5%
5%
100%
100%

5%
5%

loop-vectorize

licm
licm

licm
gvn

licm
licm
licm
gvn
gvn

inline

slp-vectorizer

licm
gvn

licm
gvn
gvn
gvn

licm
avn

static double IntersectObjs(VECTOR *LinP, VECTOR *LinD,

{

VECTOR *Pnt, VECTOR *Norm, TEXTURE **txt)

loop not vectorized: vectorization is not beneficial and is not explicitly forced

Pos
Pos

Pos

Pos

B =
C =
if(

= objs[obijn].pos;
X == LinP->X;
failed to hoist load with loop-invariant address because the loop may invalidate its value
.Y == LinP->y;
failed to hoist load with loop-invariant address because the loop may invalidate its value
.2 == LinP->2z;
failed to hoist load with loop-invariant address because the loop may invalidate its value
getelementptr eliminated by PRE
1.0 / (LinD->x*LinD->x + LinD->y*LinD->y + LinD->z*LinD->2);
failed to hoist load with loop-invariant address because the loop may invalidate its value

/* Translate object into "line-space" */

failed to hoist load with loop-invariant address because the loop may invalidate its value

Performance opportunity it we can
improve this pass

failed to hoist load with loop-invariant address because the loop may invalidate its value
load of type double not eliminated in favor of load because it is clobbered by store
load of type double not eliminated in favor of load because it is clobbered by store

(Pos.x*LinD->x + Pos.y*LinD->y + Pos.z*LinD->2z) * A;
(ocbjs[obijn].r*objs[objn].r - Pos.xX*Pos.X - Pos.y*Pos.y - Pos.z*Pos.z) * A;
(A =C+ B*B) > 0.0) { /* ...else no hit */
A = sqrt(A);

sqrt will not be inlined into IntersectObjs because its definition is unavailable
if((ttmp = B - A) < EPSILON) ttmp = B + A;
if((EPSILON<ttmp) && ((ttmp<t)||(t<0.0))) {

t = ttmp;

Pnt->x = LinD->x*t;

Stores SLP vectorized
Pnt->y = LinD->y*t;

/* Calculate intersection point */

failed to hoist load with loop-invariant address because the loop may invalidate its value

load of type double eliminated in favor of load
Pnt->2 = LinD->2*t;

failed to hoist load with loop-invariant address because the loop may invalidate its value

load of type double eliminated in favor of load
load of type double not eliminated in favor of load because it is clobbered by store

load of type double not eliminated in favor of load because it is clobbered by store
Norm->X = Pnt->x-PoOS.X; /* Calcualate surface normal */

failed to hoist load with loop-invariant address because the loop may invalidate its value

load of tvpe double eliminated in favor of fmul

211 static double IntersectObjs(VECTOR *LinP, VECTOR *LinD,
212 VECTOR *Pnt, VECTOR *Norm, TEXTURE **txt)

213 { |

EE S S SN NS S SN N SN E SN N SN NN E NSNS N NN NNEEEEEEEEEEEEEEEEE (

237 for(obin = 0:; obin < NUMOBJS; objn++) {
99% version-licm Loop memory access not suitable

Approximate the opportunity by
manually moditying the source

99% loop-vectorize loop not vectorized: vectorization is not beneficial and is not explicitly forced
238 Pos = objs[objn].pos;
239 Pos.X -= LinP->X; /* Translate object into "line-space" */
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
240 Pos.y == LinP->y;
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
241 Pos.z -= LinP->2;
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
20% gvn getelementptr eliminated by PRE
242 A=1.0 / (LinD->x*LinD->x + LinD->y*LinD->y + LinD->z*LinD->2);
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
100% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
100% gvn load of type double not eliminated in favor of load because it is clobbered by store
100% gvn load of type double not eliminated in favor of load because it is clobbered by store
243 B = (Pos.x*LinD->x + Pos.y*LinD->y + Pos.z*LinD->2z) * A;
244 C = (objs[objn].r*objs[objn].r - Pos.xXx*Pos.X - Pos.y*Pos.y - Pos.z*Pos.z) * A;
245 if((A =C + B*B) > 0.0) { /* ...else no hit */
246 A = sqrt(A);
9% inline sqrt will not be inlined into IntersectObjs because its definition is unavailable
247 if((ttmp = B - A) < EPSILON) ttmp = B + A;
248 if((EPSILON<ttmp) && ((ttmp<t)||(t<0.0))) {
249 t = ttmp;
250 Pnt->x = LinD->x*t; /* Calculate intersection point */
5% slp-vectorizer Stores SLP vectorized
251 Pnt->y = LinD->y*t;
5% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
5% gvn load of type double eliminated in favor of load
252 Pnt->z = LinD->z*t;
5% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
5% gvn load of type double eliminated in favor of load
100% gvn load of type double not eliminated in favor of load because it is clobbered by store
100% gvn load of type double not eliminated in favor of load because it is clobbered by store
253 Norm->X = Pnt->x-PoOS.X; /* Calcualate surface normal */
5% licm failed to hoist load with loop-invariant address because the loop may invalidate its value
5% avn load of tvpe double eliminated in favor of fmul

static double IntersectObjs(VECTOR * [restrict]|LinP, VECTOR *[restrict]LrinD,
VECTOR *Pnt, VECTOR *Norm, TEXTURE **txt)

237 for(objn = 0; objn < NUMOBJS; obijn++) {
99% loop-vectorize loop not vectorized: vectorization is not beneficial and is not explicitly forced
238 Pos = objs[objn].pos;
239 Pos.Xx -= LinP->X; /* Translate object into "line-space"” */
100% licm load hoisted
240 Pos.y -= LinP->y;
100% licm load hoisted
241 Pos.z -= LinP->2z;
100% licm load hoisted
20% gvn load eliminated by PRE
20% gvn getelementptr eliminated by PRE
242 A=1.0 / (LinD->x*LinD->x + LinD->y*LinD->y + LinD->z*LinD->2);
100% licm load hoisted
100% licm fmul hoisted
100% licm load hoisted
100% licm fmul hoisted
100% licm fadd hoisted
100% licm load hoisted
100% licm fmul hoisted
100% licm fadd hoisted
100% licm fdiv hoisted
20% gvn load of type double eliminated in favor of load
243 B = (Pos.x*LinD->x + Pos.y*LinD->y + Pos.z*LinD->2z) * A;
244 C = (objs[obijn].r*objs[objn].r - Pos.x*Pos.X - Pos.y*Pos.y - Pos.z*Pos.z) * A;
245 if((A =C + B*B) > 0.0) { /* ...else no hit */
246 A = sqrt(A);
9% inline sqrt will not be inlined into IntersectObjs because its definition is unavailable
247 if((ttmp = B - A) < EPSILON) ttmp = B + A;
248 if((EPSILON<ttmp) && ((ttmp<t) | | (t<0.0))) {
249 t = ttmp;
250 Pnt->x = LinD->x*t; /* Calculate intersection point */
251 Pnt->y = LinD->y*t;
5% licm failed to hoist load with loop-invariant address because load is conditionally executed
5% gvn load of type double eliminated in favor of phi
252 Pnt->z = LinD->z*t;
5% licm failed to hoist load with loop-invariant address because load is conditionally executed
5% gvn load of type double eliminated in favor of phi

253 Norm->xX = Pnt->x-PoOS.X; /* Calcualate surface normal */

static double IntersectObjs(VECTOR * [restrict]|LinP, VECTOR *[restrict]rinp,
VECTOR *Pnt, VECTOR *Norm, TEXTURE **txt)

237 for(objn = 0; objn < NUMOBJS; obijn++) {
99% loop-vectorize loop not vectorized: vectorization is not beneficial and is not explicitly forced
238 Pos = objs[objn].pos;
239 Pos.Xx -= LinP->X; /* Translate object into "line-space"” */
100% licm load hoisted
240 Pos.y == LinP->y;
100% licm load hoisted
241 Pos.z -= LinP->2;
100% licm load hoisted
20% gvn load eliminated by PRE
20% gvn getelementptr eliminated by PRE
242 1.0 / (LinD->x*LinD->x + LinD->y*LinD->y + LinD->2z*LinD->2);
100% load hoisted
100% fmul hoisted
100% load hoisted
100% fmul hoisted
100% fadd hoisted
100% load hoisted
100% fmul hoisted
100% fadd hoisted
100% fdiv hoisted
20% gvn load of type double eliminated in favor of load
243 B = (Pos.x*LinD->x + Pos.y*LinD->y + Pos.z*LinD->2z) * A;
244 C = (objs[objn].r*objs[objn].r - Pos.xX*Pos.X - Pos.y*Pos.y - Pos.z*Pos.z) * A;
245 if((A =C + B*B) > 0.0) { /* ...else no hit */
246 A = sqrt(A);
9% inline sqrt will not be inlined into IntersectObjs because its definition is unavailable
247 if((ttmp = B - A) < EPSILON) ttmp = B + A;
248 if((EPSILON<ttmp) && ((ttmp<t) | | (t<0.0))) {
249 t = ttmp;
250 Pnt->x = LinD->x*t; /* Calculate intersection point */
251 Pnt->y = LinD->y*t;
5% licm failed to hoist load with loop-invariant address because load is conditionally executed
5% gvn load of type double eliminated in favor of phi
252 Pnt->z = LinD->z*t;
5% licm failed to hoist load with loop-invariant address because load is conditionally executed
5% gvn load of type double eliminated in favor of phi

253 Norm->xX = Pnt->x-PoOS.X; /* Calcualate surface normal */

static double IntersectObjs(VECTOR * [restrict]LinP, VECTOR *[restrict]LinD,
VECTOR *Pnt, VECTOR *Norm, TEXTURE **txt)

237 for(objn = 0; objn < NUMOBJS; objn++) {
99% loop-vectorize loop not vectorized: vectorization is not beneficial and is not explicitly forced
238 Pos = objs[objn].pos;
239 Pos.X -= LinP->X; /* Translate object into "line-space" */
100% licm load hoisted
240 Pos.y -= LinP->y;
100% licm lnad hnisted
241
100% licm
20% gvn
20% vn
242 . .
ynamic Instruction Count
100% licm
100% licm
100% licm
100% licm e u C e y
100% licm
100% licm
100% licm 1 1 O/
100% licm o
20% gvn
243
244
245
246 A = sqrt(A);
9% inline sqrt will not be inlined into IntersectObjs because its definition is unavailable
247 if((ttmp = B - A) < EPSILON) ttmp = B + A;
248 if((EPSILON<ttmp) && ((ttmp<t)||(t<0.0))) {
249 t = ttmp;
250 Pnt->x = LinD->x*t; /* Calculate intersection point */
251 Pnt->y = LinD->y*t;
5% licm failed to hoist load with loop-invariant address because load is conditionally executed
5% gvn load of type double eliminated in favor of phi
252 Pnt->z = LinD->2z*t;
5% licm failed to hoist load with loop-invariant address because load is conditionally executed
5% gvn load of type double eliminated in favor of phi

253 Norm->x = Pnt->x-PoOsS.X:; /* Calcualate surface normal */

static double IntersectObjs(VECTOR * [restrict]LinP, VECTOR *[restrict]LinD,
VECTOR *Pnt, VECTOR *Norm, TEXTURE **txt)

237 for(objn = 0; objn < NUMOBJS; objn++) {
99% loop-vectorize loop not vectorized: vectorization is not beneficial and is not explicitly forced
238 Pos = objs[objn].pos;
239 Pos.X -= LinP->X; /* Translate object into "line-space" */
100% licm load hoisted
240 Pos.y -= LinP->y;
100% licm lnad hnisted
241
100% licm
20% gvn
20% vn
242
100% licm
100% licm
erformance headroom
100% licm
100% licm
100% licm O
100% licm o
100% licm
100% licm
20% gvn
243
244
245
246 A = sqrt(A);
9% inline sqrt will not be inlined into IntersectObjs because its definition is unavailable
247 if((ttmp = B - A) < EPSILON) ttmp = B + A;
248 if((EPSILON<ttmp) && ((ttmp<t)||(t<0.0))) {
249 t = ttmp;
250 Pnt->x = LinD->x*t; /* Calculate intersection point */
251 Pnt->y = LinD->y*t;
5% licm failed to hoist load with loop-invariant address because load is conditionally executed
5% gvn load of type double eliminated in favor of phi
252 Pnt->z = LinD->2z*t;
5% licm failed to hoist load with loop-invariant address because load is conditionally executed
5% gvn load of type double eliminated in favor of phi

253 Norm->x = Pnt->x-PoOsS.X:; /* Calcualate surface normal */

Freebench/distray: summary

* Found optimization opportunity while staying in the high-level view
 Reconstructed the reason for missed optimization
 High-level view exposed that the gain may be substantial
o (Got iImmediate feedback of the desired effect on the prototype

» |dentified the pass for low-level debugging

53

Check Out More Examples

http://lab.llvm.org:8080/artifacts/opt-view_test-suite

http://lab.llvm.org:8080/artifacts/opt-view_test-suite

Development [Iimeline

® |[nitial version on LLVM trunk

Now
New tools
using
Optimization ® Compiler Developer Tool
Records

® (Code Author Tool

60

Compiler Developer Tool: Status

Written in Python

HOOK up new passes

Improve diagnostics quality for existing passes
o Perform extra analysis for insightful messages

Improve Ul

61

Compiler Developer Tool: Status

Written in Python

HOOK up new passes

Improve diagnos* .y for existing passes
o Perform 4ysis for insightful messages

Improve t

61

Code Author Tool: Wishlist

e Suggest specific actions

 E.g. for the LICM case: if the two pointers can never point to the
same object consider using ‘restrict’

 Add new ‘recommendation” analysis passes to detect opportunity
and suggest:

e Source annotation to enable off-by-default passes (aggressive
loop transformations, non-temporal stores)

* Refactoring: data transformations

62

Code Author Tool: Wishlist

e Suggest specific actions

* E£.g.for the LICM case: if the tw~ IS can never point to the
same object consider using-

 Add new “recommens’ alysis passes to detect opportunity
and suggest:

e Source a* (O enable off-by-default passes (aggressive
l00p trans 4llons, non-temporal stores)

* Refactoring: data transformations

62

Optimization Records: New Tools

» Llvm—-opt—-report
 Performance regression analysis

o Optimization statistics with the ability to zoom into the particular
optimization

o Bottom-up search for performance opportunities

o See all the LICM opportunities like in Freebench/distray

63

Optimization Records: New Tools

» Llvm—-opt—-report

 Performance regression analysis

o thimizati(benchmark, hotspot, hotness
. . optimizations
optimizatio 0ass =
type =
name =
* Bottom-up hotness

o See all the LICM opportunities like in Freebench/distray

63

Optimization Records: New Tools

» Llvm—-opt—-report
 Performance regression analysis

o Optimization statistics with the ability to zoom into the particular
optimization

o Bottom-up search for performance opportunities

o See all the LICM opportunities like in Freebench/distray

* Allows finding opportunities that occur with high frequency but not
N the hottest code

63

Acknowledgement

e [yler Nowickl
e John McCall

e Hal Finkel

Q&A

SIBsim4
(Multisource/Applications)

Finding Performance Opportunity

60

loop-vectorize
loop-vectorize

licm
gvn
licm

inline
inline
licm
licm

SIBsim4

for (j = 1 + 1; J < stop; Jj++) {
loop not vectorized: loop control flow is not understood by vectorizer
loop not vectorized: use -Rpass-analysis=loop-vectorize for more info
exon p t n = mCol->e.exon[]];
failed to hoist load with loop-invariant address
load eliminated by PRE
failed to hoist load with loop-invariant address
if (lies after p(m, n) && m->Score >= n->Score) {
lies_after_p can be inlined into link_msps with cost=-14785 (threshold=325)
lies_after_p inlined into link_msps
failed to hoist load with loop-invariant address
failed to hoist load with loop-invariant address

unsigned int penalty;
penalty = abs(n->froml - m->froml) >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated
failed to hoist load with loop-invariant address
penalty += abs(n->from2 - m->from2) >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated
failed to hoist load with loop-invariant address
if (penalty < m->Score) {
n->Score = m->Score - penalty;
n->prev = 1i;
shl hoisted
and hoisted

5
—

5
—

5
—

5
—

=
—

5
—

=
—

5
—

5
—

5
—

=
—

5
—

5
—

5
—

5
—

=
—

=
~
o 2 [2 @

5
—

=
—

’ |
w U’
| |
(n m

2 3 [
w 0w W
5B G

3333
w w v W
T O O O
@ o o |o

3333
w w v W
T O O O
@ o o |o

o O O O
o o o o

2 2
w W
3 13

SIBsim4

for (j = 1 + 1; J < stop; Jj++) {
loop-vectorize loop not vectorized: loop control flow is not understood by vectorizer
loop-vectorize loop not vectorized: use -Rpass-analysis=loop-vectorize for more info
exon p t n = mCol->e.exon[]];
licm failed to hoist load with loop-invariant address
gvn load eliminated by PRE

licm failed to hoist load with loop-invariant address
if (lies after p(m, n) && m->Score >= n->Score) {

=
=

=

A

| |
o W
o |
» |»

=
=

5 5
AN IR
2 3 [
w 0w W
5B G

5
=

inline lies_after_p can be inlined into link_msps with cost=-14785 (threshold=325)
inline lies_after_p inlined into link_msps
licm failed to hoist load with loop-invariant address
licm falled to hoist load with loop-invariant address

=
=

=
=

3333
w w v W
T O O O
@ o o |o

5
=

unsigned int penalty;
penalty = abs(n->froml - m->froml) >> 15;

5
=

licm getelementptr hoisted
licm failed to hoist load with loop-invariant address
gvn load of type 132 eliminated

licm failed to hoist load with loop-invariant address
penalty += abs(n->from2 - m->from2) >> 15;

licm getelementptr hoisted
licm failed to hoist load with loop-invariant address
gvn load of type 132 eliminated

licm failed to hoist load with loop-invariant address
if (penalty < m->Score) {

=
=

=
=

3333
w w v W
T O O O
@ o o |o

5
=

=
=

5
=

5 5
AN IR
22 2 2
w O w W
5853

n->Score = m->Score - penalty;
n->prev = ij;

shl hoisted

and hoisted

5
=

5
~
2 2
w W
3 13

loop-vectorize
loop-vectorize

licm
gvn
licm

inline
inline
licm
licm

SIBsim4

for (j = 1 + 1; J < stop; Jj++) {
loop not vectorized: loop control flow is not understood by vectorizer
loop not vectorized: use -Rpass-analysis=loop-vectorize for more info
exon p t n = mCol->e.exon[]];
failed to hoist load with loop-invariant address
load eliminated by PRE
failed to hoist load with loop-invariant address
if (lies after p(m, n) && m->Score >= n->Score) {
lies_after_p can be inlined into link_msps with cost=-14785 (threshold=325)
lies_after_p inlined into link_msps

failed to hoist load with loop-invariant address

falled to hoist load with loop-invariant address

unsigned int penalty;
penalty = abs(n->froml - m->froml) >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated
failed to hoist load with loop-invariant address
penalty += abs(n->from2 - m->from2) >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated
failed to hoist load with loop-invariant address
if (penalty < m->Score) {
n->Score = m->Score - penalty;
n->prev = 1i;
shl hoisted
and hoisted

5
—

5
—

5
—

5
—

=
—

5
—

=
—

5
—

5
—

5
—

=
—

5
—

5
—

5
—

5
—

=
—

=
~
o 2 [2 @

5
—

=
—

| |
w U’
| |
(n m

2 3 [
w 0w W
5B G

3333
w w v W
T O O O
@ o o |o

3333
w w v W
T O O O
@ o o |o

o O O O
o o o o

2 2
w W
3 13

loop-vectorize
loop-vectorize

licm
gvn
licm

inline
inline
licm
licm

SIBsim4

for (j = 1 + 1; J < stop; Jj++) {
loop not vectorized: loop control flow is not understood by vectorizer
loop not vectorized: use -Rpass-analysis=loop-vectorize for more info
exon p t n = mCol->e.exon[]];
failed to hoist load with loop-invariant address
load eliminated by PRE
failed to hoist load with loop-invariant address
if (lies after p(m, n) && m->Score >= n->Score) {
n be inlined into link_msps with cost=-14785 (threshold=325)
lies_after_p inlined into link_msps
failed to hoist load with loop-invariant address
failed to hoist load with loop-invariant address

unsigned int penalty;
penalty = abs(n->froml - m->froml) >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated
failed to hoist load with loop-invariant address
penalty += abs(n->from2 - m->from2) >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated
failed to hoist load with loop-invariant address
if (penalty < m->Score) {
n->Score = m->Score - penalty;
n->prev = 1i;
shl hoisted
and hoisted

5
—

5
—

5
—

5
—

=
—

5
—

=
—

5
—

5
—

5
—

=
—

5
—

5
—

5
—

5
—

=
—

=
~
o 2 [2 @

5
—

=
—

’ |
w U’
| |
(n m

2 3 [
w 0w W
5B G

3333
w w v W
T O O O
@ o o |o

3333
w w v W
T O O O
@ o o |o

o O O O
o o o o

2 2
w W
3 13

SIBsim4

ljes after p(exan p t a, exan o t b)

static inline nt

wa have some overlap, make sure ly & small part.

if (b->froml > a->tol) {

unsigned int pl;
unsigned int p2;
unsigned int p3;
if (h->from2 > a->to2)

return 1;

if (b->fram2 < a->fram2 || b->to2 < a->t02)

stelementpt

return 0;
= p->fromz2 - a->from2;
= a->tod - b->from2:;
= p->tn2 - a->taZ;
if (pl > p2 && B3 > p2 && 2l > options.K && p3 > options.K)
return 1;
alse if (b->fram2 > a->to2) {
unsigned int pl;
unsigned int p2;
unsigned int p3;
if (b->Iroml < a->froml

return 0;
pl = b->froml - a->froml;
p2 a->tol - b->froml;
p3 D->tol a->tol;
if (pl > p2 & p3 > p2 && »l > options.K a& pl > optiaons.K)
return 1;
}

return 0;

SIBsim4

for (j = 1 + 1; J < stop; Jj++) {
loop-vectorize loop not vectorized: loop control flow is not understood by vectorizer
loop-vectorize loop not vectorized: use -Rpass-analysis=loop-vectorize for more info
exon p t n = mCol->e.exon[]];
licm failed to hoist load with loop-invariant address
gvn load eliminated by PRE

licm failed to hoist load with loop-invariant address
if (lies after p(m, n) && m->Score >= n->Score) {

=
=

=

A

| |
o W
o |
» |»

=
=

5 5
AN IR
2 3 [
w 0w W
5B G

5
=

inline lies_after_p can be inlined into link_msps with cost=-14785 (threshold=325)
inline lies_after_p inlined into link_msps
licm failed to hoist load with loop-invariant address
licm falled to hoist load with loop-invariant address

=
=

=
=

3333
w w v W
T O O O
@ o o |o

5
=

unsigned int penalty;
penalty = abs(n->froml - m->froml) >> 15;

5
=

licm getelementptr hoisted
licm failed to hoist load with loop-invariant address
gvn load of type 132 eliminated

licm failed to hoist load with loop-invariant address
penalty += abs(n->from2 - m->from2) >> 15;

licm getelementptr hoisted
licm failed to hoist load with loop-invariant address
gvn load of type 132 eliminated

licm failed to hoist load with loop-invariant address
if (penalty < m->Score) {

=
=

=
=

3333
w w v W
T O O O
@ o o |o

5
=

=
=

5
=

5 5
AN IR
22 2 2
w O w W
5853

n->Score = m->Score - penalty;
n->prev = ij;

shl hoisted

and hoisted

5
=

5
~
2 2
w W
3 13

loop-vectorize
loop-vectorize

licm
gvn
licm

inline
inline
licm
licm

SIBsim4

for (j = 1 + 1; J < stop; Jj++) {
loop not vectorized: loop control flow is not understood by vectorizer
loop not vectorized: use -Rpass-analysis=loop-vectorize for more info
exon p t n = mCol->e.exon[]];
failed to hoist load with loop-invariant address
load eliminated by PRE
failed to hoist load with loop-invariant address
if (lies after p(m, n) && m->Score >= n->Score) {
lies_after_p can be inlined into link_msps with cost=-14785 (threshold=325)
lies_after_p inlined into link_msps
failed to hoist load with loop-invariant address
failed to hoist load with loop-invariant address

unsigned int penalty;
penalty = abs(n->froml - m->froml) >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated
failed to hoist load with loop-invariant address
penalty += abs(n->from2 - m->from2) >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated
failed to hoist load with loop-invariant address
if (penalty < m->Score) {
n->Score = m->Score - penalty;
n->prev = 1i;
shl hoisted
and hoisted

Look at
the loads

5
—

5
—

5
—

5
—

=
—

5
—

=
—

5
—

5
—

5
—

=
—

5
—

5
—

5
—

5
—

=
—

=
~
o 2 [2 @

5
—

=
—

’ |
w U’
| |
(n m

2 3 [
w 0w W
5B G

3333
w w v W
T O O O
@ o o |o

3333
w w v W
T O O O
@ o o |o

o O O O
o o o o

2 2
w W
3 13

loop-vectorize
loop-vectorize

licm
gvn
licm

inline
inline
licm
licm

SIBsim4

for (j = 1 + 1; J < stop; Jj++) {
loop not vectorized: loop control flow is not understood by vectorizer
loop not vectorized: use -Rpass-analysis=loop-vectorize for more info
exon p t n = mCol->e.exon[]];
failed to hoist load with loop-invariant address
load eliminated by PRE
failed to hoist load with loop-invariant address
if (lies after p(m, n) &&= n->Score) {
lies_after_p can be inlined into link_msps with cost=-14785 (threshold=325)
lies_after_p inlined into link_msps
failed to hoist load with loop-invariant address
failed to hoist load with loop-invariant address

unsigned int penalty;
penalty = abs(n->froml >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated
failed to hoist load with loop-invariant address
penalty += abs(n->from2 >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated
failed to hoist load with loop-invariant address
if (penalty < m->Score) {
n->Score = m->Score - penalty;
n->prev = 1i;
shl hoisted
and hoisted

Look at
the loads

5
—

5
—

5
—

5
—

=
—

5
—

=
—

5
—

5
—

5
—

=
—

5
—

5
—

5
—

5
—

=
—

=
~
o 2 [2 @

5
—

=
—

| |
w U’
| |
(n m

2 3 [
w 0w W
5B G

3333
w w v W
T O O O
@ o o |o

3333
w w v W
T O O O
@ o o |o

o O O O
o o o o

2 2
w W
3 13

SIBsim4

ljes after p(exan p t a, exan o t b)

static inline nt

wa have some overlap, make sure ly & small part.

getelementptr heisted
failed to hoist load with loop-invariant address
failed to hoist load with loop-invariant address
unsigned int pl;
unsigned int p2;
unsigned int
if (bh->®ram2

getelementptr hoisted
failed to hoist load with lapp-invariant address
failed to hoist load with loop-invariant address

return 1;
if (h->fram2 -f. || B->to2 < a->t02)
getelementptr hoisted
failed to hoist load with laopp-invariant address
failed to hoist load with loop-invariant address
return 0;
pl = b->from2 - a->from2;
pe2 = a->to2 - b->from2;
p3 = b->ta2 - a->taZ;
if (pl > p2 && B3 > p2 && 2l > options.K && p3 > options.K)
return 1;
alse if (b->fram2 > a->to2) {
unsigned int pl;
unsigned int p2;
unsigned int p3;
if (b->Zfroml -: || b->tol < a->tol)
getelementptr hoisted
failed to hoist load with laopp-invariant address
failed to hoist load with loop-invariant address
return 0;
pl = b->froml - a->froml;
p2 a->tol - b->froml;
p3 o->tol a->tol:
if (pl > p2 & p3 > p2 && »l > options.K a& pl > optiaons.K)
return 1;
}

return 0;

loop-vectorize
loop-vectorize

licm
gvn
licm

inline
inline
licm
licm

SIBsim4

for (j = 1 + 1; J < stop; Jj++) {
loop not vectorized: loop control flow is not understood by vectorizer
loop not vectorized: use -Rpass-analysis=loop-vectorize for more info
exon p t n = mCol->e.exon[]];
failed to hoist load with loop-invariant address
load eliminated by PRE
failed to hoist load with loop-invariant address
if (lies after p(m, n) && m->Score >= n->Score) {
lies_after_p can be inlined into link_msps with cost=-14785 (threshold=325)
lies_after_p inlined into link_msps
failed to hoist load with loop-invariant address
failed to hoist load with loop-invariant address

unsigned int penalty;
penalty = abs(n->froml - m->froml) >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated
failed to hoist load with loop-invariant address
penalty += abs(n->from2 - m->from2) >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated
failed to hoist load with loop-invariant address

if (penalty < m->Score) {
n->Score = m->Score - penalty; LOOk at

n->prev = 1i;

shl hoisted the StoreS

and hoisted

5
—

5
—

5
—

5
—

=
—

5
—

=
—

5
—

5
—

5
—

=
—

5
—

5
—

5
—

5
—

=
—

=
~
o 2 [2 @

5
—

=
—

’ |
w U’
| |
(n m

|3 F3|3
» o |»
o & [@

3313 |3
o o |0 o
o O O O
> o |0 |o

3313 |3
o o |0 o
o O O O
> o |0 |o

o O O O
o o o o

2 2
w W
3 13

SIBsim4

for (j = 1 + 1; J < stop; Jj++) {
loop-vectorize loop not vectorized: loop control flow is not understood by vectorizer
loop-vectorize loop not vectorized: use -Rpass-analysis=loop-vectorize for more info
exon p t n = mCol->e.exon[]];
licm failed to hoist load with loop-invariant address
gvn load eliminated by PRE
licm failed to hoist load with loop-invariant address
if (lies after p(m, n) && m->Score >= n->Score) {
inline lies_after_p can be inlined into link_msps with cost=-14785 (threshold=325)
inline lies_after_p inlined into link_msps
licm failed to hoist load with loop-invariant address

licm failed to hoist load with loop-invariant address
unsigned int penalty;

5
—

=

A

| |
o W
o |
» (o

5
—

S5 |5
AN IR
2 3 [
w 0w W
5B G

5
—

=
—

5
—

3333
w w v W
T O O O
@ o o |o

5
—

penalty = abs(n->froml - m->froml) >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated
failed to hoist load with loop-invariant address
penalty += abs(n->from2 - m->from2) >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated
failed to hoist load with loop-invariant address

if (penalty < m->Score) ({ Look at
sh.l .hoisted the StoreS

and hoisted

5
—

=
—

5
—

3333
w w v W
T O O O
@ o o |o

5
—

5
—

5
—

S5
~
22 2 2
w O w W
5853

5
—

5
—

S5
~
2 2
w W
3 13

loop-vectorize
loop-vectorize

licm
gvn
licm

inline
inline
licm
licm

SIBsim4

for (j = 1 + 1; J < stop; Jj++) {
loop not vectorized: loop control flow is not understood by vectorizer
loop not vectorized: use -Rpass-analysis=loop-vectorize for more info
exon p t n = mCol->e.exon[]];
failed to hoist load with loop-invariant address
load eliminated by PRE
failed to hoist load with loop-invariant address
if (lies after p(m, n) && m->Score >= n->Score) {
lies_after_p can be inlined into link_msps with cost=-14785 (threshold=325)
lies_after_p inlined into link_msps
failed to hoist load with loop-invariant address
failed to hoist load with loop-invariant address

unsigned int penalty;
penalty = abs(n->froml - m->froml) >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated
failed to hoist load with loop-invariant address
penalty += abs(n->from2 - m->from2) >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated

failed to hoist load with loop-invariant address
if (penalty < m->Score) {

n->Score = m->Score - penalty; Can ‘m, and ,n,

n->prev = 1i;

shl hoisted rea"y aliaS?

and hoisted

5
—

5
—

5
—

5
—

=
—

5
—

=
—

5
—

5
—

5
—

=
—

5
—

5
—

5
—

5
—

=
—

=
~
o 2 [2 @

5
—

=
—

| |
w U’
| |
(n m

2 3 [
w 0w W
5B G

3333
w w v W
T O O O
@ o o |o

3333
w w v W
T O O O
@ o o |o

o O O O
o o o o

2 2
w W
3 13

loop-vectorize
loop-vectorize

licm
gvn
licm

inline
inline
licm
licm

SIBsim4

for (3 =i+1;j<stop; 3+) { Probably not!

loop not vectorized: loop control flow is not unuerstovu vy vecrurizer
loop no ' ; is=loop-vectorize for more info
alled to hoist load with loop-invariant address
load eliminated by PRE
failed to hoist load with loop-invariant address
if (lies after p(m, n) && m->Score >= n->Score) {
lies_after_p can be inlined into link_msps with cost=-14785 (threshold=325)
lies_after_p inlined into link_msps
failed to hoist load with loop-invariant address
failed to hoist load with loop-invariant address

unsigned int penalty;
penalty = abs(n->froml - m->froml) >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated
failed to hoist load with loop-invariant address
penalty += abs(n->from2 - m->from2) >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated
failed to hoist load with loop-invariant address
if (penalty < m->Score) {
n->Score = m->Score - penalty;
n->prev = 1i;
shl hoisted
and hoisted

5
—

5
—

5
—

5
—

=
—

5
—

=
—

5
—

5
—

5
—

=
—

5
—

5
—

5
—

5
—

=
—

=
~
o 2 [2 @

5
—

=
—

| |
w U’
| |
(n m

2 3 [
w 0w W
5B G

3333
w w v W
T O O O
@ o o |o

3333
w w v W
T O O O
@ o o |o

o O O O
o o o o

2 2
w W
3 13

SIBsim4

exon_p_t m = mCol->e.exon[i];
for (3 = i + 1; j < stop; 3++) { We need to use ‘restrict’

loop-vectorize loop not vectorized: loop control flow is not ur

loop-vectorize looD NQ ' is=loof or hOiSt manua"y

licm alled to hoist load with loop-invariant address
gvn load eliminated by PRE

licm failed to hoist load with loop-invariant address
if (lies after p(m, n) && m->Score >= n->Score) {

5
—

=

A

| |
o W
o |
» (o

5
—

S5 |5
AN IR
2 3 [
w 0w W
5B G

5
—

inline lies_after_p can be inlined into link_msps with cost=-14785 (threshold=325)
inline lies_after_p inlined into link_msps
licm failed to hoist load with loop-invariant address
licm failed to hoist load with loop-invariant address

=
—

5
—

3333
w w v W
T O O O
@ o o |o

5
—

unsigned int penalty;
penalty = abs(n->froml - m->froml) >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated
failed to hoist load with loop-invariant address
penalty += abs(n->from2 - m->from2) >> 15;
getelementptr hoisted
failed to hoist load with loop-invariant address
load of type i32 eliminated
failed to hoist load with loop-invariant address

5
—

=
—

5
—

3 13|
5

2 2 |2 2
w w »w W
2R E R

5
—

5
—

5
—

5

=
333 3
w w w Ww
T O O O
> o o |o

if (penalty < m->Score) ({
n->Score = m->Score - penalty;
n->prev = ij;
shl hoisted
and hoisted

5
—

S5
~
2 2
w W
3 13

SIBsim4

exon t mm = *m;
for (j =1 + 1; j < stop; j++) {
exon p t n = mCol->e.exon[]];

if (lies after p(&mm, n) && mm.Score >= n->Score) {
unsigned int penalty;

penalty = abs(n->froml - mm.froml) >> 15;

penalty += abs(n->from2 - mm.from2) >> 15;
1f (penalty < mm.Score) {

n->Score = mm.Score - penalty;
n->prev = 1i;

81

SIBsim4

exon t mm = *m;
for (j =1 + 1; j < stop; j++) {
exon p t n = mCol->e.exon[]];

if|(lies after p(&mm, n &&>= n->Score) {

unsigned int penalty;
penalty = abs(n->froml - >> 15;

penalty += abs(n->from2 - >> 15;

if (penalty <[mm.Score] {
n->Score =[m.Score] - penalty;

n->prev = 1;

82

SIBsim4

846 excn t mm = *m;
847 for (J = 1 + 1; j < stop; J++) {
100% loop-vectorize loap not vectorized: loop control flow is not understood by vectorizer link_msps
100% loop-vectorize locp not vectorized: use -Rpass-analysis=loop-vectorize for more info link_msps
818 exon p t n = mCol->e.exon[]];
99% licm failed to hoist load with loop-invariant address because the loop may invalidate its value link_msps
100% gvn load of type %struct._exon_t** not eliminated in favor of load because it is clobbered by store link_msps
100% gvn load eliminated by PRE link_msps
0% gvn load of type %struct._exon_t** not eliminated in favor of load because it is clobbered by store link_msps
99% licm failed to hoist load with loop-invariant address because the loop may invalidate its value link_msps
849 if (lies after p(&mm, n) && mm.Score >= n->Score) {
97% inline lies_afier_p can be inlined into link_msps with cost=-14805 (threshold=325) link_msps
97% inline lies_afier_p inlined into link_msps link_msps
850 unsigned int penalty;
851 penalty = abs(n->froml - mm.froml) >> 15;
3% gvn load of type i32 eliminated link_msps
852 penalty += abs(n->from2 - mm.from2) >> 15;
3% avn load of type i32 eliminated link msps
853 if (penalty < mm.Score) {
854 n->Score = mm.Score - penalty:;
855 n->prev = 1ij;
3% licm shl hoisted link_msps
3% licm and hoisted link_msps
856 }
857 }

858 }

SIBsim4

712 static inline int

713 _ies after p(exon p t a, exon p t b)

714

715 /* When we have some overlap, make sure it is only a small part. */
716 [¥ cmmc—— e —————

77 eeecccccccccccccccae--

718 | pl p2 | p3 ¥/

719

720 if (b->froml > a->tol) {

721 unsigned int pl;

722 unsigned int p2;

723 unsigned int p3;

724 if (b->from2 > a->to2)

725 return 1;

726 if (b->from2 < a->from2 || b->toZ2 < a->to2)
727 return 0;

728 pl = b-—>from2 - a->from2;

729 p2 = a->t02 - b->from2;

730 p3 = b->to2 - a->to2;

731 if (pl > p2 && p3 » p2 && pl » options.K && p3 > options.K)
732 return 1;

733 } else if (b->from2 > a->to2) {

734 unsigned int pl;

735 unsigned int p2;

736 unsigned int p3;

737 if (b->froml < a->froml || b->tol < a->tol)
738 return 0;

/39 pl = b->froml - a->froml;

740 p2 = a->tol - b->froml;

741 p3 = b->tol - a->tol;

742 if (pl > p2 && p3 > p2 && pl > options.K && p3 > options.K)
743 return 1;

744 }

745 return 0;

746 }

