
Compiler-assisted
Performance Analysis

Adam Nemet
Apple

anemet@apple.com

Compiler
Optimization

X, Y

2

User

Hotspot

Bottleneck

Some Optimizations?
Compiler

Optimization
X, Y

2

User

Hotspot

Bottleneck Compiler

Hotspot

Legality
Cost Model

Some Optimizations?
Compiler

Optimization
X, Y

2

User

Hotspot

Bottleneck Compiler

Hotspot

Legality
Cost Model

Some Optimizations?
Compiler

Optimization
X, Y

Disassemble

2

User

Hotspot

Bottleneck Compiler

Hotspot

Legality
Cost Model

-debug-only

Some Optimizations?
Compiler

Optimization
X, Y

2

User

Hotspot

Bottleneck Compiler

Hotspot

Legality
Cost Model

Optimization
Diagnostics

Some Optimizations?
Compiler

Optimization
X, Y

2

User

Hotspot

Bottleneck Compiler

Hotspot

Legality
Cost Model

Optimization Diagnostics in LLVM

• Supported in LLVM

• Only a small number of passes emit them

• -Rpass options to enable them in the compiler output

3

foo.c:8:5: remark: accumulate inlined into compute_sum[-Rpass=inline]
 accumulate(arr[i], sum);
 ^

Optimization Diagnostics in LLVM

• Supported in LLVM

• Only a small number of passes emit them

• -Rpass options to enable them in the compiler output

• For large programs, the output of -Rpass is noisy and unstructured

3

4

4

Remarks for hot and cold
code are intermixed

Messages appear
in no particular order

Messages from successful and failed
optimizations are dumped together

How can we make
 this information

accessible and actionable?

Wish List

• All in one place: Optimizations Dashboard

• At a glance: See high-level interaction between optimizations for
targeted low-level debugging

• Filtering: Noise-level should be minimized by focusing on the hot
code

• Integration: Display hot code and the optimizations side-by-side

5

opt-viewer

6

Approach

• Extend existing optimization remark infrastructure

• Add the new optimizations

• Add ability to output remarks to a data file

• Visualize data in HTML

• Targeting compiler developers initially

7

Example

9

Work Flow

$ clang -O3 —fsave-optimization-record -c foo.c

$ utils/opt-viewer/opt-viewer.py foo.opt.yaml html

$ open html/foo.c.html

11

Successful Optimizations

13

Remarks
appear inline under
the referenced line

Name of the pass
Green for successful

optimization

Further details
about the optimization

Successful Optimizations

14

Column aligned with
the expression

HTML link to
facilitate further

analysis

Successful Optimizations

15

Remarks in white
are Analysis remarks

Optimizations can
expose interesting

analyses

Missed Optimizations

15

Missed Optimizations

16

Red means failed
optimization

22

ORE.emit(OptimizationRemarkAnalysis("inline", "CanBeInlined", Call)
 << NV("Callee", Callee) << " can be inlined into “ << NV("Caller", Caller)
 << " with cost=" << NV("Cost", IC.getCost())
 << " threshold=“ << NV("Threshold", Threshold));

OptimizationRemarkEmitter

foo.c:8:5: remark: accumulate can be inlined into compute_sum with cost=-5 (threshold=487) [-Rpass-analysis=inline]
 accumulate(arr[i], sum);
 ^

LLVM Changes
Inliner LoopVectorizer

Pass pipeline

-Rpass-analysis=inline

old

new

IR IR

22

ORE.emit(OptimizationRemarkAnalysis("inline", "CanBeInlined", Call)
 << NV("Callee", Callee) << " can be inlined into “ << NV("Caller", Caller)
 << " with cost=" << NV("Cost", IC.getCost())
 << " threshold=“ << NV("Threshold", Threshold));

OptimizationRemarkEmitter

YAML

LLVM Changes
Inliner LoopVectorizer

-fsave-optmization-record

Pass pipeline

enables source line
 debug info

(-gline-tables-only)

old

new

IR IR

22

ORE.emit(OptimizationRemarkAnalysis("inline", "CanBeInlined", Call)
 << NV("Callee", Callee) << " can be inlined into “ << NV("Caller", Caller)
 << " with cost=" << NV("Cost", IC.getCost())
 << " threshold=“ << NV("Threshold", Threshold));

OptimizationRemarkEmitter

YAML

LLVM Changes
Inliner LoopVectorizer

-fsave-optmization-record

Pass pipeline

enables source line
 debug info

(-gline-tables-only)

old

new

IR IR

--- !Analysis
Pass: inline
Name: CanBeInlined
DebugLoc: { File: s.cc, Line: 8, Column: 5 }
Function: compute_sum
Args:
 - Callee: accumulate
 DebugLoc: { File: s.cc, Line: 1, Column: 0 }
 - String: ' can be inlined into '
 - Caller: compute_sum
 DebugLoc: { File: s.cc, Line: 5, Column: 0 }
 - String: ' with cost='
 - Cost: '-5'
 - String: ' (threshold='
 - Threshold: '487'
 - String: ')'
...

opt-viewer
YAML

utils/opt-viewer/opt-viewer.py

index.html
foo.o.html

23

old

new

Index

24

Index

24

Noisy:
Most of this code not hot

Sort by hotness

IR

Use PGO for Hotness
Inliner LoopVectorizer

OptimizationRemarkEmitter

YAML

LazyBlockFrequencyInfo

--- !Analysis
Pass: inline
Name: CanBeInlined
DebugLoc: { File: s.cc, Line: 8, Column: 5 }
Function: compute_sum
Hotness: 3
Args:
 - Callee: accumulate
 DebugLoc: { File: s.cc, Line: 1, Column: 0 }
 - String: ' can be inlined into '
 - Caller: compute_sum
 DebugLoc: { File: s.cc, Line: 5, Column: 0 }
 - String: ' with cost='
 - Cost: '-5'
 - String: ' (threshold='
 - Threshold: '487'
 - String: ')'
...

BlockFrequencyInfo
25

old

new
Pass pipeline

IR

Hotness

Relative to
maximum hotness,
NOT total time %

27

Optimizations Recorded
Function Inliner

Loop Vectorizer

Loop Unroller

LoopDataPrefetch

28

LICM

GVN

Loop Idiom

Loop Deletion

SLP Vectorizer

… more to follow

Test Drive
on

LLVM test suite

29

Improve & Evaluate

1. Does the information presented in this high-level view contain
sufficient detail to reconstruct what happened?

2. Can we discover the interactions between optimizations?

3. With the improved visibility, can we quickly find real performance
opportunities?

30

DhryStone
(SingleSource/Benchmark)

Interaction of Optimizations

31

DhryStone

33

Inlining Context

DhryStone

36

DhryStone

38

DhryStone

40

DhryStone

42

DhryStone

45

DhryStone

46

DhryStone

48

DhryStone

50

DhryStone: Summary
• Without low-level debugging, quickly reconstructed what happened

• Even though it involved interaction between multiple optimizations

• Inlining and Alias Analysis/GVN

• Missed optimizations: Extra analysis to manage with false positives

1. Filter trivially false positives

2. Expose enough information for quick detection by user

51

Freebench/distray
(MultiSource/Benchmarks)

Finding Performance Opportunity

52

Not modified via LinP,
maybe writes through other

pointers

Not modified via LinD,
maybe writes through other

pointers

Reads and writes don’t alias

Reads and writes don’t alias
Loop versioning

with array overlap checks?

55

LICM-based LoopVersioning
(-enable-loop-versioning-licm)

55

LICM-based LoopVersioning
(-enable-loop-versioning-licm)

Performance opportunity if we can
improve this pass

55

LICM-based LoopVersioning
(-enable-loop-versioning-licm)

Performance opportunity if we can
improve this passApproximate the opportunity by

manually modifying the source

Dynamic Instruction Count
Reduced by

11%

Dynamic Instruction Count
Reduced by

11%
Performance headroom

11%

Freebench/distray: Summary

• Found optimization opportunity while staying in the high-level view

• Reconstructed the reason for missed optimization

• High-level view exposed that the gain may be substantial

• Got immediate feedback of the desired effect on the prototype

• Identified the pass for low-level debugging

58

Check Out More Examples

http://lab.llvm.org:8080/artifacts/opt-view_test-suite

59

http://lab.llvm.org:8080/artifacts/opt-view_test-suite

Development Timeline

60

Code Author Tool

Compiler Developer Tool

Initial version on LLVM trunk

Now
New tools

using
Optimization

Records

Compiler Developer Tool: Status

• Written in Python

• Hook up new passes

• Improve diagnostics quality for existing passes

• Perform extra analysis for insightful messages

• Improve UI

61

Compiler Developer Tool: Status

• Written in Python

• Hook up new passes

• Improve diagnostics quality for existing passes

• Perform extra analysis for insightful messages

• Improve UI

61

Request fo
r H

elp

Code Author Tool: Wishlist
• Suggest specific actions

• E.g. for the LICM case: if the two pointers can never point to the
same object consider using ‘restrict’

• Add new “recommendation” analysis passes to detect opportunity
and suggest:

• Source annotation to enable off-by-default passes (aggressive
loop transformations, non-temporal stores)

• Refactoring: data transformations
62

Code Author Tool: Wishlist
• Suggest specific actions

• E.g. for the LICM case: if the two pointers can never point to the
same object consider using ‘restrict’

• Add new “recommendation” analysis passes to detect opportunity
and suggest:

• Source annotation to enable off-by-default passes (aggressive
loop transformations, non-temporal stores)

• Refactoring: data transformations
62

Request fo
r H

elp

Optimization Records: New Tools
• llvm-opt-report

• Performance regression analysis

• Optimization statistics with the ability to zoom into the particular
optimization

• Bottom-up search for performance opportunities

• See all the LICM opportunities like in Freebench/distray

63

Optimization Records: New Tools
• llvm-opt-report

• Performance regression analysis

• Optimization statistics with the ability to zoom into the particular
optimization

• Bottom-up search for performance opportunities

• See all the LICM opportunities like in Freebench/distray

63

SELECT benchmark, hotspot, hotness 
FROM optimizations 
WHERE pass = ‘licm’ AND 
 type = ‘missed’ AND 
 name = ‘LoadWithLoopInvariantAddressInvalidated’ 
ORDER BY hotness

Optimization Records: New Tools
• llvm-opt-report

• Performance regression analysis

• Optimization statistics with the ability to zoom into the particular
optimization

• Bottom-up search for performance opportunities

• See all the LICM opportunities like in Freebench/distray

• Allows finding opportunities that occur with high frequency but not
in the hottest code

63

Acknowledgement

• Tyler Nowicki

• John McCall

• Hal Finkel

64

Q&A

65

SIBsim4
(MultiSource/Applications)

Finding Performance Opportunity

66

SIBsim4

67

SIBsim4

68

SIBsim4

69

SIBsim4

70

SIBsim4

71

SIBsim4

72

SIBsim4

Look at
 the loads

73

SIBsim4

Look at
 the loads

74

SIBsim4

75

SIBsim4

Look at
the stores

76

SIBsim4

Look at
the stores

77

SIBsim4

Can ‘m’ and ’n’
 really alias?

78

SIBsim4
Probably not!

exon_p_t m = mCol->e.exon[i];

79

SIBsim4
We need to use ‘restrict’

or hoist manually

exon_p_t m = mCol->e.exon[i];

80

SIBsim4

81

SIBsim4

82

SIBsim4

83

SIBsim4

84

