
Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clank: Java-port of C/C++ 
Frontend  
Sharing the NetBeans Team’s Experience

Petr Kudriavtsev 
Vladimir Voskresensky 
Oracle

March 27, 2017



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Safe Harbor Statement

The following is intended to outline our general product 
direction. It is intended for information purposes only, and 
may not be incorporated into any contract. It is not a 
commitment to deliver any material, code, or functionality, 
and should not be relied upon in making purchasing 
decisions. The development, release, and timing of any 
features or functionality described for Oracle’s products 
remains at the sole discretion of Oracle.

3



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Speakers

Petr 
Kudriavtsev 

4

Vladimir 
Voskresensky



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Agenda

● Why porting?
● Known approaches
● Converter
● Porting C++ and Clang challenges
● Clank Demo



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Why not binding?

● Why Emscripten?
– LLVM IR to JavaScript 'assembler'?

● Why Lucene => CLucene?
– Java ported to C++?

● Why Hibernate => NHibernate?
– Java ported to .NET?

● Why people do porting?
– It's fun!



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

JavaScript

Java

Python

Ruby

PHP

C++

CSS

C#

C

GO

C++ and 2*C == Java
The 10 most popular computer languages on GitHub

https://www.techworm.net/2016/09/top-10-popular-programming-languages-github.html



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

C++ and C == Java



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

What is our favorite C++ 
Technology?



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

What is our favorite C++ 
Technology?



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

No religious wars!
Let's share Clang Technology

Add One More Thread Holding Developers Together



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clang Technology evaluation

● Native Clang library requirements without 
functional regressions:
– Full access to the strength of technology

– All Java-aware platforms

– Safety 

– Debug

– Performance of native clang

– JNI/JNA Bridging overhead

– Upgrade to new Clang release



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety 
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety 
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety 
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety 
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety 
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety 
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety 
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety 
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release

Conclusion: Clang doesn't bring any extra value?



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety 
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release

Wait! Let's try Clang in Java!



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety 
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release

Wait! Let's try Clang in Java!



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Agenda

● Why porting?
● Known approaches
● Converter
● Porting C++ and Clang challenges
● Clank Demo



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Manual

● Inspired by ...



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Manual



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

LLVM IR Based



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

LLVM IR Based

● Inspired by Emscripten



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

LLVM IR Based

● Inspired by Emscripten
● Transform LLVM IR to Java Bytecode



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

LLVM IR Based

● Inspired by Emscripten
● Transform LLVM IR to Java Bytecode
● Assembler Level Output

– Difficult to understand 

– Difficult to debug by client
C++ JavaScript



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

LLVM IR Based

● Inspired by Emscripten
● Transform LLVM IR to Java Bytecode
● Assembler Level Output

– Difficult to understand 

– Difficult to debug by client

● Java AST* APIs are needed to be generated 
from C-like IR back to Java Classes/methods



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Existing C++ to Java Converters



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Existing C++ to Java Converters

Low Accuracy on C++11 Codebases



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Existing C++ to Java Converters

Low Accuracy on C++11 Codebases



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clang Based

● Inspired by ast-print



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clang Based

● Inspired by ast-print
– Clang: C++ Source to Clang-AST

C++:

AST:



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clang Based

● Inspired by ast-print
– Clang: C++ Source to Clang-AST

– ast-print: Clang-AST to C++ source
AST:

C++:



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clang Based

● Inspired by ast-print
– Clang: C++ Source to Clang-AST

– ast-print: Clang-AST to C++ source

● Comments are missed

Printed C++:C++:



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clang Based

● Inspired by ast-print
– Clang: C++ Source to Clang-AST

– ast-print: Clang-AST to C++ source

● Comments are missed
● But looks very promising!



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clang Based

● Inspired by ast-print
– Clang: C++ Source to Clang-AST

– ast-print: Clang-AST to C++ source

● Comments are missed
● But looks very promising!

Convert whole Clang-AST 
to Java Source!



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Agenda

● Why porting?
● Known approaches
● Converter
● Porting C++ and Clang challenges
● Clank Demo



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Prototype Converter

● Within 1 day
– Always print method bodies in class context to make Java 

happy

– Replace arrow “→” by “.” to make Java happy



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Prototype Converter

● Within 1 day
– Always print method bodies in class context to make Java 

happy

– Replace arrow “→” by “.” to make Java happy

● Let's try to port!



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Prototype Converter

● Within 1 day
– Always print method bodies in class context to make Java 

happy

– Replace arrow “→” by “.” to make Java happy

● Let's try to port!
– And I'm going on vacation



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Prototype Converter

● Within 1 day
– Always print method bodies in class context to make Java 

happy

– Replace arrow “→” by “.” to make Java happy

● Let's try to port!
– After 2 weeks...



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Prototype Converter

● Within 1 day
– Always print method bodies in class context to make Java 

happy

– Replace arrow “→” by “.” to make Java happy

● Let's try to port!
– After 2 weeks...



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Prototype Converter

● Within 1 day
– Always print method bodies in class context to make Java 

happy

– Replace arrow “→” by “.” to make Java happy

● Let's try to port!
– After 2 weeks...

Team conclusion: Don't bother us with your crazy dreams! 
It is still manual!



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Need a Plan...



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Need a Plan...

● Bottom up approach
– for API

 

Llvm ADT/Support



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Need a Plan...

● Bottom up approach
– for API

 

Llvm ADT/Support

Llvm Option Clang/Basic



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Need a Plan...

● Bottom up approach
– for API

 

Llvm ADT/Support

Llvm Option Clang/Basic

Clang/Lex



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Need a Plan...

● Followed by Top down approach
– for implementations

Llvm ADT/Support

Llvm Option Clang/Basic

Clang/Lex



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Need a Plan...

● Followed by Top down approach
– for implementations

Llvm ADT/Support

Llvm Option Clang/Basic

Clang/Lex



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Need a Plan...

● Followed by Top down approach
– for implementations

Llvm ADT/Support

Llvm Option Clang/Basic

Clang/Lex



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Need a Plan...

● Bottom up approach
– Generate APIs without bodies

● Followed by Top down approach
– Generate bodies starting from clients

● Let's try Lex module 
● To build infrastructure
● To evaluate ported Preprocessor

– Adjusting APIs when better learn Clang/LLVM
● Easy, fast, because bodies are absent
● Add Java's “LibC++” and ADT/Support on demand

● Use existing Clang tests to check semantic
● Annotate Java code to get help from IDE
● Release within NetBeans C++ support 



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Same Time at Different World...

● Use Clang technology to parse C++
● Walk Clang AST to print Java code
● 2 weeks to prototype JConvert

– Port sample C++ project to Java

– Keep semantic

– Keep code as close as possible

– Keep comments

● Demo



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

During Short Nights...

● Use Clang technology to parse C++
● Walk Clang AST to print Java code
● 2 weeks to prototype JConvert

– Port sample C++ project to Java

– Keep semantic

– Keep code as close as possible

– Keep comments

● Demo



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

And Long Weekends...

● Use Clang technology to parse C++
● Walk Clang AST to print Java code
● 2 weeks to prototype JConvert

– Port sample C++ project to Java

– Keep semantic

– Keep code as close as possible

– Keep comments

● Demo



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

JConvert 0.0.1

● C++ Quote vs Java Quote snippets

It works for sample 
C++ project!



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Agenda

● Why porting?
● Known approaches
● Converter
● Porting C++ and Clang challenges
● Clank Demo



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

A loud, sharp sound or series of sounds, typically made by 
pieces of metal meeting or being struck together
- Oxford Dictionary

60

Clank - Pronunciation: /klaNGk/

A loud, resonant metallic sound or series of sounds
- Oxford Dictionary

Clang - Pronunciation: /klaNG/



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clank: As close to origin as 
possible

● Convert Clang components for fully functional 
Preprocessor
– Keeps comments

– Semantically equivalent

– Passes Clang tests

● Pure Java
– Modular

– Java “LibC++”

● Adopted by NetBeans
● The same License as LLVM

– “Wanted the code to be used!” quoting Chris Lattner



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

“All hope abandon, ye who 
enter here.”
― Dante Alighieri, The Divine Comedy



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

C++ in Java Challenges

● Names collisions
– Non-virtual methods in base and derived classes

● In Java all methods are virtual

– 'unsigned int' vs 'int' overloaded methods and constructors

● Diagnostics are not printed
– Temporary objects lifecycle

● Multiple inheritance
● Compile time preprocessor-conditional code in FileSystem

– Changed #ifdef/#else/#endif to runtime

● Split by TUs vs Monolithic Java classes
● this+1 and TrailingObjects
● Custom new operators
● JAVA code Performance



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clank: All is solvable

● Names collisions
– Non-virtual methods in base and derived classes

● In Java all methods are virtual

– 'unsigned int' vs 'int' overloaded methods and constructors

● Diagnostics are not printed
– Temporary objects lifecycle

● Multiple inheritance
● Compile time preprocessor-conditional code in FileSystem

– Changed #ifdef/#else/#endif to runtime

● Split by TUs vs Monolithic Java classes
● this+1 and TrailingObjects
● Custom new operators
● JAVA Clank Preprocessor Performance



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clank: All is solvable

● Names collisions
– Non-virtual methods in base and derived classes

● In Java all methods are virtual

– 'unsigned int' vs 'int' overloaded methods and constructors

● Diagnostics are not printed
– Temporary objects lifecycle

● Multiple inheritance
● Compile time preprocessor-conditional code in FileSystem

– Changed #ifdef/#else/#endif to runtime

● Split by TUs vs Monolithic Java classes
● this+1 and TrailingObjects
● Custom new operators
● JAVA Clank Preprocessor Performance

Complete and fast Clank Preprocessor, 1.1 MLoc, integrated into NetBeans



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clank Memory Profiling



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clank: Performance analysis and 
optimizations in Java code

● Use Performance Analyzer to compare with Clang
– PerfAn profiles Java or C++ using sampling with 2% overhead

– Compare Instructions and CPU Cycles and do local perf optimizations

● Use Java Flight Recorder to profile memory footprint
● Teach Converter to produce more optimal code 
● Use specializations based on parametrized spec 

files
– Change template file, all specializations are regenerated

– Add mapping to generate specializations, regenerate code



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clank: All is solvable

● Names collisions
– Non-virtual methods in base and derived classes

● In Java all methods are virtual

– 'unsigned int' vs 'int' overloaded methods and constructors

● Diagnostics are not printed
– Temporary objects lifecycle

● Multiple inheritance
● Compile time preprocessor-conditional code in FileSystem

– Changed #ifdef/#else/#endif to runtime

● Split by TUs vs Monolithic Java classes
● this+1 and TrailingObjects
● Custom new operators
● JAVA Clank Preprocessor Performance



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clank: Upgrade to Clang 3.9

● Tooling
– Analyze diffs

– Analyze dependencies

– Detect Changed Entities

– Prepare TODO actions

– Process Moved and Renamed actions first

– Drive upgrade

– Mark progress

– Track progress

● 1 person – 4 weeks for 1.1MLoc
● Improve Upgrade Tools based on feedback



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clank: Upgrade to Clang 3.9

● Update view



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clank: Upgrade to Clang 3.9

● Tooling
– Analyze diffs

– Analyze dependencies

– Detect Changed Entities

– Prepare TODO actions

– Process Moved and Renamed actions first

– Drive upgrade

– Mark progress

– Track progress

● 1 person – 4 weeks for 1.1MLoc
● Improve Upgrade Tools based on feedback



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clank: Upgrade to Clang 3.9

● Tooling
– Analyze diffs

– Analyze dependencies

– Detect Changed Entities

– Prepare TODO actions

– Process Moved and Renamed actions first

– Drive upgrade

– Mark progress

– Track progress

● 1 person – 4 weeks for 1.1MLoc
● Improve Upgrade Tools based on feedback

Let's move toward complete C++ Frontend!



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Agenda

● Why porting?
● Known approaches
● Converter
● Porting C++ and Clang challenges
● Clank Demo



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Demo



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

• Memory and Pointers abstraction
• Unsigned types support
• Bit fields support
• STL Templates / Specializations
• I/O
• Function pointers
• @Converted annotation

Java “LibC++”

76

Clank: Modular Structure



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

• Clang
– Driver
– Basic
– Lex
– AST
– Analysis
– Parse
– Sema
– Edit
– Rewrite
– Frontend
– StaticAnalyzer
– FrontendTool
– Tools/Driver

• LLVM/Options

• ADT/Support On demand
–with Templates and Specializations

• Tests: ADT/Support, Lexer, Preprocessor, 
Parser

Ported LLVM/Clang libraries

77

Clank: Modular Structure

2 Million lines of code





Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clank: Modular Structure

• Tooling

• ASTMatchers

• Serialization

• LLVM/Bitcode

• LLVM/IR

In-progress LLVM/Clang libraries



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  80

Clank: Porting progress

18 November 2016 ... 15 March 2017
2 persons: 4 months with long Russian NY break

Total Lines of Clank Java Source Code After Commit



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  81

Clank: Porting progress

18 November 2016 ... 15 March 2017
2 persons: 4 months with long Russian NY break

Total Lines of Clank Java Source Code After Commit

Improve Converter based on commits with 
“MANUAL” keyword in subject 
80% MANUALs are AUTO now



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Thank you!
Clank Clang

Unite Developers Together


	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

