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Safe Harbor Statement

The following is intended to outline our general product 
direction. It is intended for information purposes only, and 
may not be incorporated into any contract. It is not a 
commitment to deliver any material, code, or functionality, 
and should not be relied upon in making purchasing 
decisions. The development, release, and timing of any 
features or functionality described for Oracle’s products 
remains at the sole discretion of Oracle.
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Agenda

● Why porting?
● Known approaches
● Converter
● Porting C++ and Clang challenges
● Clank Demo
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Why not binding?

● Why Emscripten?
– LLVM IR to JavaScript 'assembler'?

● Why Lucene => CLucene?
– Java ported to C++?

● Why Hibernate => NHibernate?
– Java ported to .NET?

● Why people do porting?
– It's fun!
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JavaScript

Java

Python

Ruby

PHP

C++

CSS

C#

C

GO

C++ and 2*C == Java
The 10 most popular computer languages on GitHub

https://www.techworm.net/2016/09/top-10-popular-programming-languages-github.html
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C++ and C == Java
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What is our favorite C++ 
Technology?
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What is our favorite C++ 
Technology?



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

No religious wars!
Let's share Clang Technology

Add One More Thread Holding Developers Together
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Clang Technology evaluation

● Native Clang library requirements without 
functional regressions:
– Full access to the strength of technology

– All Java-aware platforms

– Safety 

– Debug

– Performance of native clang

– JNI/JNA Bridging overhead

– Upgrade to new Clang release
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Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety 
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release
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Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety 
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release

Conclusion: Clang doesn't bring any extra value?
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Agenda

● Why porting?
● Known approaches
● Converter
● Porting C++ and Clang challenges
● Clank Demo
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Manual

● Inspired by ...
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Manual
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LLVM IR Based
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LLVM IR Based

● Inspired by Emscripten
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LLVM IR Based

● Inspired by Emscripten
● Transform LLVM IR to Java Bytecode
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LLVM IR Based

● Inspired by Emscripten
● Transform LLVM IR to Java Bytecode
● Assembler Level Output

– Difficult to understand 

– Difficult to debug by client
C++ JavaScript
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LLVM IR Based

● Inspired by Emscripten
● Transform LLVM IR to Java Bytecode
● Assembler Level Output

– Difficult to understand 

– Difficult to debug by client

● Java AST* APIs are needed to be generated 
from C-like IR back to Java Classes/methods
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Existing C++ to Java Converters
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Existing C++ to Java Converters

Low Accuracy on C++11 Codebases
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Low Accuracy on C++11 Codebases
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Clang Based

● Inspired by ast-print
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Clang Based

● Inspired by ast-print
– Clang: C++ Source to Clang-AST

C++:

AST:
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Clang Based

● Inspired by ast-print
– Clang: C++ Source to Clang-AST

– ast-print: Clang-AST to C++ source
AST:

C++:
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Clang Based

● Inspired by ast-print
– Clang: C++ Source to Clang-AST

– ast-print: Clang-AST to C++ source

● Comments are missed

Printed C++:C++:
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Clang Based

● Inspired by ast-print
– Clang: C++ Source to Clang-AST

– ast-print: Clang-AST to C++ source

● Comments are missed
● But looks very promising!
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Clang Based

● Inspired by ast-print
– Clang: C++ Source to Clang-AST

– ast-print: Clang-AST to C++ source

● Comments are missed
● But looks very promising!

Convert whole Clang-AST 
to Java Source!
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Agenda

● Why porting?
● Known approaches
● Converter
● Porting C++ and Clang challenges
● Clank Demo
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Prototype Converter

● Within 1 day
– Always print method bodies in class context to make Java 

happy

– Replace arrow “→” by “.” to make Java happy
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● Let's try to port!
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Prototype Converter

● Within 1 day
– Always print method bodies in class context to make Java 

happy

– Replace arrow “→” by “.” to make Java happy

● Let's try to port!
– And I'm going on vacation
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● Let's try to port!
– After 2 weeks...
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Prototype Converter

● Within 1 day
– Always print method bodies in class context to make Java 

happy

– Replace arrow “→” by “.” to make Java happy

● Let's try to port!
– After 2 weeks...

Team conclusion: Don't bother us with your crazy dreams! 
It is still manual!
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Need a Plan...
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Need a Plan...

● Bottom up approach
– for API

 

Llvm ADT/Support
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Need a Plan...

● Followed by Top down approach
– for implementations
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Need a Plan...

● Bottom up approach
– Generate APIs without bodies

● Followed by Top down approach
– Generate bodies starting from clients

● Let's try Lex module 
● To build infrastructure
● To evaluate ported Preprocessor

– Adjusting APIs when better learn Clang/LLVM
● Easy, fast, because bodies are absent
● Add Java's “LibC++” and ADT/Support on demand

● Use existing Clang tests to check semantic
● Annotate Java code to get help from IDE
● Release within NetBeans C++ support 
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Same Time at Different World...

● Use Clang technology to parse C++
● Walk Clang AST to print Java code
● 2 weeks to prototype JConvert

– Port sample C++ project to Java

– Keep semantic

– Keep code as close as possible

– Keep comments

● Demo



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

During Short Nights...

● Use Clang technology to parse C++
● Walk Clang AST to print Java code
● 2 weeks to prototype JConvert

– Port sample C++ project to Java

– Keep semantic

– Keep code as close as possible

– Keep comments

● Demo
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And Long Weekends...

● Use Clang technology to parse C++
● Walk Clang AST to print Java code
● 2 weeks to prototype JConvert

– Port sample C++ project to Java

– Keep semantic

– Keep code as close as possible

– Keep comments

● Demo
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JConvert 0.0.1

● C++ Quote vs Java Quote snippets

It works for sample 
C++ project!
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Agenda

● Why porting?
● Known approaches
● Converter
● Porting C++ and Clang challenges
● Clank Demo
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A loud, sharp sound or series of sounds, typically made by 
pieces of metal meeting or being struck together
- Oxford Dictionary

60

Clank - Pronunciation: /klaNGk/

A loud, resonant metallic sound or series of sounds
- Oxford Dictionary

Clang - Pronunciation: /klaNG/
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Clank: As close to origin as 
possible

● Convert Clang components for fully functional 
Preprocessor
– Keeps comments

– Semantically equivalent

– Passes Clang tests

● Pure Java
– Modular

– Java “LibC++”

● Adopted by NetBeans
● The same License as LLVM

– “Wanted the code to be used!” quoting Chris Lattner
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“All hope abandon, ye who 
enter here.”
― Dante Alighieri, The Divine Comedy
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C++ in Java Challenges

● Names collisions
– Non-virtual methods in base and derived classes

● In Java all methods are virtual

– 'unsigned int' vs 'int' overloaded methods and constructors

● Diagnostics are not printed
– Temporary objects lifecycle

● Multiple inheritance
● Compile time preprocessor-conditional code in FileSystem

– Changed #ifdef/#else/#endif to runtime

● Split by TUs vs Monolithic Java classes
● this+1 and TrailingObjects
● Custom new operators
● JAVA code Performance
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Clank: All is solvable

● Names collisions
– Non-virtual methods in base and derived classes

● In Java all methods are virtual

– 'unsigned int' vs 'int' overloaded methods and constructors

● Diagnostics are not printed
– Temporary objects lifecycle

● Multiple inheritance
● Compile time preprocessor-conditional code in FileSystem

– Changed #ifdef/#else/#endif to runtime

● Split by TUs vs Monolithic Java classes
● this+1 and TrailingObjects
● Custom new operators
● JAVA Clank Preprocessor Performance

Complete and fast Clank Preprocessor, 1.1 MLoc, integrated into NetBeans
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Clank Memory Profiling
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Clank: Performance analysis and 
optimizations in Java code

● Use Performance Analyzer to compare with Clang
– PerfAn profiles Java or C++ using sampling with 2% overhead

– Compare Instructions and CPU Cycles and do local perf optimizations

● Use Java Flight Recorder to profile memory footprint
● Teach Converter to produce more optimal code 
● Use specializations based on parametrized spec 

files
– Change template file, all specializations are regenerated

– Add mapping to generate specializations, regenerate code
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Clank: All is solvable

● Names collisions
– Non-virtual methods in base and derived classes

● In Java all methods are virtual

– 'unsigned int' vs 'int' overloaded methods and constructors

● Diagnostics are not printed
– Temporary objects lifecycle

● Multiple inheritance
● Compile time preprocessor-conditional code in FileSystem

– Changed #ifdef/#else/#endif to runtime

● Split by TUs vs Monolithic Java classes
● this+1 and TrailingObjects
● Custom new operators
● JAVA Clank Preprocessor Performance
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Clank: Upgrade to Clang 3.9

● Tooling
– Analyze diffs

– Analyze dependencies

– Detect Changed Entities

– Prepare TODO actions

– Process Moved and Renamed actions first

– Drive upgrade

– Mark progress

– Track progress

● 1 person – 4 weeks for 1.1MLoc
● Improve Upgrade Tools based on feedback
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Clank: Upgrade to Clang 3.9

● Update view
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Clank: Upgrade to Clang 3.9

● Tooling
– Analyze diffs

– Analyze dependencies

– Detect Changed Entities

– Prepare TODO actions

– Process Moved and Renamed actions first

– Drive upgrade

– Mark progress

– Track progress

● 1 person – 4 weeks for 1.1MLoc
● Improve Upgrade Tools based on feedback

Let's move toward complete C++ Frontend!
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Agenda

● Why porting?
● Known approaches
● Converter
● Porting C++ and Clang challenges
● Clank Demo
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Demo
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• Memory and Pointers abstraction
• Unsigned types support
• Bit fields support
• STL Templates / Specializations
• I/O
• Function pointers
• @Converted annotation

Java “LibC++”

76

Clank: Modular Structure
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• Clang
– Driver
– Basic
– Lex
– AST
– Analysis
– Parse
– Sema
– Edit
– Rewrite
– Frontend
– StaticAnalyzer
– FrontendTool
– Tools/Driver

• LLVM/Options

• ADT/Support On demand
–with Templates and Specializations

• Tests: ADT/Support, Lexer, Preprocessor, 
Parser

Ported LLVM/Clang libraries

77

Clank: Modular Structure

2 Million lines of code
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Clank: Modular Structure

• Tooling

• ASTMatchers

• Serialization

• LLVM/Bitcode

• LLVM/IR

In-progress LLVM/Clang libraries
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Clank: Porting progress

18 November 2016 ... 15 March 2017
2 persons: 4 months with long Russian NY break

Total Lines of Clank Java Source Code After Commit
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Clank: Porting progress

18 November 2016 ... 15 March 2017
2 persons: 4 months with long Russian NY break

Total Lines of Clank Java Source Code After Commit

Improve Converter based on commits with 
“MANUAL” keyword in subject 
80% MANUALs are AUTO now
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Thank you!
Clank Clang

Unite Developers Together
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