
CodeCompass
an Open Software Comprehension Framework

Motto: If it was hard to write it should be hard to understand

-- unknown programmer

Zoltán Porkoláb1,2, Dániel Krupp1, Tibor Brunner2, Márton Csordás2

1Ericsson Ltd, 2Eötvös Loránd University, Budapest, Hungary

https://github.com/Ericsson/CodeCompass

https://github.com/Ericsson/CodeCompass

Agenda

• Comprehension as a cost factor

• Why development tools are not perfect
for comprehension?

• Requirements

• Architecture

• A few workflows

• Restrictions

• Experiences

• Further planes

3/27/2017 CodeCompass 2

Comprehension is a major cost factor

3/27/2017 CodeCompass 3

Research Effort for comprehension

IBM (Corbi, 1989) Over 50% of time

Bell Labs (Davison, 1992) New project members: 60-80% of time,
drops to 20% as one gains experience

National Research Council in
Canada (Singer, 2006)

Over 25% of time either searching for or
looking at code

Microsoft (Hallam, 2006) Equal amount of time as design, test

Microsoft (La Toza, 2007) Over 70% of time

Microsoft (Cherubini, 2007) 95%~ significant part of job
65%< at least once a day
25%< multiple times of a day

Using tools

3/27/2017 CodeCompass 4

Using tools

3/27/2017 CodeCompass 5

Using tools

3/27/2017 CodeCompass 6

Using tools

3/27/2017 CodeCompass 7

Comprehension requires specific toolset

3/27/2017 CodeCompass 8

Development of code Understanding code

Writing new code
(support: code completion, etc.)

Reading and navigating inside code

Intentions are clear Intensions are weak

Editing only a few files at the same
time

Frequently jumping between different
files

Working on the same abstraction
level for a while

Jumping between various abstraction
levels (Google map of code)

Edit, compile, fix Visualize

Some existing tools
• Web-based

– OpenGrok

– Woboq (deep analysis)

– …

• Fat-client
– Understand (+edit)

– CodeSurfer

– …

• IDE-based
– Eclipse

– NetBeans

– QtCreator

– VisualStudio

– …

3/27/2017 CodeCompass 9

Required features

• Deep analysis + build information -> using a real parser

• Fast text based feature location

• Architectural information

• Textual summaries (types, variables, functions, macros)

• Various (interactive) visualizations

• Scalable (>10 million LOC)

• Most actions should be fast (< 1-2 sec)

• Permalinks for communication with fellow developers

• Gathering all available information: code history, metrics, …

• Open, extensible platform

3/27/2017 CodeCompass 10

First experimental version: store AST

• AST contains most of the required information
• Natural output of Clang
• Problem: size!

– 40GB for LLVM project AST dump + indexes, etc… ->100 GB
– 1:500 ratio between source and CodeCompass DB size

• Not scalable
• Future work:

– Detecting identical sub-trees (e.g. of headers)
– NoSQL database?

• Fat client

3/27/2017 CodeCompass 11

Final approach: Store named entities
• Names: the most natural target of user actions
• We store

– Class/function/variable declarations, definitions, usage
– References to names are stored as hash values
– Source file as it is (keeping original formatting)
– Build information

• Scalable
– 1:30-50 ratio between source and CodeCompass DB size
– Full LLVM CodeCompass DB with indexes 13 GB in postgres

• A few addition was required
– Assignment, parameter lists: detecting read/write relations of variables
– Inheritance, pointer indirections, typedefs, etc…

• Web-based client

3/27/2017 CodeCompass 12

Performance

3/27/2017 CodeCompass 14

Tiny XML
2.6.2

Xerces
3.1.3

CodeCompass
v4

Ericsson TSP
product

Source code size [MiB] 1.16 67.28 182 3 344

Search database size [MiB] 0.88 37.93 139 7168

PostgreSQL DB size [MiB] 15 190 2144 7729

Build time [s] 2.73 361 2024 -

CC Parse time [s] 21.98 517 6409 -

Text/definition search [s] 0.4 0.3 0.43 2

C++ get usage of a type [s] 1.4 2 2.3 3.1

Architecture

3/27/2017 CodeCompass 15

How to use?

• Fast feature location using text/definition/log search

• Explore the environment of the focus point

– Info tree

– Interactive call graphs

– Virtual functions and function pointers

• Understand the code history

• Understand higher level architecture

• Explore related static analysis results/code metrics

3/27/2017 CodeCompass 16

DEBUG INFO: TSTHan: sys_offset=-0.019821, drift_comp=-90.4996, sys_poll=5

3/27/2017 CodeCompass 17

3/27/2017 CodeCompass 18

• Visualize generated special memberfunctions

3/27/2017 CodeCompass 19

CodeCompass 203/27/2017

CodeCompass 213/27/2017

3/27/2017 CodeCompass 22

Experiences with CodeCompass

• Open source since summer 2016

• Mainly used inside Ericsson and in University

• Replacing/extending OpenGrok

• Voluntary-based: No policy to enforce using CodeCompass

• ~15 million LOC parsed inside Ericsson

• ~300 users

• Frequently used investigate CodeChecker results

• … and by architects to get a system level view

3/27/2017 CodeCompass 23

Experiences with CodeCompass

3/27/2017 CodeCompass 24

Future plans
• Incremental parsers: from “Snapshot” view to editable

– Pointer analysis

– Reparse: source + build info -> rebuild AST on demand

• Complex query language

• User specific information
– Review notes, reminders, comprehension map

– Personal “Comprehension map” (incl. internal links)

• Ideal for starting a Clang-based server implementing C/C++
LSP (Language Server Protocol), like ClangD

• Feel free to contribute
– New language parsers

– New GUI functionality

• Language Server Protocol (LSP) interface

3/27/2017 CodeCompass 25

Summary

• Scalable (up to 10 million LOC)

• Most actions are completed (< 1-2sec)

• Textual summaries (types, functions, variables, macros)

• Various (interactive) visualizations on the code

• Architectural information (based on build info)

• GIT history

• Permalinks to communicate with other developers

• CodeChecker integration to show Clang SA results

• Java, Python support (less mature)

• Easy to extend

3/27/2017 CodeCompass 26

