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Experiment Results

1. Restore Last Scope

2. Load Next MatcherTable Index

By the rise of program complexity and some
specific usages like JIT(Just-In-Time) compilation,
compilation speed becomesmore andmore
important in recent years. Instruction selection
in LLVM, on the other hand, is the most time-
consuming part among all the LLVM components,
which can take nearly 50% of total compilation time

LLVM has a greedy based instruction selector, which
is basically a bytecode interpreter With the statically-known scope offset, we adopt a

speculation based approach that execute every
possible selection scopes simultaneously in threads

Each selection scope has the offset to the next scope,
which is statically known ahead-of-time, thus provide
us the basis of parallelizing the instruction selection
process efficiently.

In the interpreter, it uses checkers to perfrom pattern
matching, and use scopes to provide a local context
for a subset of checkers. Each scope would jump to
next scope if a failure is raised within it.
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