
Hydra LLVM:
Instruction Selection with Threads

Instruction Selection is SLOW!

Instruction Selector in Current LLVM

Parallelizing Selection Scopes with Threads

Min-Yih Hsu and Prof. Jenq-Kuen Lee,
Department of Computer Science, National Tsing-Hua University, Taiwan

{myhsu, jklee}@pllab.cs.nthu.edu.tw

Experiment Results

1. Restore Last Scope

2. Load Next MatcherTable Index

By the rise of program complexity and some
specific usages like JIT(Just-In-Time) compilation,
compilation speed becomesmore andmore
important in recent years. Instruction selection
in LLVM, on the other hand, is the most time-
consuming part among all the LLVM components,
which can take nearly 50% of total compilation time

LLVM has a greedy based instruction selector, which
is basically a bytecode interpreter With the statically-known scope offset, we adopt a

speculation based approach that execute every
possible selection scopes simultaneously in threads

Each selection scope has the offset to the next scope,
which is statically known ahead-of-time, thus provide
us the basis of parallelizing the instruction selection
process efficiently.

In the interpreter, it uses checkers to perfrom pattern
matching, and use scopes to provide a local context
for a subset of checkers. Each scope would jump to
next scope if a failure is raised within it.

Offset of Next Scope


