INTRODUCING VPLAN
T0 THE LOOP VECTORIZER

Gil Rapaport and Ayal Zaks

Intel Corporation, Israel Development Center
March 27-28, 2017 European LLVM Developers Meeting

Saarland Informatics Campus, Saarbrucken, Germany

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and
the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by

this notice.
Notice revision #20110804

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Key Takeaways

1. VPlan is an ongoing incremental effort to upgrade Loop
Vectorizer's infrastructure and extend its capabilities

2. This effort is underway: first step introduces VPlan, reroutes
vectorization decisions through it; early patches committed

3. VPlan's coverage to be extended in multiple directions going

forward

Optimization Notice
Copyright © 2016, Intel Corporation. All rights reserved
t

*Other names and brands may be claimed as the property of others.

The Need for VPlan

 LLVM's Loop Vectorizer (LV) is used extensively to optimize a large class of
innermost loops

« Butadding advanced vectorization techniques to LV is hard

* Recent improvements already struggle
* Keep predicated instructions in the same block [D26555]

* Upcoming improvements magnify the difficulty

* RFC: Extending LV to vectorize outerloops [llvm-dev]

« Extending LoopVectorizer towards supporting OpenMP4.5 SIMD and outer loop
auto-vectorization [LLVM US'16]

* RV: A Unified Region Vectorizer for LLVM - now on github [llvm-dev]

* LV could vectorize loops better, and vectorize more loops

Need to upgrade LV's infrastructure to extend its capabilities

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://reviews.llvm.org/D26555
http://lists.llvm.org/pipermail/llvm-dev/2016-September/105057.html
https://www.youtube.com/watch?v=XXAvdUwO7k
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107400.html

LV’'s Current Design and Major Limitations

2. Cost Model

// Notice: any optimization or new instruction that go
// into the code below should be also be implemented in
// the cost-model.

3. Transform ®

RT aliasing checks
Must be scalarized
Uniform values
Requires predication
Interleave groups

Interleave groups

}

Should be scalarized

}

Sink to predicated BB

I

—=

»

L3. Decisions recorded independently

+ post-step: predicate « L1. Output assumed to be a single basic block

Optimization Notice

L2. Hard to keep Cost aligned with Transform manually

Copyright © 2016, Intel Corporatio
*Other names and brands may be cl

Predication as a Post-Vectorization Step

br %cmp
%a0 = ... _
%a = ... %al = ...~ br %p0
%x = sdiv %a, %b br %p0 \A

/ \ %a0 = ...
%x0 = sdiv %a0, %b

%x0 = sdiv %ao,\%b

— / > é/

. br %p1
Transform br %p1 AW
\ %al = ...

%x1 = sdiv %a1, %b
%al =...

)

%p0 = extractelement %cmp, O / /

%p1 = extractelement %cmp, 1
%x0 = sdiv %a0, %b0 + post-step opt:
%x1 = sdiv %a, %b1 + post-step: predicate sink scalar operands

Cost Model simulates Transform to calculate cost and optimize

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

VPlan Definitions

Recipe<'v
VPlan: a vectorized code candidate. n Re!
Uses a Hierarchical CFG (HCFQG) / 7 <- 7"0”
Block: an element of HCFG representing ~ BasicBlock
the control-flow of the vectorized code. E
Basic Block: a leaf Block, contains a .

sequence of Recipes. E

Region: an SESE subgraph of the HCFG.
Models vectorization semantics such as . E
predication and replication.

Recipe: models a sequence of instructions
to appear in the vectorized code. May
refer to Ingredients.

Ingredient: an element of the original code,
such as an instruction of the scalar loop. Hierarchical CFG

VPlans calculate their cost and execute into IR

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Recipe Example 1: Widening One-by-One

Source Code

for (int i =
a[i] =

void foo(int *a, int n, int *c) {
0; i < n; ++1i)
3*c[2*i+1] + c[2*i];

I~

IR Before Vectorizer

VPlan for VF=4

IR After Vectorizing for VF=4

for.body:

VECTORIZE RECIPE:

%0 = load i32, %arrayidx —

> %0 = load %arrayidx

%mull = mul %0, 3

» %mull = mul %0, 3

%1 = load i32, %arrayidx3

> %1 = load %arrayidx3

%add4 = add %mull, %1

L L LLCL

» %add4 = add %mull, %1

store %add4, %arrayidx5—

» store %add4, %arrayidx5

|

Ingredients

|

vector.body:

%wmg = call @llvm.masked.gather.v4i32(%VecGep, ..)

%50 = mul %wmg, <3,3,3,3>

%wmg2 = call @llvm.masked.gather.v4i32(%VecGep2,
%84 = add %50, %wmg2

store %84, %87

)

VPlan Execution

VPlan strives to be lightweight by leveraging source IR

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Recipe Example 2: Interleave Group

Source Code
void foo(int *a, int n, int *c) {
for (int i = 0; i < n; ++i)
a[i] = 3*c[2*i+1] + c[2*i];

)s
VPlan for VF=4
IR Before Vectorizer - - IR After Vectorizing for VF=4
for.body: INTERLEAVE GROUP RECIPE vector.body:

»%1 = load %arrayidx3
»%0 = load %arrayidxl

f%all = load <8 x 132>, %5
%even = shufflevector %all, <0,2,4,6>

%0 = load 132, %arrayidx 1
%mull = mul %0, 3

\ 4

%1 = load 132, %arrayidx3{+— VECTORIZE RECIPE: L %0dd = shufflevector %all, <1,3,5,7>
%add4 = add %mull, %1 | » %mull = mul %0, 3 (%6 = mul %odd, <3,3,3,3>
store %add4, %arrayidx5 | » %add4 = add %mull, %1 ' »- %9 = add %6, %even
» store %add4, %arrayidx5 L store %9, %12
‘ [m 1 I
Ingredients VPlan Execution

Recipes capture simple and complex patterns as units of Cost

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Modeling Decisions by Planning VPlans

VPlans.O VPlans.1 VPlans.N Best
VPlan.N

Cost Model m Cost Model MC‘. Cost Model Cost Model
Uniform interleave

Branches Groups

Optimization Notice
Copyright © 2016, Intel C

How VPlan Addresses the Identified Limitations

LV's current limitation (recap) LV with VPlan

1. Output assumed to be a 1. Full control-flow is modelled
single basic block explicitly

2. Hard to keep Cost 2. Single model of vectorized code
aligned with Transform simplifies and aligns both Cost
manually and Transform

3. Decisions recorded 3. Single model represents a
independently vectorized code candidate to

manifest vectorization decisions
explicitly

Optimization Notice
Copyright © 2016, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

INTRODUCING VPLAN - GURRENT STATUS

Introducing VPlan by Refactoring Transform

LV's current design (recap) LV with VPlan firstly introduced

Interleave
groups

2. Cost Model| HVSERTE:
scalarized

/I Best

| VPlan.1

Sink

Scalar
Operands

3. Transform

+ post-step: predicate

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Introducing VPlan by Refactoring Transform, Cont'd

loop iteration number check

/

vector loop bypass

/

vector pre header

old scalar loop)

0"’
0”
B
vector loop .
e
.
-,
.

middle block

N

new preheader

Y

pred.sdiv. if

pred.sdiv.continue

pred.sdiv.if. 1

old scalar loop

/

exit block

=

) Transform

Before Vectorizer After Vectorizer

1st major step being committed gradually

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

A Concrete VPlan Example VPlan for VF={2,4,8)

BB10
WIDEN INT INDUCTION (needs scalars):
%$1.015 = phi 0, %inc
Source COde BUILD SCALAR STEPS:

void foo(int *a, int b, int *c) { $1.015 = phi 0, %inc

. . . . SCALARIZE:
for (1nt 1=190; 1 < 10000; ++1) $arrayidx = getelementptr %a, %i.015

if (a[i] > 777) VECTORIZE:

a[i] =b - (C[lae*]'] *7 + a[i]) / b_; %0 = load $%arrayidx

Scmpl = icmp $0, 777

}
— \\, BBlll
¥ LLVM-IR Before Vectorizer . T —

for.body: ; preds = %for.inc, %entry SCALARIZE:

%i.015 = phi i32 [@, %entry], [%inc, %for.inc] ??rfa{ld§20= qet?éegentptr 2 e

%arrayidx = getelementptr inbounds i32, i32* %a, i32 %i.015 ;mu13 Zamu;agi?y$ *

%0 = load i32, i32* X%arrayidx, align 4 sadd = add %mul3, %0

%cmpl = icmp sgt i32 %e, 777 1

br i1l %cmpl, label %if.then, label %for.inc <xVFxUF> regionl3
if.then: 5 pI‘EdS = %'FOP.bOdy EXTRACTBBI‘ESK BIT:

%mul = mul nuw nsw i32 %i.015, 100 if.then

%arrayidx2 = getelementptr inbounds i32, i32* %c, i32 %mul ,

%1 = load i32, i32* %arrayidx2, align 4 //if.then

%mul3 = mul nsw i32 %1, 7 BB12

%add = add nsw i32 %mul3, %0 SCALARIZE: !if.then

%div = sdiv i32 %add, %b %div = sdiv bkadd, %b

%sub = sub nsw i32 %b, %div \

store i32 %sub, i32* %arrayidx, align 4 BB15

br label %for.inc MERGE SCALARIZE BRANCH:

%div = sdiv %add, %b

for.inc: ; preds = %for.body, %if.then !

%inc = add nuw nsw i32 %i.el5, 1 VECTORIZEFB16

%exitcond = icmp eq i32 %inc, 10000 Ssub = éub $b, %div

br il %exitcond, label %for.cond.cleanup, label %for.body store %sub, %arrayidx

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

VPlan-based sinkScalarOperands optimization (1/3)

,

BB11
VECTORIZE:

gmul = mul %$1.015,
SCALARIZE:

YarrayidxZ2 = getelementptr S%c,
51 = load %arrayidx2
gmul3d = mul %1, 7

,%add = add %mul3, %0

100

Smul

!

<xVFxUF> regionl3

BB14
EXTRACT MASK BIT:
if.then

/_f .then

BB12
SCALARIZE:

$div = sdiv %add, %b

N\

BR15
MERGE SCALARIZE BRANCH:
$div = sdiv %add, %b

'if.then

}
Initial State

Optimization Notice
Copyright © 2016, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

l

BBR11
VECTORIZE:
Smul = mul %i.015, 100
SCALARTIZE:
%arrayidx2 = getelementptr %c, %mul
%1 = load %arrayidx2
/-%mul3 = mul %1, 7

!

<xXVFxUF> regionl3

BB14
EXTRACT MASK BIT:
if.then

\5‘ //if.then

BB12
SCALARIZE:
%add = add %smul3, %0
SCALARIZE :

$div = sdiv %add, %b

\

BB15
MERGE SCALARTIZE BRANCH:

'if.then

$div = sdiv %add, %b

l
Sink {add}

VPlan-based sinkScalarOperands optimization (2/3)

!
BB11
VECTORIZE:
gmul = mul %$i.015, 100
SCALARIZE:
$arrayidx2 = getelementptr %c, S$mul
,%1 = load %Sarrayidx2

!

<xVFxUF> regionl3

BBR14
EXTRACT MASK BIT:
if.then
\\! /éf.then
BB12
SCALARIZE:
$mul3 = mul %1, 7
SCALARIZE: 'if.then
%$add = add %Smul3, %0
SCALARIZE:
$div = sdiv %add, %b

\

BR15
MERGE SCALARIZE BRANCH:
$div = sdiv %add, 5%b

I
Sink {add, mul}

Optimization Notice
Copyright © 2016, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

|

BB11
VECTORIZE:

gmul = mul %i.015, 100
SCALARIZE:

/-%arrayidxz = getelementptr %c, %Smul

:

<xVFxUF> regionl3

BB14
EXTRACT MASK BIT:
if.then

Sﬁg /éf.then

BB12

SCALARIZE:

%1 = load %arrayidx2
SCALARIZE:

$mul3d = mul %1, 7
SCALARIZE:

%add = add %smul3, %0
SCALARIZE:

$div = sdiv %add, %b

\

BR15
MERGE SCALARIZE BRANCH:
%div = sdiv %add, %b

'if.then

!
Sink {add, mul, load}

VPlan-based sinkScalarOperands optimization (3/3)

}
BBR11
VECTORIZE :
gmul = mul %i.015, 100
}
<XVFxXUF> regionl3
BB14
EXTRACT MASK BIT:
if.then
//if.then
BB12
SCALARTZE :
%$arrayidx2 = getelementptr %c, %Smul
SCALARTZE:
51 = load %arrayidx2
SCALARIZE : 'if.then
$mull = mul %1, 7
SCALARTZE:
%add = add $mul3, %0
SCALARTZE:
$div = sdiv %add, %b
N
BB15
MERGE SCALARIZE BRANCH:
$div = sdiv %add, %b

I
Sink {add, mul, load, gep}

Post-vectorization optimization modelled with VPlan

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Key Takeaways

1. VPlan is an ongoing incremental effort to upgrade Loop
Vectorizer's infrastructure and extend its capabilities

2. This effort is underway: first step introduces VPlan, reroutes
vectorization decisions through it; early patches committed

3. VPlan's coverage to be extended in multiple directions going

forward

Optimization Notice
Copyright © 2016, Intel Corporation. All rights reserved
t

*Other names and brands may be claimed as the property of others.

