
Gil Rapaport and Ayal Zaks

Intel Corporation, Israel Development Center

March 27-28, 2017 European LLVM Developers Meeting

Saarland Informatics Campus, Saarbrücken, Germany

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and
the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by
this notice.

Notice revision #20110804

2

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Key Takeaways

1. VPlan is an ongoing incremental effort to upgrade Loop

Vectorizer’s infrastructure and extend its capabilities

2. This effort is underway: first step introduces VPlan, reroutes

vectorization decisions through it; early patches committed

3. VPlan’s coverage to be extended in multiple directions going

forward

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The Need for VPlan

• LLVM’s Loop Vectorizer (LV) is used extensively to optimize a large class of
innermost loops

• But adding advanced vectorization techniques to LV is hard

• Recent improvements already struggle

• Keep predicated instructions in the same block [D26555]

• Upcoming improvements magnify the difficulty

• RFC: Extending LV to vectorize outerloops [llvm-dev]

• Extending LoopVectorizer towards supporting OpenMP4.5 SIMD and outer loop
auto-vectorization [LLVM US'16]

• RV: A Unified Region Vectorizer for LLVM - now on github [llvm-dev]

• LV could vectorize loops better, and vectorize more loops

4

Need to upgrade LV’s infrastructure to extend its capabilities

https://reviews.llvm.org/D26555
http://lists.llvm.org/pipermail/llvm-dev/2016-September/105057.html
https://www.youtube.com/watch?v=XXAvdUwO7k
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107400.html

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

LV’s Current Design and Major Limitations

1. Legality

2. Cost Model

3. Transform
+ post-step: predicate

Must be scalarized

Uniform values

Interleave groups

Should be scalarized

Requires predication

Interleave groups

Sink to predicated BB

RT aliasing checks

L2. Hard to keep Cost aligned with Transform manually

L1. Output assumed to be a single basic block

L3. Decisions recorded independently

// Notice: any optimization or new instruction that go
// into the code below should be also be implemented in
// the cost-model.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

Predication as a Post-Vectorization Step

br %cmp

%a = …
%x = sdiv %a, %b

%a0 = …
%a1 = …
%p0 = extractelement %cmp, 0
%p1 = extractelement %cmp, 1
%x0 = sdiv %a0, %b0
%x1 = sdiv %a1, %b1

%a0 = …
%a1 = …
br %p0

%x0 = sdiv %a0, %b

br %p1

%x1 = sdiv %a1, %b

br %p0

%a0 = …
%x0 = sdiv %a0, %b

br %p1

%a1 = …
%x1 = sdiv %a1, %b

+ post-step: predicate

Transform

+ post-step opt:
sink scalar operands

Cost Model simulates Transform to calculate cost and optimize

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

VPlan: a vectorized code candidate.
Uses a Hierarchical CFG (HCFG)

Block: an element of HCFG representing
the control-flow of the vectorized code.

Basic Block: a leaf Block, contains a
sequence of Recipes.

Region: an SESE subgraph of the HCFG.
Models vectorization semantics such as
predication and replication.

Recipe: models a sequence of instructions
to appear in the vectorized code. May
refer to Ingredients.

Ingredient: an element of the original code,
such as an instruction of the scalar loop.

VPlan Definitions

7

:

::

:

:

:

:

Hierarchical CFG

Basic Block

Recipe

Region

VPlans calculate their cost and execute into IR

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

VECTORIZE RECIPE:

%0 = load %arrayidx
%mul1 = mul %0, 3
%1 = load %arrayidx3
%add4 = add %mul1, %1
store %add4, %arrayidx5

Recipe Example 1: Widening One-by-One

8

Source Code
void foo(int *a, int n, int *c) {
for (int i = 0; i < n; ++i)
a[i] = 3*c[2*i+1] + c[2*i];

}

vector.body:
…
%wmg = call @llvm.masked.gather.v4i32(%VecGep, …)
%50 = mul %wmg, <3,3,3,3>
%wmg2 = call @llvm.masked.gather.v4i32(%VecGep2, …)
%84 = add %50, %wmg2
store %84, %87
…

IR After Vectorizing for VF=4
…

…

VPlan for VF=4

for.body:
…
%0 = load i32, %arrayidx
%mul1 = mul %0, 3
%1 = load i32, %arrayidx3
%add4 = add %mul1, %1
store %add4, %arrayidx5
…

IR Before Vectorizer

Ingredients VPlan Execution

VPlan strives to be lightweight by leveraging source IR

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Recipe Example 2: Interleave Group

9

Source Code
void foo(int *a, int n, int *c) {
for (int i = 0; i < n; ++i)
a[i] = 3*c[2*i+1] + c[2*i];

}

vector.body:
…
%all = load <8 x i32>, %5
%even = shufflevector %all, <0,2,4,6>
%odd = shufflevector %all, <1,3,5,7>
%6 = mul %odd, <3,3,3,3>
%9 = add %6, %even
store %9, %12
…

for.body:
…
%0 = load i32, %arrayidx
%mul1 = mul %0, 3
%1 = load i32, %arrayidx3
%add4 = add %mul1, %1
store %add4, %arrayidx5
…

IR Before Vectorizer IR After Vectorizing for VF=4…

VECTORIZE RECIPE:

%mul1 = mul %0, 3
%add4 = add %mul1, %1
store %add4, %arrayidx5

…

VPlan for VF=4

Ingredients VPlan Execution

Recipes capture simple and complex patterns as units of Cost

INTERLEAVE GROUP RECIPE

%1 = load %arrayidx3
%0 = load %arrayidx1

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

VPlans.NVPlans.1

10

Modeling Decisions by Planning VPlans

VPlans.0 VPlans.1

Interleave
Groups

Uniform
Branches

VPlans.N

Transform

Cost Model Optimize

Transform

Cost Model

Transform

Cost Model

Execute

1. Legality

2. Planning

Construct Abandon

Optimize

VPlans designed with tentative optimization in mind

Best
VPlan.N

Select

Transform

Cost Model

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

LV’s current limitation (recap)

1. Output assumed to be a
single basic block

2. Hard to keep Cost
aligned with Transform
manually

3. Decisions recorded
independently

LV with VPlan

1. Full control-flow is modelled
explicitly

2. Single model of vectorized code
simplifies and aligns both Cost
and Transform

3. Single model represents a
vectorized code candidate to
manifest vectorization decisions
explicitly

How VPlan Addresses the Identified Limitations

11

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

VPlans.1VPlans.0

13

Sink
Scalar
Operands

Optimize

1. Legality

3. PlanningConstruct

Best
VPlan.1

Select

Transform

Should be
scalarized

2. Cost Model

Execute

1. Legality

2. Cost Model

3. Transform
+ post-step: predicate

LV’s current design (recap) LV with VPlan firstly introduced

Interleave
groups

VPlans.0

Transform

VPlans.1

Transform

Introducing VPlan by Refactoring Transform

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

Introducing VPlan by Refactoring Transform, Cont’d

1st major step being committed gradually

VPlans

Transform

Before Vectorizer After Vectorizer

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

for.body: ; preds = %for.inc, %entry
%i.015 = phi i32 [0, %entry], [%inc, %for.inc]
%arrayidx = getelementptr inbounds i32, i32* %a, i32 %i.015
%0 = load i32, i32* %arrayidx, align 4
%cmp1 = icmp sgt i32 %0, 777
br i1 %cmp1, label %if.then, label %for.inc

if.then: ; preds = %for.body
%mul = mul nuw nsw i32 %i.015, 100
%arrayidx2 = getelementptr inbounds i32, i32* %c, i32 %mul
%1 = load i32, i32* %arrayidx2, align 4
%mul3 = mul nsw i32 %1, 7
%add = add nsw i32 %mul3, %0
%div = sdiv i32 %add, %b
%sub = sub nsw i32 %b, %div
store i32 %sub, i32* %arrayidx, align 4
br label %for.inc

for.inc: ; preds = %for.body, %if.then
%inc = add nuw nsw i32 %i.015, 1
%exitcond = icmp eq i32 %inc, 10000
br i1 %exitcond, label %for.cond.cleanup, label %for.body

15

A Concrete VPlan Example

Source Code

LLVM-IR Before Vectorizer

VPlan for VF={2,4,8}

void foo(int *a, int b, int *c) {
for (int i = 0; i < 10000; ++i)

if (a[i] > 777)
a[i] = b – (c[100*i] * 7 + a[i]) / b;

}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

VPlan-based sinkScalarOperands optimization (1/3)

Sink {add}Initial State

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

VPlan-based sinkScalarOperands optimization (2/3)

Sink {add, mul} Sink {add, mul, load}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

VPlan-based sinkScalarOperands optimization (3/3)

Post-vectorization optimization modelled with VPlan

Sink {add, mul, load, gep}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Key Takeaways

1. VPlan is an ongoing incremental effort to upgrade Loop

Vectorizer’s infrastructure and extend its capabilities

2. This effort is underway: first step introduces VPlan, reroutes

vectorization decisions through it; early patches committed

3. VPlan’s coverage to be extended in multiple directions going

forward

