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Key Takeaways

1. VPlan is an ongoing incremental effort to upgrade Loop
Vectorizer's infrastructure and extend its capabilities

2. This effort is underway: first step introduces VPlan, reroutes
vectorization decisions through it; early patches committed

3. VPlan's coverage to be extended in multiple directions going

forward
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The Need for VPlan

 LLVM's Loop Vectorizer (LV) is used extensively to optimize a large class of
innermost loops

« Butadding advanced vectorization techniques to LV is hard

* Recent improvements already struggle
* Keep predicated instructions in the same block [D26555]

* Upcoming improvements magnify the difficulty

* RFC: Extending LV to vectorize outerloops [llvm-dev]

« Extending LoopVectorizer towards supporting OpenMP4.5 SIMD and outer loop
auto-vectorization [LLVM US'16]

* RV: A Unified Region Vectorizer for LLVM - now on github [llvm-dev]

* LV could vectorize loops better, and vectorize more loops

Need to upgrade LV's infrastructure to extend its capabilities
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https://reviews.llvm.org/D26555
http://lists.llvm.org/pipermail/llvm-dev/2016-September/105057.html
https://www.youtube.com/watch?v=XXAvdUwO7k
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107400.html

LV’'s Current Design and Major Limitations

2. Cost Model

// Notice: any optimization or new instruction that go
// into the code below should be also be implemented in
// the cost-model.

3. Transform ®

RT aliasing checks
Must be scalarized
Uniform values
Requires predication
Interleave groups

Interleave groups

}

Should be scalarized

}

Sink to predicated BB

I

—=

»

L3. Decisions recorded independently

+ post-step: predicate « L1. Output assumed to be a single basic block
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Predication as a Post-Vectorization Step

br %cmp
%a0 = ... _
%a = ... %al = ...~ br %p0
%x = sdiv %a, %b br %p0 \A

/ \ %a0 = ...
%x0 = sdiv %a0, %b

%x0 = sdiv %ao,\%b

— / > é/

. br %p1
Transform br %p1 AW
\ %al = ...

%x1 = sdiv %a1, %b
%al =...

)

%p0 = extractelement %cmp, O / /

%p1 = extractelement %cmp, 1
%x0 = sdiv %a0, %b0 + post-step opt:
%x1 = sdiv %a, %b1 + post-step: predicate sink scalar operands

Cost Model simulates Transform to calculate cost and optimize
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VPlan Definitions

Recipe<'v
VPlan: a vectorized code candidate. n Re!
Uses a Hierarchical CFG (HCFQG) / 7 <- 7"0”
Block: an element of HCFG representing ~ BasicBlock
the control-flow of the vectorized code. E
Basic Block: a leaf Block, contains a .

sequence of Recipes. E

Region: an SESE subgraph of the HCFG.
Models vectorization semantics such as . E
predication and replication.

Recipe: models a sequence of instructions
to appear in the vectorized code. May
refer to Ingredients.

Ingredient: an element of the original code,
such as an instruction of the scalar loop. Hierarchical CFG

VPlans calculate their cost and execute into IR
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Recipe Example 1: Widening One-by-One

Source Code

for (int i =
a[i] =

void foo(int *a, int n, int *c) {
0; i < n; ++1i)
3*c[2*i+1] + c[2*i];

I~

IR Before Vectorizer

VPlan for VF=4

IR After Vectorizing for VF=4

for.body:

VECTORIZE RECIPE:

%0 = load i32, %arrayidx —

> %0 = load %arrayidx

%mull = mul %0, 3

» %mull = mul %0, 3

%1 = load i32, %arrayidx3

> %1 = load %arrayidx3

%add4 = add %mull, %1

L L LLCL

» %add4 = add %mull, %1

store %add4, %arrayidx5—

» store %add4, %arrayidx5

|

Ingredients

|

vector.body:

%wmg = call @llvm.masked.gather.v4i32(%VecGep, ..)

%50 = mul %wmg, <3,3,3,3>

%wmg2 = call @llvm.masked.gather.v4i32(%VecGep2,
%84 = add %50, %wmg2

store %84, %87

)

VPlan Execution

VPlan strives to be lightweight by leveraging source IR
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Recipe Example 2: Interleave Group

Source Code
void foo(int *a, int n, int *c) {
for (int i = 0; i < n; ++i)
a[i] = 3*c[2*i+1] + c[2*i];

)s
VPlan for VF=4
IR Before Vectorizer - - IR After Vectorizing for VF=4
for.body: INTERLEAVE GROUP RECIPE vector.body:

»%1 = load %arrayidx3
»%0 = load %arrayidxl

f%all = load <8 x 132>, %5
%even = shufflevector %all, <0,2,4,6>

%0 = load 132, %arrayidx 1
%mull = mul %0, 3

\ 4

%1 = load 132, %arrayidx3{+— VECTORIZE RECIPE: L %0dd = shufflevector %all, <1,3,5,7>
%add4 = add %mull, %1 | » %mull = mul %0, 3 (%6 = mul %odd, <3,3,3,3>
store %add4, %arrayidx5 | » %add4 = add %mull, %1 ' »- %9 = add %6, %even
» store %add4, %arrayidx5 L store %9, %12
‘ [ m 1 I
Ingredients VPlan Execution

Recipes capture simple and complex patterns as units of Cost
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Modeling Decisions by Planning VPlans

VPlans.O VPlans.1 VPlans.N Best
VPlan.N

Cost Model m Cost Model MC‘. Cost Model Cost Model
Uniform interleave

Branches Groups
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How VPlan Addresses the Identified Limitations

LV's current limitation (recap) LV with VPlan

1. Output assumed to be a 1.  Full control-flow is modelled
single basic block explicitly

2. Hard to keep Cost 2. Single model of vectorized code
aligned with Transform simplifies and aligns both Cost
manually and Transform

3. Decisions recorded 3. Single model represents a
independently vectorized code candidate to

manifest vectorization decisions
explicitly
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INTRODUCING VPLAN - GURRENT STATUS



Introducing VPlan by Refactoring Transform

LV's current design (recap) LV with VPlan firstly introduced

Interleave
groups

2. Cost Model| HVSERTE:
scalarized

/I Best

| VPlan.1

Sink

Scalar
Operands

3. Transform

+ post-step: predicate
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Introducing VPlan by Refactoring Transform, Cont'd

loop iteration number check

/

vector loop bypass

/

vector pre header

old scalar loop )

0"’
0”
B
vector loop .
e
.
-,
.

middle block

N

new preheader

Y

pred.sdiv. if

pred.sdiv.continue

pred.sdiv.if. 1

old scalar loop

/

exit block

=

) Transform

Before Vectorizer After Vectorizer

1st major step being committed gradually
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A Concrete VPlan Example VPlan for VF={2,4,8)

BB10
WIDEN INT INDUCTION (needs scalars):
%$1.015 = phi 0, %inc
Source COde BUILD SCALAR STEPS:

void foo(int *a, int b, int *c) { $1.015 = phi 0, %inc

. . . . SCALARIZE:
for (1nt 1=190; 1 < 10000; ++1) $arrayidx = getelementptr %a, %i.015

if (a[i] > 777) VECTORIZE:

a[i] =b - (C[lae*]'] *7 + a[i]) / b_; %0 = load $%arrayidx

Scmpl = icmp $0, 777

}
— \\, BBlll
¥ LLVM-IR Before Vectorizer . T —

for.body: ; preds = %for.inc, %entry SCALARIZE:

%i.015 = phi i32 [ @, %entry ], [ %inc, %for.inc ] ??rfa{ld§20= qet?éegentptr 2 e

%arrayidx = getelementptr inbounds i32, i32* %a, i32 %i.015 ;mu13 Zamu;agi?y$ *

%0 = load i32, i32* X%arrayidx, align 4 sadd = add %mul3, %0

%cmpl = icmp sgt i32 %e, 777 1

br i1l %cmpl, label %if.then, label %for.inc <xVFxUF> regionl3
if.then: 5 pI‘EdS = %'FOP.bOdy EXTRACTBBI‘ESK BIT:

%mul = mul nuw nsw i32 %i.015, 100 if.then

%arrayidx2 = getelementptr inbounds i32, i32* %c, i32 %mul ,

%1 = load i32, i32* %arrayidx2, align 4 //if.then

%mul3 = mul nsw i32 %1, 7 BB12

%add = add nsw i32 %mul3, %0 SCALARIZE: !if.then

%div = sdiv i32 %add, %b %div = sdiv bkadd, %b

%sub = sub nsw i32 %b, %div \

store i32 %sub, i32* %arrayidx, align 4 BB15

br label %for.inc MERGE SCALARIZE BRANCH:

%div = sdiv %add, %b

for.inc: ; preds = %for.body, %if.then !

%inc = add nuw nsw i32 %i.el5, 1 VECTORIZEFB16

%exitcond = icmp eq i32 %inc, 10000 Ssub = éub $b, %div

br il %exitcond, label %for.cond.cleanup, label %for.body store %sub, %arrayidx
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VPlan-based sinkScalarOperands optimization (1/3)

,

BB11
VECTORIZE:

gmul = mul %$1.015,
SCALARIZE:

YarrayidxZ2 = getelementptr S%c,
51 = load %arrayidx2
gmul3d = mul %1, 7

,%add = add %mul3, %0

100

Smul

!

<xVFxUF> regionl3

BB14
EXTRACT MASK BIT:
if.then

/_f .then

BB12
SCALARIZE:

$div = sdiv %add, %b

N\

BR15
MERGE SCALARIZE BRANCH:
$div = sdiv %add, %b

'if.then

}
Initial State
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BBR11
VECTORIZE:
Smul = mul %i.015, 100
SCALARTIZE:
%arrayidx2 = getelementptr %c, %mul
%1 = load %arrayidx2
/-%mul3 = mul %1, 7

!

<xXVFxUF> regionl3

BB14
EXTRACT MASK BIT:
if.then

\5‘ //if.then

BB12
SCALARIZE:
%add = add %smul3, %0
SCALARIZE :

$div = sdiv %add, %b

\

BB15
MERGE SCALARTIZE BRANCH:

'if.then

$div = sdiv %add, %b

l
Sink {add}




VPlan-based sinkScalarOperands optimization (2/3)

!
BB11
VECTORIZE:
gmul = mul %$i.015, 100
SCALARIZE:
$arrayidx2 = getelementptr %c, S$mul
,%1 = load %Sarrayidx2

!

<xVFxUF> regionl3

BBR14
EXTRACT MASK BIT:
if.then
\\! /éf.then
BB12
SCALARIZE:
$mul3 = mul %1, 7
SCALARIZE: 'if.then
%$add = add %Smul3, %0
SCALARIZE:
$div = sdiv %add, %b

\

BR15
MERGE SCALARIZE BRANCH:
$div = sdiv %add, 5%b

I
Sink {add, mul}
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|

BB11
VECTORIZE:

gmul = mul %i.015, 100
SCALARIZE:

/-%arrayidxz = getelementptr %c, %Smul

:

<xVFxUF> regionl3

BB14
EXTRACT MASK BIT:
if.then

Sﬁg /éf.then

BB12

SCALARIZE:

%1 = load %arrayidx2
SCALARIZE:

$mul3d = mul %1, 7
SCALARIZE:

%add = add %smul3, %0
SCALARIZE:

$div = sdiv %add, %b

\

BR15
MERGE SCALARIZE BRANCH:
%div = sdiv %add, %b

'if.then

!
Sink {add, mul, load}




VPlan-based sinkScalarOperands optimization (3/3)

}
BBR11
VECTORIZE :
gmul = mul %i.015, 100
}
<XVFxXUF> regionl3
BB14
EXTRACT MASK BIT:
if.then
//if.then
BB12
SCALARTZE :
%$arrayidx2 = getelementptr %c, %Smul
SCALARTZE:
51 = load %arrayidx2
SCALARIZE : 'if.then
$mull = mul %1, 7
SCALARTZE:
%add = add $mul3, %0
SCALARTZE:
$div = sdiv %add, %b
N
BB15
MERGE SCALARIZE BRANCH:
$div = sdiv %add, %b

I
Sink {add, mul, load, gep}

Post-vectorization optimization modelled with VPlan
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Key Takeaways

1. VPlan is an ongoing incremental effort to upgrade Loop
Vectorizer's infrastructure and extend its capabilities

2. This effort is underway: first step introduces VPlan, reroutes
vectorization decisions through it; early patches committed

3. VPlan's coverage to be extended in multiple directions going

forward
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