
Code Size Optimisations for ARM

James Molloy, Sjoerd Meijer, Pablo Barrio, Kristof Beyls

EuroLLVM’17

March 2017

© ARM 2017 2

Code size…

“…is good, until it isn’t anymore

(all of a sudden)”

© ARM 2017 3

Code size matters

 Not uncommon for a micro-controller to have:

 64 Kbytes of Flash

 8 Kbytes of RAM

 Show stopper for many embedded systems and applications!

© ARM 2017 4

Problem statement

 Very costly when images don’t fit in RAM or ROM

 Bigger memories,

 More power hungry,

 HW redesign,

 And more…

 Code size optimisations are crucial

 We found that LLVM’s code generation not good enough when

optimising for size.

© ARM 2017 5

Idioms in embedded code

 Dominated by a lot of control flow decisions based on peripheral

register states:

 control code (if-statements, switches),

 magic constants,

 bitwise operations:

 Filling in data structures:

if ((((StructA*) (((uint32_t)0x40000000) + 0x6400))->M1

 & ((uint32_t)0x00000002)) != 0U) {

 …

ptr->structarr[idx].field3 &= ~((uint32_t)0x0000000F);

Confidential © ARM 2015 6

Implemented improvements

© ARM 2017 7

Summary of improvements

 About 200 patches and contributions last year (all upstream)

 Touched many different parts in both the middle-end and backend.

 Categorise them in these 4 areas:

1. turn off specific optimisations when optimising for size

2. tuning optimisations,

3. constants,

4. bit twiddling.

 Target independent: 1- 3, target dependent: 4

 Target Thumb code (and not e.g. AArch64)

 Provides 32-bit and 16-bit instruction encodings

© ARM 2017 8

Category 1: turn off specific optimisations

 Code size more valuable than execution time in this market

 Patch 1:

 Patch 2:

case LibFunc::fputs:

 if (optForSize())

 return nullptr;

 return optimizeFPuts(CI, Builder);

// when optimising for size, we don't want to

// expand a div to a mul and a shift.

if (ForCodeSize)

 return SDValue();

T
u
rn

 o
ff
 s

p
e
ci

fi
c

o
p
ti
m

is
at

io
n
s

© ARM 2017 9

Category 1: turn off specific optimisations

 Some other commits:

 do not inline memcpy if expansion is bigger than the lib call.

 Machine Block Placement: do not reorder and move up loop latch block to avoid extra

branching

 Do not expand UDIV/SDIV to multiplication sequence.

 In summary:

 Bunch of simple patches to turn off performance optimisations that increase code size

 Optimisations/transformations focus on performance

 It wasn’t really bad; a lot of passes do check the optimisation level,

 But clearly not enough!

T
u
rn

 o
ff
 s

p
e
ci

fi
c

o
p
ti
m

is
at

io
n
s

© ARM 2017 10

Category 2: tuning optimisations

 SimplifyCFG:

 Performs dead code elimination,

 basic block merging (chain of blocks with 1 predecessor/successor)

 adjusts branches to branches

 Eliminate blocks with just one unconditional branch

 And also “one stop shop for all your CFG peephole optimisations”:

 Hoist conditional stores

 Merge conditional stores

 Range reduce switches

 Sink common instructions down to the end block

T
u
n
in

g
o
p
ti
m

is
at

io
n
s

© ARM 2017 11

Category 2: tuning transformations - SimplifyCFG

 Rewrite sparse switches to dense switches:

 Real life example: switching over memory addresses

 Dense switches can be lowered better (not our contribution):

 E.g. transformed into lookup tables

 Good for code size & performance

switch (i) {

case 5: ...

case 9: ...

 case 13: ...

 case 17: ...

 }

if ((i - 5) % 4) goto default;

switch ((i - 5) / 4) {

 case 0: ...

 case 1: ...

 case 2: ...

 case 3: ... }

T
u
n
in

g
o
p
ti
m

is
at

io
n
s

© ARM 2017 12

Category 2: tuning transformations

 if (a)

 return *b += 3;

 else

 return *b += 4;

return:

%retval.0 = phi[%add, %if.then],[%add2,%if.else]

ret %retval.0

%strmerge.v = select %tobool, 4, 3

%storemerge = add %0, %strmerge.v

store %strmerge, %b

ret %strmerge

if.else:

 %add2 = add %0, 4

 store %add2, %b

 br %return

if.then:

 %add = add %0, 3

 store %add, %b,

 br %return

Our contribution:

• Also sink loads/stores

• Good for code size & performance

• (and all targets)

T
u
n
in

g
o
p
ti
m

is
at

io
n
s

conditional select idiom:

*b += (a ? 3 : 4)

© ARM 2017 13

Category 2: tuning transformations

 Some other commits:

 Inlining heuristics have been adapted

 Jump threading: unfold selects that depend on the same condition

 tailcall optimization: relax restriction on variadic functions

 Instruction selection:

 Lower UDIV+UREM more efficiently (not use libcalls)

 Lower pattern of certain selects to SSAT

T
u
n
in

g
o
p
ti
m

is
at

io
n
s

© ARM 2017 14

Category 3: constants

 Strategy is to use narrower

instructions

 More constrained

 Accurate analysis required

Instruction Imm. offset

32-bit encoding, word,

halfword, or byte

–255 to 4095

32-bit encoding, doubleword –1020 to 1020

16-bit encoding, word 0 to 124

16-bit encoding, halfword 0 to 62

16-bit encoding, byte 0 to 31

16-bit encoding, word,

Rn is SP

0 to 1020

https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset

Immediate offsets available on store instructions:

C
o

n
st

an
ts

https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset

© ARM 2017 15

Category 3: constant hoisting

 From a set of constants in a function:

 pick constant with most uses,

 Other constants become an offset to that selected base constant.

 Selecting 12 as the base constant:

 12 stores with 4 byte encoding, 8 stores with 2 byte encoding

 (when the range is 0..31)

Constants 2 4 12 44

NumUses 3 2 8 7

Imm Offset -10 -8 0 32

C
o

n
st

an
ts

© ARM 2017 16

Category 3: constant hoisting

 Objective: maximise the constants in range:

 Now we select 2 as the base constant:

 7 stores with 4-byte encoding, 13 stores with 2-byte encoding

 Code size reduction of (13 – 8) * 2 = 10 bytes.

Imm. Offset 0 2 10 42

NumUses 3 2 8 7

C
o

n
st

an
ts

Constants 2 4 12 44

NumUses 3 2 8 7

© ARM 2017 17

Category 3: constants

 For transformations, it’s crucial to use and have accurate cost models

 For constants, this is provided by TargetTransformInfo

 Query properties, sizes, costs of immediates

 Some other commits tweaked/added:

 TTI::getIntImmCodeSizeCost();

 TTI::getIntImmCost()

 And another commit:

 Promotes small global constants to constant pools

C
o

n
st

an
ts

© ARM 2017 18

Category 4: bit twiddling

 A branch on a compare with zero:

 (CMPZ (AND x, #bitmask), #0)

 CMPZ is a compare that sets only Z flag in LLVM

 Can be replaced with 1 instruction (most of the time). But how?

AND r0, r0, #3 4 bytes

CMP r0, #0 2 bytes

BEQ .LBB0_2 2 bytes

8 bytes

B
it
 T

w
id

d
lin

g

© ARM 2017 19

Category 4: bit twiddling, cont’d

 The ALU status flags:

 N: set when the result of the operation was Negative.

 Z: set when the result of the operation was Zero.

 C: set when the operation resulted in a Carry.

 V: Set when the operation caused oVerflow.

Flag setting ANDS:

Don’t need the CMP:

ANDS r0, #3 4 bytes

BEQ .LBB0_2 2 bytes

LSLS r0, r0, #30 2 bytes

BEQ .LBB0_2 2 bytes

6 bytes 4 bytes

If bitmask is consecutive seq. of bits,

And if it touches the LSB,

Remove all upper bits:

B
it
 T

w
id

d
lin

g

© ARM 2017 20

Category 4: bit twiddling, cont’d

 Some more commits:

 Remove CMPs when we care only about the N and Z flags

 A CMP with -1 can be done by adding 1 and comparing against 0

 Summary:

 There are many, many tricks (see also Hacker’s Delight)

 Although mostly small rewrites, they can give good savings if there are lot of them.

B
it
 T

w
id

d
lin

g

Confidential © ARM 2015 21

Experimental results

© ARM 2017 22

Results CSiBE-v2.1.1

 CSiBE: code size benchmark

 http://szeged.github.io/csibe/

 Jpeg, flex, lwip, OpenTCP, replaypc

 Libpng, libmspack, zlib,

 Setup:

 -Oz -mcpu=cortex-m4 -mthumb

 Includes our contributions,

 but everyone else’s too!

 Improvements: 337, Unchanged: 154, Regressions: 127

19957 bytes

-1.01%

1975652

1955695

1945000

1950000

1955000

1960000

1965000

1970000

1975000

1980000

July 2016 Jan 2017

c
o

d
e
 s

iz
e
 i

n
 b

y
te

s

CSiBE Cortex-M4 –Oz
(lower is better)

http://szeged.github.io/csibe/
http://szeged.github.io/csibe/
http://szeged.github.io/csibe/

© ARM 2017 23

CSiBE: Cortex-M4, -Oz

http://szeged.github.io/csibe/compiler-monitor.html

PR31729: [GVNHoist]

Don't hoist unsafe

scalars at –Oz

lower

is

better

26-09-2016 20-03-2017

http://szeged.github.io/csibe/compiler-monitor.html
http://szeged.github.io/csibe/compiler-monitor.html
http://szeged.github.io/csibe/compiler-monitor.html
http://szeged.github.io/csibe/compiler-monitor.html

© ARM 2017 24

More results

 ARM Compiler 6 toolchain

 LLVM based compiler

 Proprietary linker, and libraries*

 Code generation is only part of the puzzle:

 Library selection:

 Different library variants with e.g. different IEEE math lib compliance

 Linker can e.g.:

 Remove unused sections,

 Partially include libraries.

* ARM would welcome lld picking up the challenge of producing really good,

compact code, and ARM would help.

© ARM 2017 25

ARM Compiler 6 Results

1 1 1 1

0.96

0.99

0.95

1

0.76

0.98

0.88

0.94

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

App1 App2 App3 App4

c
o

d
e
 s

iz
e

Thumb –Oz code size (lower is better)

ac6 baseline

ac6 excl linker gains

ac6 incl linker gains

Confidential © ARM 2015 26

Further potential improvements

© ARM 2017 27

Future work

 Avoid wide branches

 Spilling of small constants

 balance materialization and register pressure

 Constant hoisting too aggressive

© ARM 2017 28

Future work: Machine Block Placement

int foo(int *p, int *q)

{

 if (!p) return ERR;

 if (!q) return ERR;

 ..

 if (..) return ERR;

 ..

 // lot of code here

 ..

 return SUCC;

}

BB0:

 ..

 cbz r0, .LBB0_3

BB1:

 ..

 cbz r4, .LBB0_3

BB342:

// lot of code here

.LBB0_3:

 mov.w r0, #-1

 pop

 Wide branches

to exit block(s)

 MPB: should take

into account

branch distances

(for code size)

© ARM 2017 29

Future work: Constant Hoisting

Entry:

 movs r2, #1

 lsls r3, r2, #15

 lsls r0, r2, #19

 str r0, [sp, #8] @ 4-byte Spill

 lsls r0, r2, #20

 str r0, [sp, #12] @ 4-byte Spill

 lsls r0, r2, #21

 str r0, [sp, #16] @ 4-byte Spill

 lsls r0, r2, #22

 str r0, [sp] @ 4-byte Spill

 lsls r6, r2, #25

 movs r0, #3

 ...

 Constant hoisting is really

aggressive

 Does not take into account

register pressure

© ARM 2017 30

Future work:
Balance materialization and register pressure

 movs r6,#2

 mov r0,r6

 blx r1

 cmp r0,#0

 bne {pc}+0xfa

 str r6,[sp,#0x10]

 Rematerialization: clone of an

instruction where it is used

 Cannot have have any sideeffects

 In thumb-1, MOVS always sets the flags

 Hoist constants to avoid the

materialization vs. trying to sink them to

reduce register pressure

Save #2 into a stack slot:

© ARM 2017 31

Conclusions

 Good code size improvements:

 Open Source LLVM: CSiBE-v2.1.1 improved by1.01%

 ARM Compiler:

 From 1% to 6% across a range of microcontroller applications (code generation)

 From 2% to 24% fully using the ARM Compiler toolchain (armlink)

 widely applicable to a lot of code

 Achieved a lot in relatively short amount of time.

 Shows LLVM is not in a bad place!

 There’s (always) more to do:

 Focussed on 4 realistic microcontroller application examples

 Picked a lot (most?) of low hanging fruit, and also did a few big tasks

 But we have left a few big tasks on the table.

