
Guy Blank

Intel Corporation, Israel

March 27-28, 2017 European LLVM Developers Meeting

Saarland Informatics Campus, Saarbrücken, Germany

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Motivation

• New instructions utilized!

• Scalar performance worse than AVX2

• Why are mask registers used is scalar code?

2

AVX2 AVX512C

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Outline

• Introduction

• Scalar Code Issues

• Memory Representation

3

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Introduction

• Intel Advanced Vector Extension 512 (AVX-512) is an extension to AVX and
AVX2

• Introduces 32 64-byte wide SIMD registers (zmm0-31)

• “old” xmm and ymm registers are aliased to the lower part of zmms

• Introduces 8 Mask registers (k0-7)

• Mask registers’ width is architecturally defined, up to 64 bits

• Each bit controls the operation on a single element of the vector register

• Mask registers provide conditional execution and efficient merging of data
elements

4

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Masked Operations

• An operation is not performed for an element if the corresponding mask bit
is not set

• No exceptions can be caused by a masked-off element

• A destination element is not updated if the corresponding mask bit is not set

• The element value is either preserved or zeroed

vpaddb %zmm1, %zmm2, %zmm0{%k1}

• Packed byte operation, 64 mask register bits are used, masked-off elements are preserved

vpaddq %zmm1, %zmm2, %zmm0{%k1}{z}

• Packed quadword operation, only 8 bits from the mask register are used, masked-off elements
are zeroed

vaddss %xmm1, %xmm2, %xmm0{%k1}

• Scalar operation, only 1 bit from the mask register are used, masked-off elements are preserved

5

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Mask Registers

How are mask registers born?

• Vector compare

vpcmpeqb %zmm1, %zmm0, %k0

• Scalar Floating-Point compare

vcmpeqss %xmm1, %xmm0, %k0

• Copy from GPR / Load from memory

kmovw %edi, %k1 kmovw (%rdi), %k1

• Mask-to-mask operations

kandw %k1, %k0, %k2 korw %k1, %k0, %k2

6

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Masks in LLVM IR

• No special representation in IR

• Naturally map to <N x i1> data types

• As the result of vector compares

• As the condition operand of vector selects

• X86 C intrinsics use scalar integer types for masks

• Bitcasted to i1 vector types in IR/DAG

7

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Masks in the X86 Backend

Prior to AVX512

• <N x i1> types are illegal in the X86 Backend

• Promoted to fit into XMM registers

• i1 type is illegal

• Promoted to i8, mapped to a GPR class

With AVX512

• X86 Backend declares <N x i1> types legal

• Mapping them to registers classes containing mask registers

• X86 Backend declares i1 type legal

• Mapped to mask registers as well

• Supporting scalar masked operations

• Supporting <N x i1> related DAG nodes: build vector, extract vector element, …

8

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX-512 Scalar Code

C bool condition is computed using mask register instructions

9

AVX2 AVX512C

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX-512 Scalar Code

• AVX2 – i1 is illegal, promoted to i8 and assigned to a GPR

• AVX512 – i1 is legal, assigned to a Mask register

• The i1 data type has different use cases

• scalar integer vs. scalar mask

• Each use case has a different appropriate register class

• Isn’t this an instruction selection bug? Yes, But…

10

LLVM IR AVX2 AVX512

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Cross Basic Block Code

• Instruction Selection does not look beyond the scope of a basic block

• Default register class is used for live in/out values – Mask registers are
selected

• With GlobalISel, there should be enough information to make the right
choice

11

Cross-BB

LLVM IR AVX2 AVX512

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Solution A: Implement a Fixup pass

• Post instruction selection machine function pass

• Replace mask-based instructions with GPR-based ones, when profitable

• We could miss out on some optimizations

• Mask-based ISA is limited, resulting in long sequences

• Could be difficult to replace with optimal GPR-based code

12

LLVM IR AVX2 AVX512

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Solution A: Implement a Fixup pass

• No mask registers present, nothing to be fixed by the pass

• The legality of i1 affects optimizations even without mask registers

13

AVX2 AVX512LLVM IR

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Solution B: Choose GPR by default

The core issue is the cross basic block default register class

• Instruction Selection phase does not have all the information to make the
best choice

Solution: Change the default register class of i1 to a GPR

• Make i1 illegal in the X86 Backend

• i1 will be promoted to i8, and assigned to GPRs

• Aligns with AVX2

• A solution for scalar masked operation will be needed

• Issues could arise in masked code

• Fixup pass may still be required

14

i1 Vectors Memory Representation

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Memory operations on i1 Vectors

• AVX512 introduces memory load/store operations on mask registers

• Loading and storing i1 vectors is straightforward

• Memory representation is bit-packed

• In AVX2 i1 vectors are promoted to fit into xmm registers.

• Bit packing will require an effort.

16

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

i1 – a bit or a byte?

There were several discussions over the years about the memory
representation of i1 vectors. Quite a few bugs are still open

17

Option 2
Bit packed

Each vector element stored in a
unique bit

Consecutive vector elements
stored in consecutive bits

Option 1
Byte packed

Each vector element stored in a
unique byte

Consecutive vector elements
stored in consecutive bytes

8 x i1 vector

8 bytes

8 x i1 vector

1 byte

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Possible Directions

• Option A
Byte-packed on all X86 subtargets

• Not optimal for AVX512

• Does not align with bitcast semantics

• Option B
Bit-packed on all X86 subtargets

• Not optimal for AVX2

• Option C
Most performant option, per-subtarget

• Byte-packed on AVX2 and older

• Bit-packed on AVX512

• No memory layout consistency within the same target

18

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and
the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by
this notice.

Notice revision #20110804

19

