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Motivation

C AVX2 AVX512

::E::: Iﬁidjfij; _Z3foob: _Z3foob:
void foo (bool b) { i Bqlgrl_startproc ) :Blifl_startprﬂc
if (788 b ) o ) , St et . .
£(); cmpl 38, j(%rip) £l 38, i(%rip)
+ Je .LBae 2 je LEB8 2
# BBgI: # BB#EIL:
I worb $1, ¥dil | kmoww %edi, %kO
jne .188@ 2 kxnorw Bko, ke, ¥kl
# BEB#3: kshiftrw %15, %k, %kl
jmp Rrakal kxorw akl; ke, kke
.LBE@ 2: kmovi ke, Xeax
retq andl $1, Xeax
testh %al, %al
jne LEB® 2
# OB#3:
jmp o s
.LBE@ 2:
retq

* New instructions utilized!
* Scalar performance worse than AVX2

* Why are mask registers used is scalar code?
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Introduction

Intel Advanced Vector Extension 512 (AVX-512) is an extension to AVX and
AVX2

Introduces 32 64-byte wide SIMD registers (zmmO0-31)

« "old” xmm and ymm registers are aliased to the lower part of zmms

Introduces 8 Mask registers (kO-7)

Mask registers’ width is architecturally defined, up to 64 bits

« Each bit controls the operation on a single element of the vector register

Mask registers provide conditional execution and efficient merging of data
elements
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Masked Operations

* An operation is not performed for an element if the corresponding mask bit
IS not set

* No exceptions can be caused by a masked-off element
* A destination element is not updated if the corresponding mask bit is not set

* The element value is either preserved or zeroed

vpaddb %zmml, %zmm2, %zmmO{%k1}
« Packed byte operation, 64 mask register bits are used, masked-off elements are preserved

vpaddq %zmml, %zmm2, %zmmO{%k1l}{z}

« Packed quadword operation, only 8 bits from the mask register are used, masked-off elements
are zeroed

vaddss %xmml, %xmm2, %xmmO{%k1}

* Scalar operation, only 1 bit from the mask register are used, masked-off elements are preserved
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Mask Registers

How are mask registers born?
* Vector compare
vpcmpegb  %zmml, %zmm@, %k
* Scalar Floating-Point compare
vcmpeqss  »xmml, %xmm@, %k
« Copy from GPR / Load from memory
kmovw  %edi, %kl kmovw
* Mask-to-mask operations

kandw %kl, %ko, %k2 korw
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Masks in LLVM IR

* No special representation in IR
* Naturally map to <N x i1> data types
* As the result of vector compares

* As the condition operand of vector selects

BV Omp
!

icmp eq <8 x i64> %a, %b vpCmpeqgq hzmml;, %zmm8, Xkl

twadd = add =8 x 164> %c, %b - ey - o
twret = select <8 x il> %vomp, <8 x i64> %vadd, <8 x i64> %a vpaddq %zmml, ¥zmm2, %zmm@ {%kl}
ret <8 x i64> %vret retqg

« X86 Cintrinsics use scalar integer types for masks

» Bitcasted to i1 vector types in IR/DAG
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Masks in the X86 Backend

Prior to AVX512
« <N xi1>types areillegal in the X86 Backend
* Promoted to fit into XMM registers
* i1typeisillegal
 Promoted to i8, mapped to a GPR class
With AVX512
* X86 Backend declares <N x i1> types legal
* Mapping them to registers classes containing mask registers
« X86 Backend declares i1 type legal
* Mapped to mask registers as well
* Supporting scalar masked operations

* Supporting <N x i1> related DAG nodes: build vector, extract vector element, ...
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AVX-512 Scalar Code

C AVX2 AVX512

extern ?Dldrf(jj 73fo0b: Z3foob:
extern int j; = B

void foo (bool b) { icfi_startproc qq:cfi_startprac
if {j 8% b ) # BB#a: . ¥ BExG: B o
Qs cmpl $6, i(%rip) cmpl 59, i(%rip)
+ Jje LB 2 Jje LEBE 2
# BB#1 ¥ BBE#1
I worb $1, ¥dil | kmoww %edi, %kO
jne LeB@ 2 kxnorw Bko, ke, ¥kl
# BBE#3: kshiftrw $15, %k1, %kl
imp Erakil kxorw k1, ko, %ke
.LBBG 2: kmovw Bka, Xeax
rgtq andl $1, Xeax
testh %al, %al
jne gEa_ 2
# DB#3:
jmp 2Ef
.LBE@ 2:
retq

C bool condition is computed using mask register instructions
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AVX-512 Scalar Code

LLVM IR AV X2

define void § Z3foob(il zeroext %b) #8 { _ZI3foob:
entry: .cfi _startproc
%2 = load i32, 132* @j, align 4, !tbaa !1 # BBEB:
¥%tobool = icmp eq i32 %o, @ el Sr%e3
. cmpl 2, JjlAarip
¥b.not = xor il %b, truee TR I;:;ﬁ P)
RBrmerge = or 11 %tobool, %b.not . 1,1? B
br i1 ¥brmerge, label %if.end, label %if.then ¥ O0%
[ xorb $1, Hdil
if.then: jne LgB@ 2
tail call wveoid @ Zifw() & BB#3:
br label %if.end Imp _Z1Ty
, LBBO 2
if.end: =
retq

ret vaid

}

« AVX2 -ilisillegal, promoted to i8 and assigned to a GPR
« AVX512 -i1is legal, assigned to a Mask register

* The i1 data type has different use cases

« scalarinteger vs. scalar mask

« Each use case has a different appropriate register class

* Isn't this an instruction selection bug? Yes, But...
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AVX512

_Z3foob:
.cfi_startproc
# BB#O:
cmpl $@, j{%rip)
je L
# BB#1:
kmowvw %edi, ¥ke
kxnorw %ke, %ke, ¥kl
kshiftrw $15, %kl, %kl
kxorw ¥kl, %ke, ke
kmowvw hke, %
andl %1, X
testh ¥al,
jne LBB8_:
# BB#3:
jmp _Z1fv
.LBB@_2:
retqg




Cross Basic Block Code

LLVM IR AV X2 AVX512

declare i1 {@bar() T foo:
define i1 @foo(il %i) nounwind { # BBED: # BE#@:
entry: movb %1, %al testh $1, Xdil
br i1 %i, label %if, label %elss testh $1, %dil je -LBBE 1
: e # BB#2:
il 2 P L= it pushg i
kr = call i1 @bar() = BiEH ek callg
1 ¥alze ol
br label %el callq o andb $1, %al
oo addg %8, *rsp — i =
i T . .LBBO_2: ik
kret = phi i1 [%r, ¥%if], [true, Fentry] retq S R
ret i1 ¥rest LBB® 1:
A 7 kxne kO, %kE, mko
Cross_BB kshiftrw $15, %ke, ¥ko
.LBB@ 3:
- kmo
retq

 Instruction Selection does not look beyond the scope of a basic block

« Default register class is used for live in/out values — Mask registers are
selected

» With GloballSel, there should be enough information to make the right
choice
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Solution A: Implement a Fixup pass

« Post instruction selection machine function pass

* Replace mask-based instructions with GPR-based ones, when profitable

LLVM IR AVX2 AVX512

declare i1 {Gbar() foo:

foo:
define il ifoo(il %i) nounwind { # BB#G: # BE#g
entry: movb $1, %al o i
br i1 %i, label %if, label %else testb $1, %dil testh 3, Sdil
je LeBa 2 je LEBE 1
if: & BBE1: - # BB#3:
%r = call i1 @bar() pushg %rax pushg Brax
br label Helse callqg bar callq Bar
addg  $8, %rsp
else: .LBB@_2: e T
%ret = phi i1 [%r, ¥if], [true, ¥entry] retq ?“db Fesi iecl
ret i1 ¥ret femor o r
} addg $8, &rsp
jmp LBB@ 3
LBBG 1:
EXNOru
kshiftr [ wovh i
LBE@ 3:

* We could miss out on some optimizations retq
« Mask-based ISA is limited, resulting in long sequences

* Could be difficult to replace with optimal GPR-based code

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Solution A: Implement a Fixup pass

LLVM IR AVX2 AVX512

define i32 [foo(i32 %x, i32 %y, 132 %res) { foo: foo: i
entry: .cfi_startproc .cfi startproc
¥cmp. = icmp ugt i32 %x, Xy # BB#G: - : # BB#o - ’
¥dec = sext i1 ¥cmp to i32 cmpl Fedi, %esi xorl %hecx; %ecx
%dec.res = add nsw 132 %dec, %res sbbl 58, %edx cmpl  %esi, Redi
ret 132 %dec.res movl Fedx, Feax movl %-1, Xeax
} retqg cmovbel decx, deax
addl Hedx, Xeax

retq

* No mask registers present, nothing to be fixed by the pass

« The legality of i1 affects optimizations even without mask registers
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Solution B: Choose GPR by default

The core issue is the cross basic block default register class

* Instruction Selection phase does not have all the information to make the
best choice

Solution: Change the default register class of i1 to a GPR

* Make i1 illegal in the X86 Backend

* i1 will be promoted to i8, and assigned to GPRs

« Aligns with AVX2

» A solution for scalar masked operation will be needed
* Issues could arise in masked code

* Fixup pass may still be required
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Memory operations on i1 Vectors

* AVX512 introduces memory load/store operations on mask registers

* Loading and storing i1 vectors is straightforward

tval = load <8 x il>, <8 x il>* %s5r1C kmovb (%rdi)
store <8 x il> %val, <8 x il>* %dst, align 1 kmovb kB, |

 Memory representation is bit-packed

* In AVX2 i1 vectors are promoted to fit into xmm registers.

« Bit packing will require an effort.
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i1 —a bit or a byte?

There were several discussions over the years about the memory
representation of i1 vectors. Quite a few bugs are still open

Option 1 Option 2
Byte packed Bit packed
Each vector element stored in a Each vector element stored in a
unique byte unique bit
Consecutive vector elements Consecutive vector elements
stored in consecutive bytes stored in consecutive bits
8 x i1 vector 8 x 11 vector
{ . J ( J

8 bytes 1 byte
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Possible Directions

« Option A
Byte-packed on all X86 subtargets

* Not optimal for AVX512

* Does not align with bitcast semantics

« Option B
Bit-packed on all X86 subtargets

* Not optimal for AVX2

 OptionC
Most performant option, per-subtarget

* Byte-packed on AVX2 and older
* Bit-packed on AVX512

* No memory layout consistency within the same target
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