experience
what's inside”

AVX-312 MASK REGISTERS
CODE GENERATION CHALLENGES

Guy Blank

Intel Corporation, Israel
March 27-28, 2017 European LLVM Developers Meeting

Saarland Informatics Campus, Saarbricken, Germany

Motivation

C AVX2 AVX512

::E::: Iﬁidjfij; _Z3foob: _Z3foob:
void foo (bool b) { i Bqlgrl_startproc) :Blifl_startprﬂc
if (788 b) o) , St et . .
£(); cmpl 38, j(%rip) £l 38, i(%rip)
+ Je .LBae 2 je LEB8 2
BBgI: # BB#EIL:
I worb $1, ¥dil | kmoww %edi, %kO
jne .188@ 2 kxnorw Bko, ke, ¥kl
BEB#3: kshiftrw %15, %k, %kl
jmp Rrakal kxorw akl; ke, kke
.LBE@ 2: kmovi ke, Xeax
retq andl $1, Xeax
testh %al, %al
jne LEB® 2
OB#3:
jmp o s
.LBE@ 2:
retq

* New instructions utilized!
* Scalar performance worse than AVX2

* Why are mask registers used is scalar code?

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Outline

* |ntroduction
 Scalar Code Issues

 Memory Representation

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Introduction

Intel Advanced Vector Extension 512 (AVX-512) is an extension to AVX and
AVX2

Introduces 32 64-byte wide SIMD registers (zmmO0-31)

« "old” xmm and ymm registers are aliased to the lower part of zmms

Introduces 8 Mask registers (kO-7)

Mask registers’ width is architecturally defined, up to 64 bits

« Each bit controls the operation on a single element of the vector register

Mask registers provide conditional execution and efficient merging of data
elements

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Masked Operations

* An operation is not performed for an element if the corresponding mask bit
IS not set

* No exceptions can be caused by a masked-off element
* A destination element is not updated if the corresponding mask bit is not set

* The element value is either preserved or zeroed

vpaddb %zmml, %zmm2, %zmmO{%k1}
« Packed byte operation, 64 mask register bits are used, masked-off elements are preserved

vpaddq %zmml, %zmm2, %zmmO{%k1l}{z}

« Packed quadword operation, only 8 bits from the mask register are used, masked-off elements
are zeroed

vaddss %xmml, %xmm2, %xmmO{%k1}

* Scalar operation, only 1 bit from the mask register are used, masked-off elements are preserved

Optimization Notice - D
lntel

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

5

Mask Registers

How are mask registers born?
* Vector compare
vpcmpegb %zmml, %zmm@, %k
* Scalar Floating-Point compare
vcmpeqss »xmml, %xmm@, %k
« Copy from GPR / Load from memory
kmovw %edi, %kl kmovw
* Mask-to-mask operations

kandw %kl, %ko, %k2 korw

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

(%rdi), %kl

%kl, %ko, %k2

Masks in LLVM IR

* No special representation in IR
* Naturally map to <N x i1> data types
* As the result of vector compares

* As the condition operand of vector selects

BV Omp
!

icmp eq <8 x i64> %a, %b vpCmpeqgq hzmml;, %zmm8, Xkl

twadd = add =8 x 164> %c, %b - ey - o
twret = select <8 x il> %vomp, <8 x i64> %vadd, <8 x i64> %a vpaddq %zmml, ¥zmm2, %zmm@ {%kl}
ret <8 x i64> %vret retqg

« X86 Cintrinsics use scalar integer types for masks

» Bitcasted to i1 vector types in IR/DAG

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Masks in the X86 Backend

Prior to AVX512
« <N xi1>types areillegal in the X86 Backend
* Promoted to fit into XMM registers
* i1typeisillegal
 Promoted to i8, mapped to a GPR class
With AVX512
* X86 Backend declares <N x i1> types legal
* Mapping them to registers classes containing mask registers
« X86 Backend declares i1 type legal
* Mapped to mask registers as well
* Supporting scalar masked operations

* Supporting <N x i1> related DAG nodes: build vector, extract vector element, ...

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

AVX-512 Scalar Code

C AVX2 AVX512

extern ?Dldrf(jj 73fo0b: Z3foob:
extern int j; = B

void foo (bool b) { icfi_startproc qq:cfi_startprac
if {j 8% b) # BB#a: . ¥ BExG: B o
Qs cmpl $6, i(%rip) cmpl 59, i(%rip)
+ Jje LB 2 Jje LEBE 2
BB#1 ¥ BBE#1
I worb $1, ¥dil | kmoww %edi, %kO
jne LeB@ 2 kxnorw Bko, ke, ¥kl
BBE#3: kshiftrw $15, %k1, %kl
imp Erakil kxorw k1, ko, %ke
.LBBG 2: kmovw Bka, Xeax
rgtq andl $1, Xeax
testh %al, %al
jne gEa_ 2
DB#3:
jmp 2Ef
.LBE@ 2:
retq

C bool condition is computed using mask register instructions

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

AVX-512 Scalar Code

LLVM IR AV X2

define void § Z3foob(il zeroext %b) #8 { _ZI3foob:
entry: .cfi _startproc
%2 = load i32, 132* @j, align 4, !tbaa !1 # BBEB:
¥%tobool = icmp eq i32 %o, @ el Sr%e3
. cmpl 2, JjlAarip
¥b.not = xor il %b, truee TR I;:;ﬁ P)
RBrmerge = or 11 %tobool, %b.not . 1,1? B
br i1 ¥brmerge, label %if.end, label %if.then ¥ O0%
[xorb $1, Hdil
if.then: jne LgB@ 2
tail call wveoid @ Zifw() & BB#3:
br label %if.end Imp _Z1Ty
, LBBO 2
if.end: =
retq

ret vaid

}

« AVX2 -ilisillegal, promoted to i8 and assigned to a GPR
« AVX512 -i1is legal, assigned to a Mask register

* The i1 data type has different use cases

« scalarinteger vs. scalar mask

« Each use case has a different appropriate register class

* Isn't this an instruction selection bug? Yes, But...

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

AVX512

_Z3foob:
.cfi_startproc
BB#O:
cmpl $@, j{%rip)
je L
BB#1:
kmowvw %edi, ¥ke
kxnorw %ke, %ke, ¥kl
kshiftrw $15, %kl, %kl
kxorw ¥kl, %ke, ke
kmowvw hke, %
andl %1, X
testh ¥al,
jne LBB8_:
BB#3:
jmp _Z1fv
.LBB@_2:
retqg

Cross Basic Block Code

LLVM IR AV X2 AVX512

declare i1 {@bar() T foo:
define i1 @foo(il %i) nounwind { # BBED: # BE#@:
entry: movb %1, %al testh $1, Xdil
br i1 %i, label %if, label %elss testh $1, %dil je -LBBE 1
: e # BB#2:
il 2 P L= it pushg i
kr = call i1 @bar() = BiEH ek callg
1 ¥alze ol
br label %el callq o andb $1, %al
oo addg %8, *rsp — i =
i T . .LBBO_2: ik
kret = phi i1 [%r, ¥%if], [true, Fentry] retq S R
ret i1 ¥rest LBB® 1:
A 7 kxne kO, %kE, mko
Cross_BB kshiftrw $15, %ke, ¥ko
.LBB@ 3:
- kmo
retq

 Instruction Selection does not look beyond the scope of a basic block

« Default register class is used for live in/out values — Mask registers are
selected

» With GloballSel, there should be enough information to make the right
choice

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Solution A: Implement a Fixup pass

« Post instruction selection machine function pass

* Replace mask-based instructions with GPR-based ones, when profitable

LLVM IR AVX2 AVX512

declare i1 {Gbar() foo:

foo:
define il ifoo(il %i) nounwind { # BB#G: # BE#g
entry: movb $1, %al o i
br i1 %i, label %if, label %else testb $1, %dil testh 3, Sdil
je LeBa 2 je LEBE 1
if: & BBE1: - # BB#3:
%r = call i1 @bar() pushg %rax pushg Brax
br label Helse callqg bar callq Bar
addg $8, %rsp
else: .LBB@_2: e T
%ret = phi i1 [%r, ¥if], [true, ¥entry] retq ?“db Fesi iecl
ret i1 ¥ret femor o r
} addg $8, &rsp
jmp LBB@ 3
LBBG 1:
EXNOru
kshiftr [wovh i
LBE@ 3:

* We could miss out on some optimizations retq
« Mask-based ISA is limited, resulting in long sequences

* Could be difficult to replace with optimal GPR-based code

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Solution A: Implement a Fixup pass

LLVM IR AVX2 AVX512

define i32 [foo(i32 %x, i32 %y, 132 %res) { foo: foo: i
entry: .cfi_startproc .cfi startproc
¥cmp. = icmp ugt i32 %x, Xy # BB#G: - : # BB#o - ’
¥dec = sext i1 ¥cmp to i32 cmpl Fedi, %esi xorl %hecx; %ecx
%dec.res = add nsw 132 %dec, %res sbbl 58, %edx cmpl %esi, Redi
ret 132 %dec.res movl Fedx, Feax movl %-1, Xeax
} retqg cmovbel decx, deax
addl Hedx, Xeax

retq

* No mask registers present, nothing to be fixed by the pass

« The legality of i1 affects optimizations even without mask registers

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Solution B: Choose GPR by default

The core issue is the cross basic block default register class

* Instruction Selection phase does not have all the information to make the
best choice

Solution: Change the default register class of i1 to a GPR

* Make i1 illegal in the X86 Backend

* i1 will be promoted to i8, and assigned to GPRs

« Aligns with AVX2

» A solution for scalar masked operation will be needed
* Issues could arise in masked code

* Fixup pass may still be required

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

11 Vectors Memory Representation

Memory operations on i1 Vectors

* AVX512 introduces memory load/store operations on mask registers

* Loading and storing i1 vectors is straightforward

tval = load <8 x il>, <8 x il>* %s5r1C kmovb (%rdi)
store <8 x il> %val, <8 x il>* %dst, align 1 kmovb kB, |

 Memory representation is bit-packed

* In AVX2 i1 vectors are promoted to fit into xmm registers.

« Bit packing will require an effort.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

i1 —a bit or a byte?

There were several discussions over the years about the memory
representation of i1 vectors. Quite a few bugs are still open

Option 1 Option 2
Byte packed Bit packed
Each vector element stored in a Each vector element stored in a
unique byte unique bit
Consecutive vector elements Consecutive vector elements
stored in consecutive bytes stored in consecutive bits
8 x i1 vector 8 x 11 vector
{ . J (J

8 bytes 1 byte

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Possible Directions

« Option A
Byte-packed on all X86 subtargets

* Not optimal for AVX512

* Does not align with bitcast semantics

« Option B
Bit-packed on all X86 subtargets

* Not optimal for AVX2

 OptionC
Most performant option, per-subtarget

* Byte-packed on AVX2 and older
* Bit-packed on AVX512

* No memory layout consistency within the same target

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and
the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by

this notice.
Notice revision #20110804

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

19

experience
what's inside”

