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Introductions

› Marc-André Laperle

– Software Developer at Ericsson since 2013

– Eclipse committer for CDT (C/C++) and several other 

projects.

– New LLVM/Clang contributor

– Enthusiatic about C/C++, IDEs, and tooling in 

general (Not a compiler expert!)

Your turn!
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› Tool in Clang “Extras”

› Implements the Language Server Protocol

› Should it offer other services??

› Compiling and linking?

Goals and scope
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› C/C++ for Visual Studio Code (Microsoft). Not open source.

› C/C++ Clang Command Adapter (Yasuaki MITANI, Github). 

Parses Clang command output.

› Others?

Existing 
Implementations
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› Refactoring and code generation

› Speed?

› Persisted database/index (Find references, Go to 

Definition, Call Hierarchy, etc)

CHALLENGES
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› Should other clang-tools be invocked directly? Clang-

format, clang-tify, clang-rename, etc.
– Can they all be used as libraries?

›

Architecture
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› Persisted database

› Use a JSon library (jsoncpp?)

› Improvements to code completion

› Open Declaration/Definition

› Find references (functions, classes, fields, variables, with read/write 

information)

› Call hierarchy. Callers and callees of a specific function or field.

› Type hierarchy

Planning
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› Formatting (all done?)

› Syntax/Semantic highlighting

› Source hover

› Code Lens

› Signature Help

› Code folding

› Organize includes

Planning
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› Implement Method (Source generation)

› Generate Getters and Setters (Source Generation)

› Rename (Refactoring)

› Extract Local Variable (Refactoring)

› Extract Function (Refactoring)

› Hide Method (Refactoring)

› Quick Assits (local code transformations)

Planning
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Placeholder/Notes
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