
Clangd: LSP USING Clang

Marc-André Laperle, Ericsson

© Ericsson AB 2016 | 2017-03-27 | Page 2

AGENDA/Topics

2

4 Challenges

3 Existing language server implementations

5

1 Introductions

Goals and scope of Clangd

Proposed architecture

6 Collaborations and planning

© Ericsson AB 2016 | 2017-03-27 | Page 3

Introductions

› Marc-André Laperle

– Software Developer at Ericsson since 2013

– Eclipse committer for CDT (C/C++) and several other

projects.

– New LLVM/Clang contributor

– Enthusiatic about C/C++, IDEs, and tooling in

general (Not a compiler expert!)

Your turn!

© Ericsson AB 2016 | 2017-03-27 | Page 4

› Tool in Clang “Extras”

› Implements the Language Server Protocol

› Should it offer other services??

› Compiling and linking?

Goals and scope

© Ericsson AB 2016 | 2017-03-27 | Page 5

› C/C++ for Visual Studio Code (Microsoft). Not open source.

› C/C++ Clang Command Adapter (Yasuaki MITANI, Github).

Parses Clang command output.

› Others?

Existing
Implementations

© Ericsson AB 2016 | 2017-03-27 | Page 6

› Refactoring and code generation

› Speed?

› Persisted database/index (Find references, Go to

Definition, Call Hierarchy, etc)

CHALLENGES

© Ericsson AB 2016 | 2017-03-27 | Page 7

› Should other clang-tools be invocked directly? Clang-

format, clang-tify, clang-rename, etc.
– Can they all be used as libraries?

›

Architecture

© Ericsson AB 2016 | 2017-03-27 | Page 8

› Persisted database

› Use a JSon library (jsoncpp?)

› Improvements to code completion

› Open Declaration/Definition

› Find references (functions, classes, fields, variables, with read/write

information)

› Call hierarchy. Callers and callees of a specific function or field.

› Type hierarchy

Planning

© Ericsson AB 2016 | 2017-03-27 | Page 9

› Formatting (all done?)

› Syntax/Semantic highlighting

› Source hover

› Code Lens

› Signature Help

› Code folding

› Organize includes

Planning

© Ericsson AB 2016 | 2017-03-27 | Page 10

› Implement Method (Source generation)

› Generate Getters and Setters (Source Generation)

› Rename (Refactoring)

› Extract Local Variable (Refactoring)

› Extract Function (Refactoring)

› Hide Method (Refactoring)

› Quick Assits (local code transformations)

Planning

© Ericsson AB 2016 | 2017-03-27 | Page 11

Placeholder/Notes

	Slide 1
	AGENDA
	Slide 3
	About PROJECT
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

