Clank: Java-port of C/C++
Frontend

Sharing the NetBeans Team’s Experience

Petr Kudriavtsev
Vladimir Voskresensky
Oracle

LWHHL 5y

March 27, 2017

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Safe Harbor Statement

The following is intended to outline our general product
direction. It is intended for information purposes only, and
may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality,
and should not be relied upon in making purchasing
decisions. The development, release, and timing of any
features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Speakers

Petr Viadimir
Kudriavtsev Voskresensky

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Agenda

« Why porting?

« Known approaches

« Converter

« Porting C++ and Clang challenges
 Clank Demo

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Why not binding?

Why Emscripten?
- LLVM IR to JavaScript '‘assembler'?

Why Lucene => CLucene?

- Java ported to C++7

Why Hibernate => NHibernate?
- Java ported to .NET?

Why people do porting?

- It's fun!

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

C++4+ and 2*C == Java

The 10 most popular computer languages on GitHub
https://www.techworm.net/2016/09/top-10-popular-programming-languages-github.html

JavaScript | e s

NEV]

Python

Ruby

PHP

C++

CSS a7, M2

135,585

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Ratings (%)

30

25

20

C++ and C == Java

TIOBE Programming Community Index

Source: www tiobe.com

2010 2012

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

== Java

- C
C++

e C#

== Python

=== Visual Basic .NET
PHP

m JavaScript

== Delphi/Object Pascal
Swift

What Is our favorite C++
Technology?

What is our favorite C++
~Technology? /

N\

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

No religious wars!
Let's share Clang Technology

Add One More Thread Holding Developers Together

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation

« Native Clang library requirements without
functional regressions:

- Full access to the strength of technology
- All Java-aware platforms

- Safety

- Debug

- Performance of native clang

- JNI/JNA Bridging overhead

- Upgrade to new Clang release

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

* Full access to the strength of technology
- Including AST, ASTRecursiveVisitors, ASTMatchers, CFG ...

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

* Full access to the strength of technology
- Including AST, ASTRecursiveVisitors, ASTMatchers, CFG ...
» All Java-aware platforms

- MacOS, Linux, Windows, and Solaris
- X86 and SPARC
- 32 and 64bits

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

* Full access to the strength of technology
- Including AST, ASTRecursiveVisitors, ASTMatchers, CFG ...
» All Java-aware platforms

- MacOS, Linux, Windows, and Solaris
- X86 and SPARC
- 32 and 64bits

« Safety

- Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

Full access to the strength of technology
- Including AST, ASTRecursiveVisitors, ASTMatchers, CFG ...
All Java-aware platforms

- MacOS, Linux, Windows, and Solaris
- X86 and SPARC
- 32 and 64bits

Safety
- Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!
Debug

- We hadn't have Mixed-dev in NetBeans vet...

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

Full access to the strength of technology
- Including AST, ASTRecursiveVisitors, ASTMatchers, CFG ...
All Java-aware platforms

- MacOS, Linux, Windows, and Solaris
- X86 and SPARC
- 32 and 64bits

Safety

- Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!
Debug

- We hadn't have Mixed-dev in NetBeans yet...

Performance of native clang

- Clang preprocessing itself is 2 times slower, parsing is 10x slower

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

Full access to the strength of technology
- Including AST, ASTRecursiveVisitors, ASTMatchers, CFG ...
All Java-aware platforms

- MacOS, Linux, Windows, and Solaris
- X86 and SPARC
- 32 and 64bits

Safety

- Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!
Debug

- We hadn't have Mixed-dev in NetBeans yet...

Performance of native clang

- Clang preprocessing itself is 2 times slower, parsing is 10x slower

JNI/JNA Bridging overhead

- Need to expose whole AST API

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

Full access to the strength of technology
- Including AST, ASTRecursiveVisitors, ASTMatchers, CFG ...
All Java-aware platforms

- MacOS, Linux, Windows, and Solaris
- X86 and SPARC
- 32 and 64bits

Safety

- Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!
Debug

- We hadn't have Mixed-dev in NetBeans yet...

Performance of native clang

- Clang preprocessing itself is 2 times slower, parsing is 10x slower

JNI/JNA Bridging overhead

- Need to expose whole AST API

Upgrade to new Clang release

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

X Full access to the strength of technology
- Including AST, ASTRecursiveVisitors, ASTMatchers, CFG ...
X All Java-aware platforms

- MacOS, Linux, Windows, and Solaris
- X86 and SPARC
- 32 and 64bits

X Safety

- Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

X Debug

- We hadn't have Mixed-dev in NetBeans yet...
X Performance of native clang
- Clang preprocessing itself is 2 times slower, parsing is 10x slower

X |NI/JNA Bridging overhead
- Need to expose whole AST API

/' Upgrade to new Clang release

Conclusion: Clang doesn't bring any extra value?

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

Full access to the strength of technology
- Including AST, ASTRecursiveVisitors, ASTMatchers, CFG ...
All Java-aware platforms

- MacOS, Linux, Windows, and Solaris
- X86 and SPARC
- 32 and 64bits

Safety

- Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!
Debug

- We hadn't have Mixed-dev in NetBeans yet...

Performance of native clang

- Clang preprocessing itself is 2 times slower, parsing is 10x slower

JNI/JNA Bridging overhead
- Need to expose whole AST API

Upgrade to new Clang release

Wait! Let's try Clang in Java!

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

« Full access to the strength of technology
- Including AST, ASTRecursiveVisitors, ASTMatchers, CFG ...
 All Java-aware platforms

- MacOS, Linux, Windows, and Solaris
- X86 and SPARC
- 32 and 64bits

 Safety

- Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

' Debug

- We hadn't have Mixed-dev in NetBeans yet...
X Performance of native clang

- Clang preprocessing itself is 2 times slower, parsing is 10x slower
« JNI/JNA Bridging overhead
- Need to expose whole AST API

X Upgrade to new Clang release

Wait! Let's try Clang in Java!

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Agenda

« Known approaches

cle and/or its affiliates. All rights reserve

Manual

 Inspired by ...

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

LLVM IR Based

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

LLVM IR Based

* Inspired by Emscripten

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

LLVM IR Based

* Inspired by Emscripten
 Transform LLVM IR to Java Bytecode

LLVM IR Based

* Inspired by Emscripten
 Transform LLVM IR to Java Bytecode
« Assembler Level Output

- Difficult to understand
- Difficult to debug by client

C++ JavaScript
function _sqlite3 _sql(spstmt) {

J* SpStmt = SpStmt|6;
#* Return the SQL associated with a prepared statement var S0 =09, 51 =0, $2 =0, $3 =0, S4 =0, $5 =0
¥/ sp = STACKTOP;
SOLITE API const char *sglite3 sql(sglite3 stmt *pStmt){ STACKTOP = STACKTOP + 16]0;

vdbe *p = (Vdbe *)pStmt; S0 = sp + 4]0;

return (p && p->1sPrepareV2) ? p-=zSql : O; Sp = sp;
¥ HEAP32[$0>>2] = $pStmt;
\\\\\\‘_"_"r#1ﬂ,,,,/////////////////ﬂ#ﬂﬂﬂl,r’7 $1 = HEAP32[$6>>2]]0;

HEAP32[$p>>2] = $1;

$2 = HEAP32[$p>>2]]0;
$3 = (52]0)!=(0]0);
I

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

LLVM IR Based

* Inspired by Emscripten
 Transform LLVM IR to Java Bytecode
« Assembler Level Output

- Difficult to understand
- Difficult to debug by client

 Java AST* APIs are needed to be generated
from C-like IR back to Java Classes/methods

Existing C++ to Java Converters

Existing C++ to Java Converters

Low Accuracy on C++11 Codebases

Existing C++ to Java Converters

Low Accuracy on C++11 Codebases

Clang Based

 Inspired by ast-print

Clang Based

 Inspired by ast-print
- Clang: C++ Source to Clang-AST

AST:

FunctionDecl @xE
ParmVarDecl
ParmVarDecl

C++:
int main(int argc, char** argy) {

cout <<= "Support metric quote program' =< endl;

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Based

 Inspired by ast-print
- Clang: C++ Source to Clang-AST

- ast-print: Clang-AST to C++ source
AST:

FunctionDecl ©x554c360
ParmVarDecl
ParmVarDecl
o dstmt

int main(int argc, char **argv) {

cout =< "Support metric quote program” << endl;

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Based

 Inspired by ast-print
- Clang: C++ Source to Clang-AST
- ast-print: Clang-AST to C++ source

e« Comments are missed

C++: Printed C++:

int main(int argc, char** argy) {

int main(int argc, char **argv) {

cout << "Support metric quote program" <<= endl;

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

cout << "Support metric quote program"” <<

Clang Based

 Inspired by ast-print
- Clang: C++ Source to Clang-AST
- ast-print: Clang-AST to C++ source

« Comments are missed
e But looks very promising!

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Based

 Inspired by ast-print
- Clang: C++ Source to Clang-AST
- ast-print: Clang-AST to C++ source

« Comments are missed
e But looks very promising!

Convert whole Clang-AST
to Java Source!

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Agenda

« Why porting?

« Known approaches

« Converter

e Porting C++ and Clang challenges
e Clank Demo

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Prototype Converter

« Within 1 day

- Always print method bodies in class context to make Java
happy

- Replace arrow “-=" by “.” to make Java happy

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Prototype Converter

« Within 1 day

- Always print method bodies in class context to make Java
happy

- Replace arrow “-=" by “.” to make Java happy

e Let's try to port!

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Prototype Converter

« Within 1 day

- Always print method bodies in class context to make Java
happy

- Replace arrow “-=” by “.” to make Java happy
e Let's try to port!

- And I'm going on vacation

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Prototype Converter

« Within 1 day

- Always print method bodies in class context to make Java
happy

- Replace arrow “-=” by “.” to make Java happy
e Let's try to port!

- After 2 weeks...

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Prototype Converter

« Within 1 day

- Always print method bodies in class context to make Java
happy

- Replace arrow “-=” by “.” to make Java happy
e Let's try to port!

- After 2 weeks...

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Prototype Converter

« Within 1 day

- Always print method bodies in class context to make Java
happy

- Replace arrow “-=” by “.” to make Java happy
e Let's try to port!

- After 2 weeks...

Team conclusion: Don't bother us with your crazy dreams!
It is still manual!

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Need a Plan...

Need a Plan...

« Bottom up approach
- for API

Livm ADT/Support

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Need a Plan...

« Bottom up approach
- for API

Llvm Option Clang/Basic

A A

Livm ADT/Support

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Need a Plan...

« Bottom up approach

- for API
e ™
Clang/Lex
\ J
A
a ™ e ™
Llvm Option Clang/Basic
. ,/’ - ,/’
A A
- N
Livm ADT/Support
g)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Need a Plan...

* Followed by Top down approach

- for implementations

\ \

E LIvm Option } E Clang/Basic }

v

E Livm ADT/Support }

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Need a Plan...

* Followed by Top down approach

- for implementations

e
-

E Livm ADT/Support]

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Need a Plan...

* Followed by Top down approach

- for implementations

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Need a Plan...

« Bottom up approach
- Generate APIs without bodies

« Followed by Top down approach

- Generate bodies starting from clients

* Let's try Lex module
» To build infrastructure
» To evaluate ported Preprocessor
- Adjusting APIs when better learn Clang/LLVM

» Easy, fast, because bodies are absent
* Add Java's “LibC++" and ADT/Support on demand

» Use existing Clang tests to check semantic
« Annotate Java code to get help from IDE
« Release within NetBeans C++ support

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Same Time at Different World...

« Use Clang technology to parse C++
 Walk Clang AST to print Java code

During Short Nights...

« Use Clang technology to parse C++
 Walk Clang AST to print Java code
« 2 weeks to prototype JConvert

- Port sample C++ project to Java
- Keep semantic

- Keep code as close as possible
- Keep comments

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

And Long Weekends...

« Use Clang technology to parse C++
 Walk Clang AST to print Java code
« 2 weeks to prototype JConvert

- Port sample C++ project to Java
- Keep semantic

- Keep code as close as possible
- Keep comments

e Demo

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Convert 0.0.1

« C++ Quote vs Java Quote snippets

int type = 0;

switch (response) {
case 'Q':
t return 2; default user requested t

case 'E':
type = Cpu::HIGH;
break;

case 'M':

default :
type = Cpu::MEDILM;
break;

¥ o

“—1int amount = reagﬂumb'///

int type = 0;
switch (response) 1
case '0':

return 2; default user reguested termination

case 'E':
type = Cpu.CpuType.HIGH.getValue();
break;

case 'M':

default:
type = Cpu.CpuType.MEDIUM.getValue();
break;

T

int amount = readNumberof ("CPUs", 1, 10):

_— -

_MyCpu/*J#/= new Cpu{typei/ﬂ////

It works for sample
C++ project!

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Agenda

 Porting C++ and Clang challenges

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

C++

Clang - Pronunciation: /klaNG/

A loud, resonant metallic sound or series of sounds
- Oxford Dictionary

G
L. -
L —

Clank - pronunciation: /klaNGk/

A loud, sharp sound or series of sounds, typically made by
pieces of metal meeting or being struck together

- Oxford Dictionary

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 60

Clank: As close to origin as
possible

« Convert Clang components for fully functional
Preprocessor

- Keeps comments
- Semantically equivalent
- Passes Clang tests

 Pure Java

- Modular
- Java “LibC++"

« Adopted by NetBeans
« The same License as LLVM

- “Wanted the code to be used!” quoting Chris Lattner

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

“All hope abandon, ye who
enter here.”

— Dante Alighieri, The Divine Comedy

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

C++ In Java Challenges

Names collisions

- Non-virtual methods in base and derived classes

* In Java all methods are virtual
- 'unsigned int' vs 'int' overloaded methods and constructors

Diagnostics are not printed
- Temporary objects lifecycle
Multiple inheritance

Compile time preprocessor-conditional code in FileSystem
- Changed #ifdef/#else/#endif to runtime
Split by TUs vs Monolithic Java classes

this+1 and TrailingObjects
Custom new operators
JAVA code Performance

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clank: All i1s solvable

« Names collisions

- Non-virtual methods in base and derived classes

* In Java all methods are virtual
- 'unsigned int' vs 'int' overloaded methods and constructors

« Diagnostics are not printed
- Temporary objects lifecycle

v Multiple inheritance

+/ Compile time preprocessor-conditional code in FileSystem
- Changed #ifdef/#else/#endif to runtime
+ Split by TUs vs Monolithic Java classes

Vv this+1 and TrailingObjects
+/ Custom new operators
v JAVA Clank Preprocessor Performance

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clank: All i1s solvable

Complete and fast Clank Preprocessor, 1.1 MLoc, integrated into NetBeans
« Names collisions

- Non-virtual methods in base and derived classes

* In Java all methods are virtual
- 'unsigned int' vs 'int' overloaded methods and constructors

« Diagnostics are not printed
- Temporary objects lifecycle

v Multiple inheritance

+/ Compile time preprocessor-conditional code in FileSystem
- Changed #ifdef/#else/#endif to runtime
+ Split by TUs vs Monolithic Java classes

Vv this+1 and TrailingObjects
+/ Custom new operators
v JAVA Clank Preprocessor Performance

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

_E@@|?@@|WEWMOQE

Disassembly

Views +| CPU Cycles
wElCDITIE I INCLUSIVE
-
Overview 10896 231 035
. 5176 215 857

R 5176216 867
Timeline 5176 716 857

4
Call Tree

Called-by / Calls
Source

Instructions Exe...

user [+ | <3 Find: | | A G4 [Match Case
Instructions resource_stalls. Hame m
Executed any Events
B INcLUSIVE 21 EXCLUSIVE
-
15572188 605 83903507 org.clang.lex.TokenLexer.PasteTokens(org.clang. lex.Token, org.clang. lex.jav=+
8158 950 585 @ |org.clang.lex.Preprocessor.HandleIdentifier(org.clang. Llex.Token)
B 158 990 588 @ | org.clang.lex.Preprocessor.HandleMacroExpandedIdentifier(org.clang. lex.Toke
B 158 950 5688 @ | org.clang.lex.Preprocessor.LexUnexpandedToken{org. clang. lex. Token) -

org.clang.lex.TokenLexer .PasteTokens{org.clang.lex.Token, org.clang.lex.java.impl.PasteTokenHelper)
org.clang.lex.Tokenl Instructions Ex... org.clang.lex.TokenLexer.PasteTokens{org.clang.lex.Token, org.clang.lex.java.im

ATTRIEUTED is called b:‘r ATTRIEUTED calls
Callers-Calle... # hd # A
15672188805 | org.clang. lex.Toker 4873355369 | org.clang.basic.SourceManager.getF1leID(1int)
Experiments 2382350881 | org.clang.lex.Preprocessor.CreateString(byte(], int, int, org.clang.lex.To
2087085735 | org.clang.lex.Preprocessor.LookUpIdentifierInfo(org. clang. lex. Token)
Threads 144848212 | org.clang.basic.SourceManager.getImmediateExpansionRange (int)
Processes 1139561608 |org.clang.basic.SourceManager.createExpansionLoc(int, int, int, int)
815421 474 | org.clang. lex.Preprocessor.copySpelling(org.clang.lex.Token, bytell. int)
More... 544172506 |org.1llvm.adt.aliases.SmallVectorImplChar. resize(int)
281 589688 |org.clang.lex.TokenLexer.isPastingSimpleIdentifer{org.clang.lex.Token, org
224071086 |org.clang. lex.TokenLexer.1sPastingSimpleNumericConstant (org.clang. lex. Toke
211 267342 | org.clang.lex.Token.startToken()
BBED [ved < Fing: | || G\ [Match case
+| CPU Cycles Instructions resource_stalls. Mame m
- Executed any Events
1 INCLUSIVE 1 INCLUSIVE 21 EXCLUSIVE
. # # v #
Overview 13 940 258 521 21 040 810 706 186615941 clang: :Tokenlexer: :PasteTokens (clang: : Token&) -
Functions 90993 548 702 15575 398 302 4665548 | clang::Preprocessor: :Lex(clang::Token&) _
9032 747 593 15588586152 8 |ccl_main(llvm::ArrayRef<const char*=, const char®, vold*)
Timeline 0032 747 298 15 508 586 152 8 |_ libc_start_main
9932 747 008 15598586152 &} main hd
Call Tree 4 4
Source Called-by / Calls

Disassembly

Callers-Calle...

Experiments
Threads
Processes

More...

Instructions Exe...

ATTRIEUTED is called by
#* -
15 486 538 749 =Total=

5563371557 | clang::TokenlLexer

clang::TokenLexer::Past

clang: : TokenLexer: :PasteTokens{clang: : Tokend)
clang::TokenLexer::PasteTokens(clang::Token &)

Inst

ructions Ex...

ATTRIBUTED

(Lex

#
8713174858
2003836575
18589404 117
1 506 811 330
1 344 428 551

512 162 886
512 162 580
434 345 098
281 589 750
230473 442
192 080 818

G 402 075

calls

clang:
clang:
clang:
clang:
clang:
clang:
clang:
clang:

:SourceManager: :getFileIDSlow(unsigned int)const
:Lexer::Lexer(clang::SourceLocation, const clang::Lang0O
:SourceManager: :getImmediateExpansionRange (clang: : Sourc
:Lexer::LexTokenInternal(clang::Token&, bool)
:Preprocessor: ; LookUpIdentifierInfo(clang: :Token&)const
:Preprocessor: :CreateString(1lvm: :5tringRef, clang::Tok
:SourceManager: :createExpansionLoc (clang: : Sourcelocatio
:SourceManager: :getBufferData(clang: :FileID, bool*)cons

<statlc=@@x97a55 (<libc-2. 19, s0=)

clang:
clang:

Lexer::getSpelling(const clang::Token&, const char*g,
Lexer::Lex(clang::Token&)

clang: : TokenLexer: : getExpansionLocForMacroDefLoc (clang: : Sourc

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clank Memory Profiling

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

* Allocations
£ B Events B Operative Set Interval: 6 min 15 (all) | synchronize Selection
General
N MMMMMM
Memory 1:10:13 AM 1:16:14 AM
- o
Code General | Allocation in New TLAB| Allocation Outside TLABs |
® Allocation by Class | Allocation by Thread | Allocation Profile|
Threads Allocation Pressure @
- Class Average Obje TLABs Total TLABSE: |~
e H byte[] 63.14 kB 1,005 5.87 GB
& I int[] 256.02 kB 489 3.02GB
System O org.clang.basic.ldentifierinfo 32 bytes 92 369.17 MB
& M org.clank.support.aliases.charSptrSarray 24 bytes 39 235.28 MB
Events [java.lang.Object[] 82.63 kB 23 134.01 MB
B org.llvm.support.impl.MemoryBufferMen 40 bytes 10 63.59 MB
O org.clang.basic.SreMgr$ContentCache 40 bytes 10 60.23 MB
M org.llvm.adt.ADTAliasesSPointerint2Pair 24 bytes 5 32.04 MB
[org.llvm.adt.StringRef 24 bytes 4 25.15MBi |~
[14 J b
Stack Trace
Stack Trace TLABs Total TLABSi Pressure =
% overview | [Garbage Collections |ﬁ; GC Times |ﬁ%] GC Configuration | ™ Allocations | 9§ Object Statistics

Clank: Performance analysis and
optimizations in Java code

« Use Performance Analyzer to compare with Clang

- PerfAn profiles Java or C++ using sampling with 2% overhead
- Compare Instructions and CPU Cycles and do local perf optimizations

« Use Java Flight Recorder to profile memory footprint
« Teach Converter to produce more optimal code

« Use specializations based on parametrized spec
files
- Change template file, all specializations are regenerated
- Add mapping to generate specializations, regenerate code

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clank: All i1s solvable

« Names collisions

- Non-virtual methods in base and derived classes

* In Java all methods are virtual
- 'unsigned int' vs 'int' overloaded methods and constructors

« Diagnostics are not printed
- Temporary objects lifecycle

v Multiple inheritance

+/ Compile time preprocessor-conditional code in FileSystem
- Changed #ifdef/#else/#endif to runtime
+ Split by TUs vs Monolithic Java classes

Vv this+1 and TrailingObjects
+/ Custom new operators
v JAVA Clank Preprocessor Performance

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clank: Upgrade to Clang 3.9

 Tooling

Analyze diffs

Analyze dependencies

Detect Changed Entities

Prepare TODO actions

Process Moved and Renamed actions first
Drive upgrade

Mark progress

Track progress

Build History (trend)

#1167 Sep 19, 2016 7:08:45 AM [F [&]
Lexer 3.9 - Done
#1166 Sep 17, 2016 10:33:36 PM [F [&]

Lexer upgrade to 3.9, only PP
remains

#1157 Sep 14, 2016 7:00:41 PM [F [&]
3.2 Driver done
#1153 Sep 8, 2016 10:25:07 PM & [&]

3.9 Basic targets (VFS
remains)
#1141 Aug 22, 2016 8:01:59 PM [F [&]

upgrade to 3.9 - (options,
frontendtool, tools/driver, basic
w/o Targets and F5)

- —_ - f—_— T

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clank: Upgrade to Clang 3.9

 Update view

Builtin. java(changed/total directs: 1/3, changed/total children: 4/43)

Generate with body, Generate without body, Generate with body in output
Context (changed/total directs: 3/31, changed/total children: 3/31)
Generate with body, Generate without body, Mark as updated

isFure - ADDED (Insert after)

Generate with body, Generate without body, Mark as updated

builtinlsSupported -

Generate with body, Generate without body, Mark as updated

isTsBuiltin -

Generate with body, Generate without body, Mark as updated

ID - INCLUDE

Generate with body, Generate without body, Mark as updated

--- fexport/devarea/LLVM38/11lvm/tools/clang/1lib/Basic/Builtins.cpp

+++ Jexport/devarea/LLVM39/11lvm/tools/clang/lib/Basic/Builtins. cpp

@@ -72,1 +72,3 @@

return 'BuiltinsUnsupported && !'MathBuiltinsUnsupported &b

+ pool OclCUnsupported = LangOpts.OpenClLVersion = 200 &&

+ BuiltinInfo.Langs == 0CLC20 LANG;

+ return !'BuiltinsUnsupported && !'MathBuiltinsUnsupported && !'0clCUnsupported &b

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clank: Upgrade to Clang 3.9

 Tooling

- Analyze diffs

- Analyze dependencies

- Detect Changed Entities

- Prepare TODO actions

- Process Moved and Renamed actions first
- Drive upgrade

- Mark progress

- Track progress

« 1 person - 4 weeks for 1.1MLoc

Build History (trend)

@ #1167 Sep 19, 2016 7:08:45 AM |F [&]
Lexer 3.9 - Done

@ #1166 Sep 17, 2016 10:33:36 PM | [&]
Lexer upgrade to 3.9, only PP

remains

@ #1157 Sep 14, 2016 7:00:41 PM |F [&]
3.9 Driver done

@ #1153 Sep 8, 2016 10:25:07 PM | F [&]

3.9 Basic targets (VFS
remains)

@ #1141 Aug 22, 2016 8:01:59 PM & [&]

upgrade to 3.9 - (options,
frontendtool, tools/driver, basic
w/o Targets and F5)

- f—_— T

 Improve Upgrade Tools based on feedback

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clank: Upgrade to Clang 3.9

 Tooling

- Analyze diffs

- Analyze dependencies

- Detect Changed Entities

- Prepare TODO actions

- Process Moved and Renamed actions first
- Drive upgrade

- Mark progress

- Track progress

« 1 person - 4 weeks for 1.1MLoc

Build History (trend)

@ #1167 Sep 19, 2016 7:08:45 AM [(5]
Lexer 3.9 - Done
@ #1166 Sep 17, 2016 10:33:36 PM i [&]

Lexer upgrade to 3.9, only PP
remains

@ #1157 Sep 14, 2016 7:00:41 PM | (5]
3.9 Driver done
@ #1153 Sep 8, 2016 10:25:07 PM [[&]

3.9 Basic targets (VFS
remains)

@ #1141 Aua 22, 2016 8:01:59 PM [(5]
upgrade to 3.9 - (options,
frontendtool, tools/driver, basic
w/o Targets and F5)

- f—_— T

« Improve Upgrade Tools based on feedback

Let's move toward complete C++ Frontend!

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

« Clank Demo

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Demo

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clank: Modular Structure

Java “LibC++"

* Memory and Pointers abstraction
* Unsigned types support

* Bit fields support

* STL Templates / Specializations
*1/0

* Function pointers

- @Converted annotation

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

76

Clank: Modular Structu
Ported LLVM/Clang libraries

- Clang
- Driver
- Basic
- Lex
- AST
- Analysis

- Parse @

- Sema
- Edit
Rewrite @
- Frontend
StaticAnalyzer
- FrontendTool
- Tools/Driver
« LLVM/Options
« ADT/Support On demand
—with Templates and Specializations

* Tests: ADT/Support, Lexer, Preprocessor, nvm_‘o ion
Parser

2 Million lines of code I

adt_support [lvin_ecodegen

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 77

frontend @
<

llvm_option @ llvm_profiledata

llvm_bitcode

Clank: Modular Structure
In-progress LLVM/Clang libraries

» Tooling

« ASTMatchers
 Serialization
- LLVM/Bitcode
« LLVM/IR

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clank: Porting progress

Total Lines of Clank Java Source Code After Commit

2,000,000 1
1,750,000 |
1,500,000 |
1,250,000 |

o

~ 1,000,000

750,000
500,000

250,000 1

0

18 November 2016 ... 15 March 2017
2 persons: 4 months with long Russian NY break

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 80

Clank: Porting progress

Total Lines of Clank Java Source Code After Commit

2,000,000 4

1,730,000 4

1,500,000 4

1,250,000 4p=--

S
= 1,000,000 -

750,000

200,000

250,000 1

0

18 November 2016 ... 15 March 2017
2 persons: 4 months with long Russian NY break

Improve Converter based on commits with
*“MANUAL” keyword in subject
80% MANUALSs are AUTO now

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

81

= Java

Unite Developers Together

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

