
CodeCompass
an Open Software Comprehension Framework

Motto: If it was hard to write it should be hard to understand

-- unknown programmer

Zoltán Porkoláb1,2, Dániel Krupp1, Tibor Brunner2, Márton Csordás2

1Ericsson Ltd, 2Eötvös Loránd University, Budapest, Hungary

https://github.com/Ericsson/CodeCompass

https://github.com/Ericsson/CodeCompass

Agenda

ÅComprehensionasa cost factor

ÅWhy developmenttoolsarenot perfect
for comprehension?

ÅRequirements

ÅArchitecture

ÅA few workflows

ÅRestrictions

ÅExperiences

ÅFurther planes

3/27/2017 CodeCompass 2

Comprehension is a major cost factor

3/27/2017 CodeCompass 3

Research Effort for comprehension

IBM (Corbi, 1989) Over 50% of time

Bell Labs (Davison, 1992) New project members: 60-80% of time,
drops to 20% as one gains experience

National Research Council in
Canada (Singer, 2006)

Over 25% of time either searching for or
looking at code

Microsoft (Hallam, 2006) Equal amount of time as design, test

Microsoft (La Toza, 2007) Over 70% of time

Microsoft (Cherubini, 2007) 95%~ significant part of job
65%< at least once a day
25%< multiple times of a day

Using tools

3/27/2017 CodeCompass 4

Using tools

3/27/2017 CodeCompass 5

Using tools

3/27/2017 CodeCompass 6

Using tools

3/27/2017 CodeCompass 7

Comprehension requires specific toolset

3/27/2017 CodeCompass 8

Development of code Understanding code

Writing new code
(support: code completion, etc.)

Reading and navigating inside code

Intentions are clear Intensions are weak

Editing only a few files at the same
time

Frequently jumping between different
files

Working on the same abstraction
level for a while

Jumping between various abstraction
levels (Google map of code)

Edit, compile, fix Visualize

Some existing tools
ÅWeb-based
ïOpenGrok

ïWoboq(deep analysis)

ïΧ

ÅFat-client
ïUnderstand (+edit)

ïCodeSurfer

ïΧ

Å IDE-based
ïEclipse

ïNetBeans

ïQtCreator

ïVisualStudio

ïΧ

3/27/2017 CodeCompass 9

Required features

ÅDeep analysis + build information -> using a real parser

ÅFast text based feature location

ÅArchitectural information

ÅTextual summaries (types, variables, functions, macros)

ÅVarious (interactive) visualizations

ÅScalable (>10 million LOC)

ÅMost actions should be fast (< 1-2 sec)

ÅPermalinks for communication with fellow developers

ÅDŀǘƘŜǊƛƴƎ ŀƭƭ ŀǾŀƛƭŀōƭŜ ƛƴŦƻǊƳŀǘƛƻƴΥ ŎƻŘŜ ƘƛǎǘƻǊȅΣ ƳŜǘǊƛŎǎΣ Χ

ÅOpen, extensible platform

3/27/2017 CodeCompass 10

First experimental version: store AST

ÅAST contains most of the required information
ÅNatural output of Clang
ÅProblem: size!
ï40GB for LLVM project AST dump + indexes, etcΧ ->100 GB
ï1:500 ratio between source and CodeCompassDB size

ÅNot scalable
ÅFuture work:
ïDetecting identical sub-trees (e.g. of headers)
ïNoSQL database?

ÅFat client

3/27/2017 CodeCompass 11

Final approach: Store named entities
ÅNames: the most natural target of user actions
ÅWe store
ïClass/function/variable declarations, definitions, usage
ïReferences to names are stored as hash values
ïSource file as it is (keeping original formatting)
ïBuild information

ÅScalable
ï1:30-50 ratio between source and CodeCompassDB size
ïFull LLVM CodeCompassDB with indexes 13 GB in postgres

ÅA few addition was required
ïAssignment, parameter lists: detecting read/write relations of variables
ï Inheritance, pointer indirections, typedefs, etcΧ

ÅWeb-based client

3/27/2017 CodeCompass 12

Performance

3/27/2017 CodeCompass 14

Tiny XML
2.6.2

Xerces
3.1.3

CodeCompass
v4

Ericsson TSP
product

Source code size [MiB] 1.16 67.28 182 3 344

Search database size [MiB] 0.88 37.93 139 7168

PostgreSQL DB size [MiB] 15 190 2144 7729

Build time [s] 2.73 361 2024 -

CC Parse time [s] 21.98 517 6409 -

Text/definition search [s] 0.4 0.3 0.43 2

C++ get usage of a type [s] 1.4 2 2.3 3.1

Architecture

3/27/2017 CodeCompass 15

How to use?

ÅFast feature location using text/definition/log search

ÅExplore the environment of the focus point

ïInfo tree

ïInteractive call graphs

ïVirtual functions and function pointers

ÅUnderstand the code history

ÅUnderstand higher level architecture

ÅExplore related static analysis results/code metrics

3/27/2017 CodeCompass 16

DEBUG INFO: TSTHan: sys_offset =- 0.019821, drift_comp =- 90.4996, sys_poll =5

3/27/2017 CodeCompass 17

3/27/2017 CodeCompass 18

ÅVisualize generated special memberfunctions

3/27/2017 CodeCompass 19

CodeCompass 203/27/2017

