Formalizing the Concurrency Semantics of an LLVM Fragment

Soham Chakraborty, Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

EuroLLVM 2017

LLVM Compilation

LLVM

LLVM Concurrency Compilation

LLVM Concurrency Compilation

formalized

formalized

LLVM Concurrency Compilation

Correctness of the transformations is unclear

Limitation of LLVM Informal Concurrency

Valid opt is removed by over-restriction in bug fix

Formalized fragment of LLVM concurrency Verified correctness of transformations Validated LLVM opt-phase transformations Informal text in Language Reference Manual

Frequent references to C11 concurrency

- "This model is inspired by the C++0x memory model."
- "These semantics are borrowed from Java and C++0x, but are somewhat more colloquial."
- This is intended to match shared variables in C/C++ ..."

Subtle differences

- A program has write-read race on non-atomics
 - C11: the behavior of the program is undefined
 - LLVM: *defined* behavior;

racy read returns **undef(u)**

Subtle differences

- A program has write-read race on non-atomics
 - C11: the behavior of the program is undefined
 - LLVM: *defined* behavior;

racy read returns undef(u)

$$X = 1; \quad \begin{vmatrix} \text{if}(X) \\ t = 4; \\ \text{else} \\ t = 4; \end{vmatrix}$$

Subtle differences

- A program has write-read race on non-atomics
 - C11: the behavior of the program is undefined
 - LLVM: *defined* behavior;

racy read returns undef(u)

$$X = 1; \quad \begin{vmatrix} \text{if}(X) \\ t = 4; \\ \text{else} \\ t = 4; \end{vmatrix}$$

Subtle differences

- A program has write-read race on non-atomics
 - C11: the behavior of the program is undefined
 - LLVM: *defined* behavior;

racy read returns undef(u)

$$X = 1; \quad \begin{vmatrix} \text{if}(X) \\ t = 4; \\ \text{else} \\ t = 4; \end{vmatrix}$$

 $t \neq 4$?

Subtle differences

- A program has write-read race on non-atomics
 - C11: the behavior of the program is undefined
 - LLVM: *defined* behavior;

racy read returns undef(u)

$$X = 1; \quad \begin{vmatrix} \text{if}(X) \\ t = 4; \\ \text{else} \\ t = 4; \end{vmatrix}$$

 $t \neq 4$? C11 \checkmark

Subtle differences

- A program has write-read race on non-atomics
 - C11: the behavior of the program is undefined
 - LLVM: *defined* behavior;

racy read returns undef(u)

$$X = 1; \quad \begin{vmatrix} \text{if}(X) \\ t = 4; \\ \text{else} \\ t = 4; \end{vmatrix}$$

 $t \neq 4$? C11 \checkmark LLVM X

Subtle differences

- A program has write-read race on non-atomics
 - C11: the behavior of the program is undefined
 - LLVM: *defined* behavior;

racy read returns undef(u)

$$X = 1; \quad \begin{vmatrix} \text{if}(X) \\ t = 4; \\ \text{else} \\ t = 4; \end{vmatrix}$$

 $t \neq 4$? C11 \checkmark LLVM X

- Set of allowed optimizations are different

C11 vs LLVM

C11 🗶 LLVM 🗸

C11 vs LLVM

Context:if(flag){t = X; $\begin{bmatrix} X = 1; \parallel \end{bmatrix}$ a = X; \rightsquigarrow if(flag){a = t; $\end{pmatrix}$ $\}$ a = t;

C11 🗶 LLVM 🗸

C11 🗸 🛛 LLVM 🗡

Formalization of LLVM concurrency

Verified correctness of transformations

Validated LLVM opt-phase transformations

Example

int
$$X = 0, Y = 0;$$

 $a = X; || b = Y;$
 $Y = 1; || X = 1;$
Is $a == b == 1$ possible?

Example

int
$$X = 0, Y = 0;$$

 $a = X; \mid b = Y;$
 $Y = 1; \mid X = 1;$
Is $a == b == 1$ possible? \checkmark

$$int X = 0, Y = 0; \qquad int X = 0, Y = 0;$$
$$\begin{pmatrix} a = X; \\ Y = 1; \\ \end{bmatrix} \begin{array}{c} b = Y; \\ X = 1; \\ \end{array} \xrightarrow{} Y = 1; \\ a = X; \\ b = Y; \\ a = X; \\ b = Y; \\ \end{array}$$

$$\begin{array}{c|c} int \ X = 0, \ Y = 0; \\ a = X; \\ Y = 1; \end{array} \begin{array}{c} b = Y; \\ X = 1; \end{array}$$

$$WX0 | program-order WY0$$

$$\begin{array}{c|c} \text{int } X = 0, Y = 0; \\ \hline a = X; \\ Y = 1; \\ \end{array} \begin{array}{c} b = Y; \\ X = 1; \\ \end{array}$$

Example

int
$$X = 0, Y = 0;$$

 $a = X; || b = Y;$
 $Y = 1; || X = 1;$
Is $a == b == 1$ possible? \checkmark

$$int X = 0, Y = 0; \qquad int X = 0, Y = 0;$$
$$\begin{pmatrix} a = X; \\ Y = 1; \\ \end{bmatrix} \begin{array}{c} b = Y; \\ X = 1; \\ \end{array} \xrightarrow{} Y = 1; \\ a = X; \\ b = Y; \\ a = X; \\ b = Y; \\ \end{array}$$

Execution from Event Structure

Execution from Event Structure

Execution from Event Structure

13

- Memory operations:
 - load
 - store
 - compare_and_swap (CAS)
- Memory orders:
 - non-atomic (na)
 - acquire (acq)
 - release (rel)
 - acquire_release (acq_rel)
 - sequentially consistent (sc)

Formalized fragment of LLVM concurrency

Verified correctness of transformations

- Elimination
- Reordering
- Mappings (C11 \rightsquigarrow LLVM \rightsquigarrow X86/Power)

Validated LLVM opt-phase transformations

Transformation Correctness

Behavior $(P_{tgt}) \subseteq$ Behavior (P_{src}) Behavior: final values observed in each location

Transformation Correctness

Behavior $(P_{tgt}) \subseteq$ Behavior (P_{src}) Behavior: final values observed in each location

 $Behavior(G_{tgt}) \subseteq Behavior(G_{src})$

♠

Elimination Optimizations

Adjacent read after read/write elimination

•
$$a = X_o$$
; $b = X_{na}$; $\rightsquigarrow a = X_o$; $b = a$;

•
$$X_o = v$$
; $b = X_{na}$; $\rightsquigarrow X_o = v$; $b = v$;

Adjacent overwritten write elimination

•
$$X_{na} = v'; X_{na} = v; \rightsquigarrow X_{na} = v;$$

Non-adjacent overwritten write elimination

LLVM performs these eliminations

Elimination Optimizations

Adjacent read after read/write elimination • $a = X_o; b = X_{na}; \rightsquigarrow a = X_o; b = a;$ • $X_o = v; b = X_{na}; \rightsquigarrow X_o = v; b =$ Adjacent overwritten write • $X_{na} = v': X_{na} = v''$ Non-adjacent $\mathbf{x}_{na} = \mathbf{v}; \rightsquigarrow C; \mathbf{X}_{na} = \mathbf{v};$ acq-pair \notin C and $access(X) \notin C$ LLVM performs these eliminations

Also Proved...

Adjacent read after read/write elimination

•
$$a = X_{acq}$$
; $b = X_{acq}$; $\rightsquigarrow a = X_{acq}$; $b = a$;

•
$$a = X_{sc}; b = X_{(acq|sc)}; \rightsquigarrow a = X_{sc}; b = a;$$

•
$$X_{\text{rel}} = v$$
; $b = X_{\text{acq}}$; $\rightsquigarrow X_{\text{rel}} = v$; $b = v$;

•
$$X_{\rm sc} = v; b = X_{(\rm acq|sc)}; \rightsquigarrow X_{\rm sc} = v; b = v;$$

Adjacent overwritten write elimination

•
$$X_{rel} = v'; X_{rel} = v; \rightsquigarrow X_{rel} = v;$$

• $X_{(rel|sc)} = v'; X_{sc} = v; \rightsquigarrow X_{sc} = v;$

LLVM does NOT perform these eliminations

Also Proved...

Adjacent read after read/write elimination

•
$$a = X_{acq}$$
; $b = X_{acq}$; $\rightsquigarrow a = X_{acq}$; $b = a$;

•
$$a = X_{sc}; b = X_{(acq|sc)}; \rightsquigarrow a = X_{sc}; b = a;$$

•
$$X_{\text{rel}} = v$$
; $b = X_{\text{acq}}$; $\rightsquigarrow X_{\text{rel}} = v$; $b = v$;

•
$$X_{sc} = v; b = X_{(acq|sc)}; \rightsquigarrow X_{sc} = v; b = v;$$

Adjacent overwritten write elimination

•
$$X_{rel} = v'; X_{rel} = v; \rightsquigarrow X_{rel} = v;$$

• $X_{(rel|sc)} = v'; X_{sc} = v; \rightsquigarrow X_{sc} = v;$

LLVM does NOT perform these eliminations

Non-adjacent read after write elimination

Also Proved

Adjacent read after read/write elimination

•
$$a = X_{acq}; b = X_{acq}; \rightarrow a = X_{acq}; b = a;$$

•
$$a = X_{sc}; b = X_{(acq|sc)}; \rightsquigarrow a = X_{sc}; b = a;$$

•
$$X_{\text{rel}} = v; b = X_{\text{acq}}; \rightsquigarrow X_{\text{rel}} = v; b = v;$$

•
$$X_{sc} = v; b = X_{(acq|sc)}; \rightarrow X_{sc} = v$$

Adjacent overwritten write elim:
• $X_{rel} = v'; X_{rel} = v; \sim$

•
$$X_{rel} = v'; X_{rel} = v; \sim$$

• $X_{(rel|sc)} = v'; X_{rel} = v; \sim$

LLVM dor For these eliminations Non OR read after write elimination

•
$$\lambda = v; C; a = X_{na}; \rightsquigarrow X_{na} = v; C; a = v;$$

where rel-acq-pair $\notin C$ and $access(X) \notin C$

Formalized fragment of LLVM concurrency

Verified correctness of transformations

- Elimination
- Reordering $(a; b \rightsquigarrow b; a)$
- Mappings (C11 \rightsquigarrow LLVM \rightsquigarrow X86/Power)

Validated LLVM opt-phase transformations

LLVM Reorderings

 $r \cdot h \sim h \cdot r$

a, D 👓 D, a					
$\downarrow a \setminus b \rightarrow$	(St Ld) _{na}	St_{rel}	Ld_{acq}	Ld_{sc}	$U_{(acq_rel sc)}$
(St Ld) _{na}	\checkmark	-	\checkmark	\checkmark	-
St _{rel}	\checkmark	-	-	-	-
St _{sc}	\checkmark	-	-	-	-
Ld _{acq}	-	-	-	-	-
U _(acq rel sc)	-	-	-	-	_

$$X_{\text{rel}} = v; Y_{\text{na}} = v'; \rightsquigarrow Y_{\text{na}} = v'; X_{\text{rel}} = v; \quad \checkmark$$

LLVM performs(\checkmark) these reorderings

LLVM Reorderings

 $r \cdot h \sim h \cdot r$

a, D 🗇 D, a					
$\downarrow a \setminus b \rightarrow$	(St Ld) _{na}	St_{rel}	Ld_{acq}	Ld_{sc}	$U_{(acq_rel sc)}$
(St Ld) _{na}	\checkmark	×	\checkmark	\checkmark	×
St _{rel}	\checkmark	×	-	-	×
St _{sc}	\checkmark	×	-	×	×
Ld _{acq}	×	×	×	×	×
$U_{(acq_rel sc)}$	×	×	×	×	×

$$Y_{na} = v'; X_{rel} = v; \rightsquigarrow X_{rel} = v; Y_{na} = v'; \quad \times$$

LLVM restricts(\times) these reorderings

a; b \rightsquigarrow b; a					
$\downarrow a \setminus b \rightarrow$	$(St Ld)_{na}$	St_{rel}	Ld_{acq}	Ld_{sc}	$U_{(acq_rel sc)}$
(St Ld) _{na}	\checkmark	×	\checkmark	\checkmark	×
St _{rel}	\checkmark	×	\checkmark	\checkmark	×
St _{sc}	\checkmark	×	\checkmark	×	×
Ld _{acq}	×	×	×	×	×
$U_{(acq_{rel} sc)}$	×	×	×	×	×

$$X_{\rm rel} = v; t = Y_{\rm acq}; \rightsquigarrow t = Y_{\rm acq}; X_{\rm rel} = v; \quad \checkmark$$

LLVM does NOT perform these reorderings

LLVM does NOT perform these reorderings

Formalized fragment of LLVM concurrency

Verified correctness of transformations

- Elimination
- Reordering
- Mappings (C11 \rightsquigarrow LLVM \rightsquigarrow X86/Power)

Validated LLVM opt-phase transformations

- LLVM has operations (Ld/St/CAS) and memory orders (na/rel/acq/acq_rel/SC) similar to C11.
- LLVM model is stronger than C11.

C11 to LLVM Mapping Correctness

- LLVM model is stronger than C11.

LLVM to Architecture Mapping Correctness

(LLVM $\rightsquigarrow x86/Power$) = (C11 $\rightsquigarrow x86/Power$) Proved correctness of these mappings

- LLVM to SC
- LLVM to SPower

Ensure correctness of LLVM $\rightarrow \times 86$ /Power (results from Lahav & Vafeiadis. FM'16)

LLVM to Architecture Mapping Correctness

Formalized fragment of LLVM concurrency

Proved correctness of transformations

Validated LLVM opt-phase transformations • $P_{src} \xrightarrow{\text{LLVM}} P_{tgt}$? Correct : Potential Error

$P_{src} \xrightarrow{\text{LLVM}} P_{tgt} ? \text{Correct} : \text{Potential Error}$ \uparrow $P_{src} \xrightarrow{(R \cup E)^*} P_{tgt} ? \text{Correct} : \text{Potential Error}$

- R: Safe reorderings
- E: Safe eliminations

$$s_1 = X !A$$

$$s_2 = X !B$$

$$V = 1 !C$$

$$s_4 = Z_{acq} !D$$

$$Y = 1 !E$$

$$Y = 2 !F$$

$$\checkmark s_1 = X !A$$

$$s_2 = X !B$$

$$V = 1 !C$$

$$s_4 = Z_{acq} !D$$

$$Y = 1 !E$$

$$Y = 2 !F$$

✓
$$s_1 = X ! A$$

✓ $s_2 = X ! B$
 $V = 1 ! C$
 $s_4 = Z_{acq} ! D$
 $Y = 1 ! E$
 $Y = 2 ! F$

✓
$$s_1 = X ! A$$

X $s_2 = X ! B$
V = 1 !C
✓ $s_4 = Z_{acq} ! D$
Y = 1 !E
Y = 2 !F

✓
$$s_1 = X ! A$$

X $s_2 = X ! B$
V = 1 !C
✓ $s_4 = Z_{acq} ! D$
Y = 1 !E
✓ Y = 2 !F

✓
$$s_1 = X ! A$$

× $s_2 = X ! B$
V = 1 !C
✓ $s_4 = Z_{acq} ! D$
× Y = 1 !E
✓ Y = 2 !F

✓
$$s_1 = X ! A$$

✓ $s_2 = X ! B$
✓ $V = 1 ! C$
✓ $s_4 = Z_{acq} ! D$
✓ $Y = 1 ! E$
✓ $Y = 2 ! F$

✓
$$s_1 = X ! A$$

X $s_2 = X ! B$
✓ $V = 1 ! C$
✓ $s_4 = Z_{acq} ! D$
X $Y = 1 ! E$
✓ $Y = 2 ! F$

$$t_1 = X \ !A$$
$$t_2 = Z_{acq} \ !D$$
$$Y = 2 \ !F$$
$$V = 1 \ !C$$

- Check that unmatched accesses are deletable
- Check that reorderings are allowed

- Check that unmatched accesses are deletable
- Check that reorderings are allowed

Formalized fragment of LLVM concurrency

Proved correctness of transformations

Validated LLVM opt-phase transformations

- Generate a test case (P_{src}) .
- Apply LLVM transformations (P_{tgt}) .
- $P_{src} \xrightarrow{\text{LLVM}} P_{tgt}$? Correct : Potential Error

LLVM Formalization [CGO'17]

- Event structure construction rules
- Consistency constraints
- Data race freedom (DRF) theorems
- Proofs: http://plv.mpi-sws.org/llvmcs/

Translation validation [CGO'16]

- Programs with control flow
- Experimental evaluations
- Artifact: http://plv.mpi-sws.org/validc/

Extend the LLVM concurrency model

- With relaxed accesses and fences
- Verify more optimizations
- Mechanize the formalization
- Improve the validator
 - Integrate with sequential transformations
 - Handle loops, pointer etc

Thank You !