
Formalizing the Concurrency Semantics
of an LLVM Fragment

Soham Chakraborty, Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

EuroLLVM 2017

LLVM Compilation

C/C++ IR

x86

Power

:
formalizedformalized informal

frontend

opt

codegen

LLVM

Result: Lack of understanding of the correctness of
the transformations

2

LLVM Concurrency Compilation

C11 IR

x86

Power

formalizedformalized informal

frontend

opt

codegen

Correctness of the transformations is unclear

3

LLVM Concurrency Compilation

C11 IR

x86

Power

formalizedformalized

informal

frontend

opt

codegen

Correctness of the transformations is unclear

3

LLVM Concurrency Compilation

C11 IR

x86

Power

formalizedformalized informal

frontend

opt

codegen

Correctness of the transformations is unclear

3

Limitation of LLVM Informal Concurrency

too many opt. too few opt.

bugs no
elimination,
reordering
of atomics

LLVM compiler

Valid opt is removed by over-restriction in bug fix

4

This Work

C11 IR

x86

Power

formalizedformalized informal

frontend

opt

codegen

Formalized fragment of LLVM concurrency

Verified correctness of transformations

Validated LLVM opt-phase transformations
5

Informal LLVM Concurrency

Informal text in Language Reference Manual

Frequent references to C11 concurrency

"This model is inspired by the C++0x memory
model."
"These semantics are borrowed from Java and
C++0x, but are somewhat more colloquial."
This is intended to match shared variables in
C/C++ . . ."
. . .

6

Why not adopt C11 concurrency?

Subtle differences
- A program has write-read race on non-atomics

C11: the behavior of the program is undefined
LLVM: defined behavior;

racy read returns undef(u)

X = 1;

if(X)
t = 4;

else
t = 4;

t 6= 4 ? C11 X LLVM 7

- Set of allowed optimizations are different

7

Why not adopt C11 concurrency?

Subtle differences
- A program has write-read race on non-atomics

C11: the behavior of the program is undefined
LLVM: defined behavior;

racy read returns undef(u)

X = 1;

if(X)
t = 4;

else
t = 4;

t 6= 4 ? C11 X LLVM 7

- Set of allowed optimizations are different

7

Why not adopt C11 concurrency?

Subtle differences
- A program has write-read race on non-atomics

C11: the behavior of the program is undefined
LLVM: defined behavior;

racy read returns undef(u)

X = 1;

if(X)
t = 4;

else
t = 4;

t 6= 4 ? C11 X LLVM 7

- Set of allowed optimizations are different

7

Why not adopt C11 concurrency?

Subtle differences
- A program has write-read race on non-atomics

C11: the behavior of the program is undefined
LLVM: defined behavior;

racy read returns undef(u)

X = 1;

if(X)
t = 4;

else
t = 4;

t 6= 4 ?

C11 X LLVM 7

- Set of allowed optimizations are different

7

Why not adopt C11 concurrency?

Subtle differences
- A program has write-read race on non-atomics

C11: the behavior of the program is undefined
LLVM: defined behavior;

racy read returns undef(u)

X = 1;

if(X)
t = 4;

else
t = 4;

t 6= 4 ? C11 X

LLVM 7

- Set of allowed optimizations are different

7

Why not adopt C11 concurrency?

Subtle differences
- A program has write-read race on non-atomics

C11: the behavior of the program is undefined
LLVM: defined behavior;

racy read returns undef(u)

X = 1;

if(X)
t = 4;

else
t = 4;

t 6= 4 ? C11 X LLVM 7

- Set of allowed optimizations are different

7

Why not adopt C11 concurrency?

Subtle differences
- A program has write-read race on non-atomics

C11: the behavior of the program is undefined
LLVM: defined behavior;

racy read returns undef(u)

X = 1;

if(X)
t = 4;

else
t = 4;

t 6= 4 ? C11 X LLVM 7

- Set of allowed optimizations are different 7

C11 vs LLVM

Context:[
X= 1;

] if(flag){
a = X ;

}
;

t = X ;
if(flag){

a = t;
}

C11 7 LLVM X

Context:X= 4;
Yrel= 1;

t1 = X ;
if(Yacq){

t2 = X ;
}

;

t1 = X ;
if(Yacq){

t2 = t1;
}

C11 X LLVM 7

8

C11 vs LLVM

Context:[
X= 1;

] if(flag){
a = X ;

}
;

t = X ;
if(flag){

a = t;
}

C11 7 LLVM X

Context:X= 4;
Yrel= 1;

t1 = X ;
if(Yacq){

t2 = X ;
}

;

t1 = X ;
if(Yacq){

t2 = t1;
}

C11 X LLVM 7
8

Formalization

Formalization of LLVM concurrency

Verified correctness of transformations

Validated LLVM opt-phase transformations

9

Example

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

Is a == b == 1 possible?

3

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

;

int X = 0,Y = 0;
Y = 1;
a = X ;

X = 1;
b = Y ;

10

Example

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

Is a == b == 1 possible? 3

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

;

int X = 0,Y = 0;
Y = 1;
a = X ;

X = 1;
b = Y ;

10

Event Structure Construction

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

program-order

RX0

read-from

RY 0

WY 1 WX1
RACE

∼RYub

conflict relation

∼RXua

WY 1 WX1

11

Event Structure Construction

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

program-order

RX0

read-from

RY 0

WY 1 WX1
RACE

∼RYub

conflict relation

∼RXua

WY 1 WX1

11

Event Structure Construction

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

program-order

RX0

read-from

RY 0

WY 1 WX1
RACE

∼RYub

conflict relation

∼RXua

WY 1 WX1

11

Event Structure Construction

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

program-order

RX0

read-from

RY 0

WY 1 WX1

RACE

∼RYub

conflict relation

∼RXua

WY 1 WX1

11

Event Structure Construction

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

program-order

RX0

read-from

RY 0

WY 1 WX1
RACE

∼RYub

conflict relation

∼RXua

WY 1 WX1

11

Event Structure Construction

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

program-order

RX0

read-from

RY 0

WY 1 WX1
RACE

∼RYub

conflict relation

∼RXua

WY 1 WX1

11

Event Structure Construction

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

program-order

RX0

read-from

RY 0

WY 1 WX1
RACE

∼RYub

conflict relation

∼RXua

WY 1 WX1

11

Event Structure Construction

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

program-order

RX0

read-from

RY 0

WY 1 WX1
RACE

∼RYub

conflict relation

∼RXua

WY 1 WX1
11

Example

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

Is a == b == 1 possible? 3

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

;

int X = 0,Y = 0;
Y = 1;
a = X ;

X = 1;
b = Y ;

12

Execution from Event Structure

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

RX0 RY 0

WY 1 WX1

∼RYub∼RXua

WY 1 WX1

a = ua = 1, b = ub = 1

13

Execution from Event Structure

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

RX0 RY 0

WY 1 WX1

∼RYub∼RXua

WY 1 WX1

a = ua = 1, b = ub = 1

13

Execution from Event Structure

int X = 0,Y = 0;
a = X ;
Y = 1;

b = Y ;
X = 1;

WX0

WY 0

RX0 RY 0

WY 1 WX1

∼RYub∼RXua

WY 1 WX1

a = ua = 1, b = ub = 1
13

Proposed Formalization Handles

- Memory operations:
load
store
compare_and_swap (CAS)

- Memory orders:
non-atomic (na)
acquire (acq)
release (rel)
acquire_release (acq_rel)
sequentially consistent (sc)

14

Verifying Transformations

Formalized fragment of LLVM concurrency

Verified correctness of transformations
Elimination
Reordering
Mappings (C11 ; LLVM ; X86/Power)

Validated LLVM opt-phase transformations

15

Transformation Correctness

C11 IR

x86

Power
frontend

opt

codegen

Behavior(Ptgt) ⊆ Behavior(Psrc)
Behavior: final values observed in each location

⇑

Behavior(Gtgt) ⊆ Behavior(Gsrc)

16

Transformation Correctness

C11 IR

x86

Power
frontend

opt

codegen

Behavior(Ptgt) ⊆ Behavior(Psrc)
Behavior: final values observed in each location

⇑

Behavior(Gtgt) ⊆ Behavior(Gsrc)

16

Elimination Optimizations

Adjacent read after read/write elimination
a = Xo; b = Xna;; a = Xo; b = a;

Xo = v ; b = Xna;; Xo = v ; b = v ;

Adjacent overwritten write elimination
Xna = v ′;Xna = v ;; Xna = v ;

Non-adjacent overwritten write elimination
Xna = v ′;C;Xna = v ;; C;Xna = v ;
where rel-acq-pair /∈ C and access(X) /∈ C

LLVM performs these eliminations

PROVEN
CORRECT

!

PROVEN
CORRECT

!

17

Elimination Optimizations

Adjacent read after read/write elimination
a = Xo; b = Xna;; a = Xo; b = a;

Xo = v ; b = Xna;; Xo = v ; b = v ;

Adjacent overwritten write elimination
Xna = v ′;Xna = v ;; Xna = v ;

Non-adjacent overwritten write elimination
Xna = v ′;C;Xna = v ;; C;Xna = v ;
where rel-acq-pair /∈ C and access(X) /∈ C

LLVM performs these eliminations
PROVEN

CORRECT
!

PROVEN
CORRECT

!

17

Also Proved...

Adjacent read after read/write elimination
a = Xacq; b = Xacq;; a = Xacq; b = a;
a = Xsc; b = X(acq|sc);; a = Xsc; b = a;
Xrel = v ; b = Xacq;; Xrel = v ; b = v ;
Xsc = v ; b = X(acq|sc);; Xsc = v ; b = v ;

Adjacent overwritten write elimination
Xrel = v ′;Xrel = v ;; Xrel = v ;
X(rel|sc) = v ′;Xsc = v ;; Xsc = v ;

LLVM does NOT perform these eliminations

Non-adjacent read after write elimination
Xna = v ;C; a = Xna;; Xna = v ;C; a = v ;
where rel-acq-pair /∈ C and access(X) /∈ C

PROVEN
CORRECT

!

PROVEN
CORRECT

!

18

Also Proved...

Adjacent read after read/write elimination
a = Xacq; b = Xacq;; a = Xacq; b = a;
a = Xsc; b = X(acq|sc);; a = Xsc; b = a;
Xrel = v ; b = Xacq;; Xrel = v ; b = v ;
Xsc = v ; b = X(acq|sc);; Xsc = v ; b = v ;

Adjacent overwritten write elimination
Xrel = v ′;Xrel = v ;; Xrel = v ;
X(rel|sc) = v ′;Xsc = v ;; Xsc = v ;

LLVM does NOT perform these eliminations

Non-adjacent read after write elimination
Xna = v ;C; a = Xna;; Xna = v ;C; a = v ;
where rel-acq-pair /∈ C and access(X) /∈ C

PROVEN
CORRECT

!

PROVEN
CORRECT

!

18

Also Proved...

Adjacent read after read/write elimination
a = Xacq; b = Xacq;; a = Xacq; b = a;
a = Xsc; b = X(acq|sc);; a = Xsc; b = a;
Xrel = v ; b = Xacq;; Xrel = v ; b = v ;
Xsc = v ; b = X(acq|sc);; Xsc = v ; b = v ;

Adjacent overwritten write elimination
Xrel = v ′;Xrel = v ;; Xrel = v ;
X(rel|sc) = v ′;Xsc = v ;; Xsc = v ;

LLVM does NOT perform these eliminations

Non-adjacent read after write elimination
Xna = v ;C; a = Xna;; Xna = v ;C; a = v ;
where rel-acq-pair /∈ C and access(X) /∈ C

PROVEN
CORRECT

!

PROVEN
CORRECT

!

18

Verifying Transformations

Formalized fragment of LLVM concurrency

Verified correctness of transformations
Elimination
Reordering (a; b ; b; a)
Mappings (C11 ; LLVM ; X86/Power)

Validated LLVM opt-phase transformations

19

LLVM Reorderings

a; b ; b; a

↓ a \ b→ (St|Ld)na Strel Ldacq Ldsc U(acq_rel|sc)
(St|Ld)na X - X X -

Strel X - - - -
Stsc X - - - -
Ldacq - - - - -

U(acq_rel|sc) - - - - -

Xrel = v ;Yna = v ′;; Yna = v ′;Xrel = v ; X

LLVM performs(X) these reorderings

20

LLVM Reorderings

a; b ; b; a

↓ a \ b→ (St|Ld)na Strel Ldacq Ldsc U(acq_rel|sc)
(St|Ld)na X × X X ×

Strel X × - - ×
Stsc X × - × ×
Ldacq × × × × ×

U(acq_rel|sc) × × × × ×

Yna = v ′;Xrel = v ;; Xrel = v ;Yna = v ′; ×

LLVM restricts(×) these reorderings

21

Also Analyzed...

a; b ; b; a

↓ a \ b→ (St|Ld)na Strel Ldacq Ldsc U(acq_rel|sc)
(St|Ld)na X × X X ×

Strel X × X X ×
Stsc X × X × ×
Ldacq × × × × ×

U(acq_rel|sc) × × × × ×

Xrel = v ; t = Yacq;; t = Yacq;Xrel = v ; X

LLVM does NOT perform these reorderings

PROVEN
CORRECT

!

PROVEN
CORRECT

!

22

Also Analyzed...

a; b ; b; a

↓ a \ b→ (St|Ld)na Strel Ldacq Ldsc U(acq_rel|sc)
(St|Ld)na X × X X ×

Strel X × X X ×
Stsc X × X × ×
Ldacq × × × × ×

U(acq_rel|sc) × × × × ×

Xrel = v ; t = Yacq;; t = Yacq;Xrel = v ; X

LLVM does NOT perform these reorderings
PROVEN

CORRECT
!

PROVEN
CORRECT

!

22

Verifying Transformations

Formalized fragment of LLVM concurrency

Verified correctness of transformations
Elimination
Reordering
Mappings (C11 ; LLVM ; X86/Power)

Validated LLVM opt-phase transformations

23

C11 to LLVM Mapping Correctness

C11 IR

x86

Power
clang

- LLVM has operations (Ld/St/CAS) and memory
orders (na/rel/acq/acq_rel/SC) similar to C11.

- LLVM model is stronger than C11.

PROVEN
CORRECT

!

PROVEN
CORRECT

!

24

C11 to LLVM Mapping Correctness

C11 IR

x86

Power
clang

- LLVM has operations (Ld/St/CAS) and memory
orders (na/rel/acq/acq_rel/SC) similar to C11.

- LLVM model is stronger than C11.
PROVEN

CORRECT
!

PROVEN
CORRECT

!

24

LLVM to Architecture Mapping Correctness

C11 IR

x86

Power

codegen

(LLVM ; x86/Power) = (C11 ; x86/Power)
Proved correctness of these mappings

LLVM to SC
LLVM to SPower

Ensure correctness of LLVM ; x86/Power
(results from Lahav & Vafeiadis. FM’16)

PROVEN
CORRECT

!

PROVEN
CORRECT

!

25

LLVM to Architecture Mapping Correctness

C11 IR

x86

Power

codegen

(LLVM ; x86/Power) = (C11 ; x86/Power)
Proved correctness of these mappings

LLVM to SC
LLVM to SPower

Ensure correctness of LLVM ; x86/Power
(results from Lahav & Vafeiadis. FM’16)

PROVEN
CORRECT

!

PROVEN
CORRECT

!

25

Validation

Formalized fragment of LLVM concurrency

Proved correctness of transformations

Validated LLVM opt-phase transformations

Psrc
LLVM
===⇒ Ptgt ? Correct : Potential Error

26

LLVM Validation

Psrc
LLVM
===⇒ Ptgt ? Correct : Potential Error

⇑

Psrc
(R∪E)∗
====⇒ Ptgt ? Correct : Potential Error

R: Safe reorderings
E: Safe eliminations

27

Metadata Based Matching

3

s1 = X !A

7

s2 = X !B

3

V = 1 !C

3

s4 = Zacq !D

7

Y = 1 !E

3

Y = 2 !F

t1 = X !A

t2 = Zacq !D

Y = 2 !F
V = 1 !C

Correct
Check that unmatched accesses are deletable
Check that reorderings are allowed

28

Metadata Based Matching

3 s1 = X !A

7

s2 = X !B

3

V = 1 !C

3

s4 = Zacq !D

7

Y = 1 !E

3

Y = 2 !F

t1 = X !A

t2 = Zacq !D

Y = 2 !F
V = 1 !C

Correct
Check that unmatched accesses are deletable
Check that reorderings are allowed

28

Metadata Based Matching

3 s1 = X !A

7 s2 = X !B

3

V = 1 !C

3

s4 = Zacq !D

7

Y = 1 !E

3

Y = 2 !F

t1 = X !A

t2 = Zacq !D

Y = 2 !F
V = 1 !C

Correct
Check that unmatched accesses are deletable
Check that reorderings are allowed

28

Metadata Based Matching

3 s1 = X !A

7 s2 = X !B

3

V = 1 !C

3 s4 = Zacq !D

7

Y = 1 !E

3

Y = 2 !F

t1 = X !A

t2 = Zacq !D

Y = 2 !F
V = 1 !C

Correct
Check that unmatched accesses are deletable
Check that reorderings are allowed

28

Metadata Based Matching

3 s1 = X !A

7 s2 = X !B

3

V = 1 !C

3 s4 = Zacq !D

7

Y = 1 !E

3 Y = 2 !F

t1 = X !A

t2 = Zacq !D

Y = 2 !F
V = 1 !C

Correct
Check that unmatched accesses are deletable
Check that reorderings are allowed

28

Metadata Based Matching

3 s1 = X !A

7 s2 = X !B

3

V = 1 !C

3 s4 = Zacq !D

7 Y = 1 !E

3 Y = 2 !F

t1 = X !A

t2 = Zacq !D

Y = 2 !F
V = 1 !C

Correct
Check that unmatched accesses are deletable
Check that reorderings are allowed

28

Metadata Based Matching

3 s1 = X !A

7 s2 = X !B

3 V = 1 !C

3 s4 = Zacq !D

7 Y = 1 !E

3 Y = 2 !F

t1 = X !A

t2 = Zacq !D

Y = 2 !F
V = 1 !C

Correct
Check that unmatched accesses are deletable
Check that reorderings are allowed

28

Metadata Based Matching

3 s1 = X !A

7 s2 = X !B

3 V = 1 !C

3 s4 = Zacq !D

7 Y = 1 !E

3 Y = 2 !F

t1 = X !A

t2 = Zacq !D

Y = 2 !F
V = 1 !C

Correct
Check that unmatched accesses are deletable
Check that reorderings are allowed

28

Metadata Based Matching

3 s1 = X !A

7 s2 = X !B

3 V = 1 !C

3 s4 = Zacq !D

7 Y = 1 !E

3 Y = 2 !F

t1 = X !A

t2 = Zacq !D

Y = 2 !F
V = 1 !C

Correct
Check that unmatched accesses are deletable
Check that reorderings are allowed

28

Metadata Based Matching

3 s1 = X !A

7 s2 = X !B

3 V = 1 !C

3 s4 = Zacq !D

7 Y = 1 !E

3 Y = 2 !F

t1 = X !A

t2 = Zacq !D

Y = 2 !F
V = 1 !C

Correct

Check that unmatched accesses are deletable
Check that reorderings are allowed

28

Metadata Based Matching

3 s1 = X !A

7 s2 = X !B

3 V = 1 !C

3 s4 = Zacq !D

7 Y = 1 !E

3 Y = 2 !F

t1 = X !A

t2 = Zacq !D

Y = 2 !F
V = 1 !C

Correct
Check that unmatched accesses are deletable
Check that reorderings are allowed

28

Validation

Formalized fragment of LLVM concurrency

Proved correctness of transformations

Validated LLVM opt-phase transformations

Generate a test case (Psrc).
Apply LLVM transformations (Ptgt).

Psrc
LLVM
===⇒ Ptgt ? Correct : Potential Error

29

More Details

LLVM Formalization [CGO’17]
Event structure construction rules
Consistency constraints
Data race freedom (DRF) theorems
Proofs: http://plv.mpi-sws.org/llvmcs/

Translation validation [CGO’16]
Programs with control flow
Experimental evaluations
Artifact: http://plv.mpi-sws.org/validc/

30

Summary

C11 IR

x86

Power

Formalized X
DRF Theorems X

Validated opt-phase transformations X

clang X

opt X codegen X

codegen X

31

Future Directions

Extend the LLVM concurrency model
With relaxed accesses and fences
Verify more optimizations
Mechanize the formalization

- Improve the validator
Integrate with sequential transformations
Handle loops, pointer etc

Thank You !

32

