Formalizing the Concurrency Semantics of an LLVM Fragment

Soham Chakraborty, Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

EuroLLVM 2017

LLVM Compilation

LLVM Concurrency Compilation

LLVM Concurrency Compilation

LLVM Concurrency Compilation

Correctness of the transformations is unclear

Limitation of LLVM Informal Concurrency

Valid opt is removed by over-restriction in bug fix

Formalized fragment of LLVM concurrency

Verified correctness of transformations

Validated LLVM opt-phase transformations

Informal LLVM Concurrency

Informal text in Language Reference Manual

Frequent references to C11 concurrency

- "This model is inspired by the C++0x memory model."
- "These semantics are borrowed from Java and C++0x, but are somewhat more colloquial."
- This is intended to match shared variables in C/C++ ..."
- . . .

Subtle differences

- A program has write-read race on non-atomics
 - C11: the behavior of the program is undefined
 - LLVM: defined behavior;racy read returns undef(u)

Subtle differences

- A program has write-read race on non-atomics
 - C11: the behavior of the program is *undefined*
 - LLVM: defined behavior;racy read returns undef(u)

$$X = 1;$$
 if (X)
 $t = 4;$ else
 $t = 4;$

Subtle differences

- A program has write-read race on non-atomics
 - C11: the behavior of the program is *undefined*
 - LLVM: defined behavior;racy read returns undef(u)

$$X = 1;$$
 if (X)
 $t = 4;$ else
 $t = 4;$

Subtle differences

- A program has write-read race on non-atomics
 - C11: the behavior of the program is *undefined*
 - LLVM: defined behavior;racy read returns undef(u)

$$X=1; \ \left| egin{array}{l} {\sf if}(X) \ t=4; \ {\sf else} \ t=4; \end{array} \right|$$

$$t \neq 4$$
?

Subtle differences

- A program has write-read race on non-atomics
 - C11: the behavior of the program is undefined
 - LLVM: defined behavior;racy read returns undef(u)

$$X=1; \ \left\| egin{array}{l} \mathsf{if}(X) \ t=4; \ \mathsf{else} \ t=4; \end{array} \right\|$$

$$t \neq 4$$
? C11 \checkmark

Subtle differences

- A program has write-read race on non-atomics
 - C11: the behavior of the program is undefined
 - LLVM: defined behavior;racy read returns undef(u)

$$X=1; \ \left| egin{array}{l} {\sf if}(X) \ t=4; \ {\sf else} \ t=4; \end{array} \right|$$

$$t \neq 4$$
? C11 \checkmark LLVM x

Subtle differences

- A program has write-read race on non-atomics
 - C11: the behavior of the program is undefined
 - LLVM: defined behavior;racy read returns undef(u)

$$X=1; \ \left| egin{array}{l} {\sf if}(X) \ t=4; \ {\sf else} \ t=4; \end{array} \right|$$

$$t \neq 4$$
? C11 \checkmark LLVM X

- Set of allowed optimizations are different

C11 vs LLVM

```
Context: if (flag) { t = X; if (flag) { a = X; \Rightarrow } a = t; } \Rightarrow C11 X LLVM \checkmark
```

C11 vs LLVM

```
t = X;
Context: if (flag) { x = 1; \parallel  }
 Context:
                                               if(flag){
                                                  a=t;
                             LLVM 🗸
                  C11 X
```

LLVM X

Context:

 $t_1 = X$; $egin{aligned} X = 4; \ Y_{\mathsf{rel}} = 1; \ \end{pmatrix} \quad & \begin{array}{c} \mathsf{if}(Y_{\mathsf{acq}}) \{ \ t_2 = X; \ \} \end{array}$ $t_1 = X$; $if(Y_{acq})$ $t_2 = t_1$;

Formalization

Formalization of LLVM concurrency

Verified correctness of transformations

Validated LLVM opt-phase transformations

Example

int
$$X = 0$$
, $Y = 0$;
 $a = X$; $\begin{vmatrix} b = Y \\ Y = 1 \end{vmatrix}$; $X = 1$;
Is $a == b == 1$ possible?

Example

int
$$X = 0$$
, $Y = 0$;
 $a = X$; $|| b = Y$;
 $Y = 1$; $|| X = 1$;
Is $a == b == 1$ possible? \checkmark

int
$$X = 0$$
, $Y = 0$; int $X = 0$, $Y = 0$; $A = X$; A

int
$$X = 0, Y = 0$$
;
 $a = X$; $b = Y$;
 $Y = 1$; $X = 1$;
 $X = 1$;
 $X = 1$;
 $X = 1$;

int
$$X = 0, Y = 0;$$

 $a = X;$ $b = Y;$
 $Y = 1;$ $X = 1;$

int
$$X = 0, Y = 0;$$

 $a = X;$ $b = Y;$
 $Y = 1;$ $X = 1;$

int
$$X = 0, Y = 0;$$

 $a = X;$ $b = Y;$
 $Y = 1;$ $X = 1;$

int
$$X = 0, Y = 0;$$

 $a = X;$ $b = Y;$
 $Y = 1;$ $X = 1;$

int
$$X = 0, Y = 0;$$

 $a = X;$ $b = Y;$
 $Y = 1;$ $X = 1;$

int
$$X = 0, Y = 0;$$

 $a = X;$ $b = Y;$
 $Y = 1;$ $X = 1;$

int
$$X = 0, Y = 0;$$

 $a = X;$ $b = Y;$
 $Y = 1;$ $X = 1;$

Example

int
$$X = 0$$
, $Y = 0$;
 $a = X$; $|| b = Y$;
 $Y = 1$; $|| X = 1$;
Is $a == b == 1$ possible? \checkmark

Execution from Event Structure

Execution from Event Structure

$$int X = 0, Y = 0;$$

$$a = X; \quad | \quad b = Y;$$

$$Y = 1; \quad | \quad X = 1;$$

$$WX0$$

$$WY0$$

$$RXu_a = RX0$$

$$WY1$$

$$WY1$$

$$WY1$$

$$WY1$$

$$WX1$$

$$WX1$$

$$WX1$$

$$WX1$$

$$WX1$$

Proposed Formalization Handles

- Memory operations:
 - load
 - store
 - compare_and_swap (CAS)
- Memory orders:
 - non-atomic (na)
 - acquire (acq)
 - release (rel)
 - acquire_release (acq_rel)
 - sequentially consistent (sc)

Verifying Transformations

Formalized fragment of LLVM concurrency

Verified correctness of transformations

- Elimination
- Reordering
- Mappings (C11 → LLVM → X86/Power)

Validated LLVM opt-phase transformations

Transformation Correctness

Behavior $(P_{tgt}) \subseteq \text{Behavior}(P_{src})$ Behavior: final values observed in each location

Transformation Correctness

Behavior $(P_{tgt}) \subseteq \text{Behavior}(P_{src})$ Behavior: final values observed in each location

 $\mathsf{Behavior}(G_{tgt}) \subseteq \mathsf{Behavior}(G_{src})$

Elimination Optimizations

Adjacent read after read/write elimination

•
$$a = X_o$$
; $b = X_{na}$; $\rightsquigarrow a = X_o$; $b = a$;

•
$$X_o = v$$
; $b = X_{na}$; $\rightsquigarrow X_o = v$; $b = v$;

Adjacent overwritten write elimination

•
$$X_{na} = v'; X_{na} = v; \rightsquigarrow X_{na} = v;$$

Non-adjacent overwritten write elimination

•
$$X_{na} = v'$$
; C; $X_{na} = v$; \sim C; $X_{na} = v$; where rel-acq-pair \notin C and $access(X) \notin C$

LLVM performs these eliminations

Elimination Optimizations

Adjacent read after read/write elimination

•
$$a = X_o$$
; $b = X_{na}$; $\rightsquigarrow a = X_o$; $b = a$;

•
$$X_o = v$$
; $b = X_{na}$; $\rightarrow X_o = v$; $b = x_{na}$

Adjacent overwritten write

•
$$X_{na} = v'; X_{na} = v'$$

•
$$X_{\text{na}} = v; \rightarrow C; X_{\text{na}} = v;$$
 $\text{acq-pair} \notin C \text{ and } access(X) \notin C$

LLVM performs these eliminations

Also Proved...

Adjacent read after read/write elimination

•
$$a = X_{acq}$$
; $b = X_{acq}$; $\rightarrow a = X_{acq}$; $b = a$;

•
$$a = X_{sc}$$
; $b = X_{(acq|sc)}$; $\rightarrow a = X_{sc}$; $b = a$;

•
$$X_{\text{rel}} = v$$
; $b = X_{\text{acq}}$; $\rightsquigarrow X_{\text{rel}} = v$; $b = v$;

•
$$X_{sc} = v$$
; $b = X_{(acq|sc)}$; $\rightsquigarrow X_{sc} = v$; $b = v$;

Adjacent overwritten write elimination

•
$$X_{\text{rel}} = v'$$
; $X_{\text{rel}} = v$; $\sim X_{\text{rel}} = v$;

•
$$X_{(\text{rel}|\text{sc})} = v'; X_{\text{sc}} = v; \rightsquigarrow X_{\text{sc}} = v;$$

LLVM does NOT perform these eliminations

Also Proved...

Adjacent read after read/write elimination

•
$$a = X_{\text{acq}}$$
; $b = X_{\text{acq}}$; $\rightarrow a = X_{\text{acq}}$; $b = a$;

•
$$a = X_{sc}$$
; $b = X_{(acq|sc)}$; $\rightarrow a = X_{sc}$; $b = a$;

•
$$X_{\text{rel}} = v$$
; $b = X_{\text{acq}}$; $\rightsquigarrow X_{\text{rel}} = v$; $b = v$;

•
$$X_{sc} = v$$
; $b = X_{(acq|sc)}$; $\rightsquigarrow X_{sc} = v$; $b = v$;

Adjacent overwritten write elimination

•
$$X_{\text{rel}} = v'; X_{\text{rel}} = v; \rightsquigarrow X_{\text{rel}} = v;$$

•
$$X_{(\text{rel}|\text{sc})} = v'; X_{\text{sc}} = v; \rightsquigarrow X_{\text{sc}} = v;$$

LLVM does NOT perform these eliminations

Non-adjacent read after write elimination

•
$$X_{na} = v$$
; C; $a = X_{na}$; $\rightsquigarrow X_{na} = v$; C; $a = v$; where rel-acq-pair \notin C and $access(X) \notin C$

Also Proved...

Adjacent read after read/write elimination

•
$$a = X_{\text{acq}}$$
; $b = X_{\text{acq}}$; $\rightarrow a = X_{\text{acq}}$; $b = a$;

•
$$a = X_{sc}$$
; $b = X_{(acq|sc)}$; $\rightarrow a = X_{sc}$; $b = a$;

•
$$X_{\text{rel}} = v$$
; $b = X_{\text{acq}}$; $\rightarrow X_{\text{rel}} = v$; $b = v$

•
$$X_{sc} = v$$
; $b = X_{(acq|sc)}$; $\rightarrow X_{sc} = v$

Adjacent overwritten write elim

•
$$X_{\text{rel}} = v'; X_{\text{rel}} = v; \sim$$

$$\bullet \ X_{(rel|sc)} = v'; X_{\bullet}$$

LLVM dor Perform these eliminations

Non read after write elimination

where rel-acq-pair \notin C and $access(X) \notin$ C

Verifying Transformations

Formalized fragment of LLVM concurrency

Verified correctness of transformations

- Elimination
- Reordering $(a; b \rightsquigarrow b; a)$
- Mappings (C11 → LLVM → X86/Power)

Validated LLVM opt-phase transformations

LLVM Reorderings

 $a; b \rightsquigarrow b; a$

$\downarrow a \setminus b \rightarrow$	(St Ld) _{na}	St_{rel}	Ld _{acq}	Ld_{sc}	$U_{(acq_rel sc)}$
(St Ld) _{na}	\checkmark	_	\checkmark	\checkmark	_
St _{rel}	\checkmark	_	_	_	-
St _{sc}	✓	-	-	-	-
Ld _{acq}	-	-	-	-	-
$U_{(acq_rel sc)}$	-	-	-	-	-

$$X_{\text{rel}} = v$$
; $Y_{\text{na}} = v'$; $V_{\text{na}} = v'$; $V_{\text{rel}} = v$; $V_{\text{rel}} = v'$

LLVM performs(√) these reorderings

LLVM Reorderings

 $a; b \rightsquigarrow b; a$

$\downarrow a \setminus b \rightarrow$	(St Ld) _{na}	St_{rel}	Ld_{acq}	Ld_{sc}	$U_{(acq_rel sc)}$
(St Ld) _{na}	✓	×	√	√	×
St _{rel}	✓	×	-	-	×
St _{sc}	✓	×	-	×	×
Ld _{acq}	×	×	×	×	×
$U_{(acq_rel sc)}$	×	×	×	×	×

$$Y_{\mathsf{na}} = v'; X_{\mathsf{rel}} = v; \rightsquigarrow X_{\mathsf{rel}} = v; Y_{\mathsf{na}} = v'; \quad \times$$

LLVM restricts(x) these reorderings

Also Analyzed...

 $a; b \rightsquigarrow b; a$

$\downarrow a \setminus b \rightarrow$	(St Ld) _{na}	St_{rel}	Ld _{acq}	Ld _{sc}	$U_{(acq_rel sc)}$
(St Ld) _{na}	\checkmark	×	\checkmark	\checkmark	×
St _{rel}	✓	×	\checkmark	\checkmark	×
St _{sc}	✓	×	✓	×	×
Ld _{acq}	×	×	×	×	×
$U_{(acq_rel sc)}$	×	×	×	×	×

$$X_{\text{rel}} = v$$
; $t = Y_{\text{acq}}$; $\rightarrow t = Y_{\text{acq}}$; $X_{\text{rel}} = v$; \checkmark

LLVM does NOT perform these reorderings

Also Analyzed...

$a; b \rightsquigarrow b; a$				
\downarrow $a \setminus b \rightarrow$	(St Ld) _{na}	St_{rel}	Ldacq	y_rel sc)
(St Ld) _{na}	✓	×	106	×
St_{rel}	✓	X	21	×
St_{sc}	✓ /	~ C	X	×

$$t = Y_{\text{acq}}; \rightsquigarrow t = Y_{\text{acq}}; X_{\text{rel}} = v; \quad \checkmark$$

X

X

X

X

LLVM does NOT perform these reorderings

X

X

Verifying Transformations

Formalized fragment of LLVM concurrency

Verified correctness of transformations

- Elimination
- Reordering
- Mappings (C11 → LLVM → X86/Power)

Validated LLVM opt-phase transformations

C11 to LLVM Mapping Correctness

- LLVM has operations (Ld/St/CAS) and memory orders (na/rel/acq/acq_rel/SC) similar to C11.
- LLVM model is stronger than C11.

C11 to LLVM Mapping Correctness

- LLVM model is stronger than C11.

LLVM to Architecture Mapping Correctness

(LLVM \rightsquigarrow x86/Power) = (C11 \rightsquigarrow x86/Power) Proved correctness of these mappings

- LLVM to SC
- LLVM to SPower

Ensure correctness of LLVM → x86/Power (results from Lahav & Vafeiadis. FM'16)

LLVM to Architecture Mapping Correctness

Validation

Formalized fragment of LLVM concurrency

Proved correctness of transformations

Validated LLVM opt-phase transformations

• $P_{src} \xrightarrow{\text{LLVM}} P_{tgt}$? Correct : Potential Error

LLVM Validation

$$P_{src} \xrightarrow{\text{LLVM}} P_{tgt}$$
 ? Correct : Potential Error
$$\uparrow \qquad \qquad \qquad \uparrow \qquad \qquad P_{src} \xrightarrow{(R \cup E)^*} P_{tgt}$$
 ? Correct : Potential Error

- R: Safe reorderings
- E: Safe eliminations

$$s_1 = X ! A$$

 $s_2 = X ! B$
 $V = 1 ! C$
 $s_4 = Z_{acq} ! D$
 $Y = 1 ! E$
 $Y = 2 ! F$

$$s_1 = X ! A$$

$$s_2 = X ! B$$

$$V = 1 ! C$$

$$s_4 = Z_{acq} ! D$$

$$Y = 1 ! E$$

$$Y = 2 ! F$$

✓
$$s_1 = X !A$$

✗ $s_2 = X !B$
 $V = 1 !C$
 $s_4 = Z_{acq} !D$
 $Y = 1 !E$
 $Y = 2 !F$

✓ $s_1 = X !A$ X $s_2 = X !B$ V = 1 !C

✓ $s_4 = Z_{acq} !D$

 $Y = 1 \, !E$

Y=2!F

- $\checkmark s_1 = X ! A$
- $x s_2 = X ! B$
 - $V = 1 \ | C$
- $\checkmark s_4 = Z_{acq} !D$
 - Y=1 !E
- ✓ Y = 2 !F

- $\checkmark s_1 = X ! A$
- $x s_2 = X !B$
 - $V = 1 \ | C$
- $\checkmark s_4 = Z_{acq} !D$
- X Y = 1 ! E
- ✓ Y = 2 !F

- $\checkmark s_1 = X ! A$
- $x s_2 = X !B$
- ✓ V = 1 ! C
- $\checkmark s_4 = Z_{acq} !D$
- X Y = 1 ! E
- ✓ Y = 2 ! F

$$\checkmark s_1 = X ! A$$

$$x s_2 = X \mid B$$

✓
$$V = 1 ! C$$

$$\checkmark s_4 = Z_{acq} ! D$$

$$X Y = 1 ! E$$

✓
$$Y = 2 !F$$

$$t_1 = X ! A$$

$$t_2 = Z_{\text{acg}} ! D$$

$$Y = 2 \, !F$$

✓
$$s_1 = X !A$$

X $s_2 = X !B$

✓ $V = 1 !C$

✓ $t_2 = Z_{acq} !D$

✓ $t_3 = Z_{acq} !D$

Y $t_4 = Z_{acq} !D$

Y $t_5 = 2 !F$

X $t_7 = 1 !E$

✓ $t_7 = 2 !F$

✓
$$s_1 = X ! A$$

X $s_2 = X ! B$

✓ $V = 1 ! C$

✓ $t_2 = Z_{acq} ! D$

✓ $t_3 = Z_{acq} ! D$

Y $t_4 = Z_{acq} ! D$

Y $t_5 = 2 ! F$

X $t_7 = 1 ! E$

✓ $t_7 = 2 ! F$

- Check that unmatched accesses are deletable
- Check that reorderings are allowed

✓
$$s_1 = X ! A$$

X $s_2 = X ! B$

✓ $V = 1 ! C$

✓ $t_2 = Z_{acq} ! D$

✓ $t_3 = Z_{acq} ! D$

Y $t_4 = Z_{acq} ! D$

Y $t_5 = 2 ! E$

✓ $t_7 = 2 ! E$

✓ $t_7 = 2 ! E$

✓ $t_7 = 2 ! E$

Correct

- Check that unmatched accesses are deletable
- Check that reorderings are allowed

Formalized fragment of LLVM concurrency

Proved correctness of transformations

Validated LLVM opt-phase transformations

- Generate a test case (P_{src}) .
- Apply LLVM transformations (P_{tgt}) .
- $P_{src} \xrightarrow{\text{LLVM}} P_{tgt}$? Correct : Potential Error

More Details

LLVM Formalization [CGO'17]

- Event structure construction rules
- Consistency constraints
- Data race freedom (DRF) theorems
- Proofs: http://plv.mpi-sws.org/llvmcs/

Translation validation [CGO'16]

- Programs with control flow
- Experimental evaluations
- Artifact: http://plv.mpi-sws.org/validc/

Summary

Future Directions

Extend the LLVM concurrency model

- With relaxed accesses and fences
- Verify more optimizations
- Mechanize the formalization
- Improve the validator
 - Integrate with sequential transformations
 - Handle loops, pointer etc

Thank You!