
LifeJacket: Verifying Precise Floating-Point
Optimizations in LLVM

Andres Nötzli, Fraser Brown

Stanford University



Motivating Example

Suppose we want to optimize:

float y = +0.0 - (-x);

How about:

float y = x;

Nope: if x = -0.0 then y = +0.0

1



Motivating Example

Suppose we want to optimize:

float y = +0.0 - (-x);

How about:

float y = x;

Nope: if x = -0.0 then y = +0.0

1



Motivating Example

Suppose we want to optimize:

float y = +0.0 - (-x);

How about:

float y = x;

Nope: if x = -0.0 then y = +0.0

1



Motivating Example

So, we know that: +0.0 - (-x) ̸= x.
Who cares? +0.0 == -0.0 is true.

Well, 1
0 = ∞, 1

−0 = −∞ and ∞ ̸= −∞. Ouch.

What about:

∞+−∞ = NaN
x + NaN = NaN
a + (b + c) ? (a + b) + c
a * (b + c) ? a * b + a * c

Developers have to manually reason about edge cases.

2



Motivating Example

So, we know that: +0.0 - (-x) ̸= x.
Who cares? +0.0 == -0.0 is true.
Well, 1

0 = ∞, 1
−0 = −∞ and ∞ ̸= −∞. Ouch.

What about:

∞+−∞ = NaN
x + NaN = NaN
a + (b + c) ̸= (a + b) + c
a * (b + c) ̸= a * b + a * c

Developers have to manually reason about edge cases.

2



Motivating Example

So, we know that: +0.0 - (-x) ̸= x.
Who cares? +0.0 == -0.0 is true.
Well, 1

0 = ∞, 1
−0 = −∞ and ∞ ̸= −∞. Ouch.

What about:

∞+−∞ = NaN

x + NaN = NaN
a + (b + c) ̸= (a + b) + c
a * (b + c) ̸= a * b + a * c

Developers have to manually reason about edge cases.

2



Motivating Example

So, we know that: +0.0 - (-x) ̸= x.
Who cares? +0.0 == -0.0 is true.
Well, 1

0 = ∞, 1
−0 = −∞ and ∞ ̸= −∞. Ouch.

What about:

∞+−∞ = NaN
x + NaN = NaN

a + (b + c) ̸= (a + b) + c
a * (b + c) ̸= a * b + a * c

Developers have to manually reason about edge cases.

2



Motivating Example

So, we know that: +0.0 - (-x) ̸= x.
Who cares? +0.0 == -0.0 is true.
Well, 1

0 = ∞, 1
−0 = −∞ and ∞ ̸= −∞. Ouch.

What about:

∞+−∞ = NaN
x + NaN = NaN
a + (b + c) ̸= (a + b) + c

a * (b + c) ̸= a * b + a * c
Developers have to manually reason about edge cases.

2



Motivating Example

So, we know that: +0.0 - (-x) ̸= x.
Who cares? +0.0 == -0.0 is true.
Well, 1

0 = ∞, 1
−0 = −∞ and ∞ ̸= −∞. Ouch.

What about:

∞+−∞ = NaN
x + NaN = NaN
a + (b + c) ̸= (a + b) + c
a * (b + c) ̸= a * b + a * c

Developers have to manually reason about edge cases.

2



Motivating Example

So, we know that: +0.0 - (-x) ̸= x.
Who cares? +0.0 == -0.0 is true.
Well, 1

0 = ∞, 1
−0 = −∞ and ∞ ̸= −∞. Ouch.

What about:

∞+−∞ = NaN
x + NaN = NaN
a + (b + c) ̸= (a + b) + c
a * (b + c) ̸= a * b + a * c

Developers have to manually reason about edge cases.

2



Introduction

Alive1 is a system for verifying peephole optimizations in LLVM.

Verification works as follows:

1. User specifies LLVM optimization.
2. Alive translates specification into SMT queries:
src != tgt

3. Alive uses Z3 to solve the SMT queries.

Great, but no floating-point arithmetic.

LifeJacket = Alive + Floating-Point Arithmetic

1Nuno P Lopes et al. “Provably correct peephole optimizations with Alive”.
In: PLDI. 2015.

3



Introduction

Alive1 is a system for verifying peephole optimizations in LLVM.

Verification works as follows:

1. User specifies LLVM optimization.
2. Alive translates specification into SMT queries:
src != tgt

3. Alive uses Z3 to solve the SMT queries.

Great, but no floating-point arithmetic.

LifeJacket = Alive + Floating-Point Arithmetic

1Nuno P Lopes et al. “Provably correct peephole optimizations with Alive”.
In: PLDI. 2015.

3



Satisfiability Modulo Theory (SMT) solvers

Input
First-order logic formula extended with various functions
and predicates.

Example

(x < y) ∧ (y < x− 1)

Output
A variable assignment that makes the formula true or
unsatisfiable.

4



LifeJacket Example

(Incorrect) optimization from before
+0.0 - (-x) => x

In LifeJacket

%a = fsub -0.0, %x ←
%r = fsub +0.0, %a

=>
%r = %x

Note
No need to explicitly annotate type width.

5



LifeJacket Example

(Incorrect) optimization from before
+0.0 - (-x) => x

In LifeJacket

%a = fsub -0.0, %x ←
%r = fsub +0.0, %a

=>
%r = %x

Note
No need to explicitly annotate type width.

5



LifeJacket Example

Input

%a = fsub -0.0, %x
%r = fsub +0.0, %a
=>

%r = %x

Output

ERROR: Mismatch in values of f32 %r
Example:
%x f32 = -0.0 (0x8000000000000000)
%a f32 = +0.0 (0x0000000000000000)
Source value: +0.0 (0x0000000000000000)
Target value: -0.0 (0x8000000000000000)

Note
Precise optimizations.

6



LifeJacket Example

Input

%a = fsub -0.0, %x
%r = fsub +0.0, %a
=>

%r = %x

Output

ERROR: Mismatch in values of f32 %r
Example:
%x f32 = -0.0 (0x8000000000000000)
%a f32 = +0.0 (0x0000000000000000)
Source value: +0.0 (0x0000000000000000)
Target value: -0.0 (0x8000000000000000)

Note
Precise optimizations. 6



Agenda

1. Floating-point types and instructions
2. Fast-math flags

Not today: Floating-point predicates

7



Agenda

1. Floating-point types and instructions
2. Fast-math flags

Not today: Floating-point predicates

7



LifeJacket: Floating-point types and instructions

Type support
half, single, double

Binary instructions
fadd, fsub, fmul, fdiv, frem

Conversions
fptrunc, fpext, fptoui, fptosi, uitofp, sitofp

Other
fabs, fcmp

Basic operations: direct translation to SMT-LIB operation

8



LifeJacket: Floating-point types and instructions

Type support
half, single, double

Binary instructions
fadd, fsub, fmul, fdiv, frem

Conversions
fptrunc, fpext, fptoui, fptosi, uitofp, sitofp

Other
fabs, fcmp

Basic operations: direct translation to SMT-LIB operation

8



Agenda

1. Floating-point types and instructions
2. Fast-math flags

Not today: Floating-point predicates

9



LifeJacket: Fast-Math Flags

Example
%a = fsub nnan ninf C0, %x

LifeJacket supports three fast-math flags on instructions:

• nnan: Assume arguments and result are not NaN. Result
undefined over NaNs.

• ninf: Assume arguments and result are not ±∞. Result
undefined over ±∞.

• nsz: Allow optimizations to treat the sign of a zero
argument or result as insignificant.

10



LifeJacket: Fast-Math Flags Example

Example
x + (0 - x) => 0

In LifeJacket

Precondition: AnyZero(C0)
%a = fsub nnan ninf C0, %x
%r = fadd %x, %a
=>

%r = 0.0

Translation of nnan/ninf:
If C0 or %x or %a is NaN/±∞ then %a unconstrained

Correct? No, consider %x = NaN.

11



LifeJacket: Fast-Math Flags Example

Example
x + (0 - x) => 0

In LifeJacket

Precondition: AnyZero(C0)
%a = fsub nnan ninf C0, %x
%r = fadd %x, %a

=>
%r = 0.0

Translation of nnan/ninf:
If C0 or %x or %a is NaN/±∞ then %a unconstrained

Correct? No, consider %x = NaN.

11



LifeJacket: Fast-Math Flags Example

Example
x + (0 - x) => 0

In LifeJacket

Precondition: AnyZero(C0)
%a = fsub nnan ninf C0, %x
%r = fadd %x, %a

=>
%r = 0.0

Translation of nnan/ninf:
If C0 or %x or %a is NaN/±∞ then %a unconstrained

Correct? No, consider %x = NaN.

11



LifeJacket: Fast-Math Flags Example

Example
x + (0 - x) => 0

In LifeJacket

Precondition: AnyZero(C0)
%a = fsub nnan ninf C0, %x
%r = fadd %x, %a

=>
%r = 0.0

Translation of nnan/ninf:
If C0 or %x or %a is NaN/±∞ then %a unconstrained

Correct?

No, consider %x = NaN.

11



LifeJacket: Fast-Math Flags Example

Example
x + (0 - x) => 0

In LifeJacket

Precondition: AnyZero(C0)
%a = fsub nnan ninf C0, %x
%r = fadd %x, %a

=>
%r = 0.0

Translation of nnan/ninf:
If C0 or %x or %a is NaN/±∞ then %a unconstrained

Correct? No, consider %x = NaN.
11



Results



Results (LLVM 3.7.1)

File Verified Timeouts Bugs

AddSub 7 1 1
MulDivRem 3 2 1
Compares 11 0 0
Simplify 22 0 6

Total 43 3 8

Insights
Few timeouts, high bug rate, bugs related to floating-point
properties.

12



Results (LLVM 3.7.1)

File Verified Timeouts Bugs

AddSub 7 1 1
MulDivRem 3 2 1
Compares 11 0 0
Simplify 22 0 6

Total 43 3 8

Insights
Few timeouts, high bug rate, bugs related to floating-point
properties.

12



Limitations

LifeJacket currently has some limitations:

• No support for types wider than 64-bit.
• Fixed rounding mode.
• No support for floating-point exceptions/debug
information in NaNs.

But: Errors found are true errors.

13



Limitations

LifeJacket currently has some limitations:

• No support for types wider than 64-bit.
• Fixed rounding mode.
• No support for floating-point exceptions/debug
information in NaNs.

But: Errors found are true errors.

13



Conclusion

Automatic verification is possible: 43 verified optimizations.

Automatic verification is necessary: 8 bugs.

More automation = More optimizations, more boring compilers.

Would you like to know more?
® https://github.com/4tXJ7f/alive
â noetzli@stanford.edu

14

https://github.com/4tXJ7f/alive
noetzli@stanford.edu

	Results

