| IBM Linux Technology Center

LLVM performance optimization
for z Systems

Dr. Ulrich Weigand

Senior Technical Staff Member
GNU/Linux Compilers & Toolchain

Date: Mar 27, 2017

| IBM Linux Technology Center

Agenda

LLVM on z Systems Performance History

Instruction-Set Architecture (ISA) Optimization

Processor Micro-Architecture Optimization
Outlook

©2017 IBM Corporation

‘ IBM Linux Technology Center

Performance History

©2017 IBM Corporation

‘ IBM Linux Technology Center

LLVM on z Systems — performance history

Performance vs. GCC pre-7.0 (Mar 2017)

0%

-5%

-10% = =

-15%

-20%

-25%
3.3 3.4 3.5.0 3.6.0 3.7.0 3.8.0 3.9.0 4.0.0

LLVM Version

©2017 IBM Corporation

| IBM Linux Technology Center

0%

-5%

Back-end changes: overview

-10%

* LLVM 3.3 - Initial release
— No focus on performance; z10 only

e LLVM 3.4 - ISA exploitation 33 3.4 35.0 36.0 370 380 390 400
— Significantly improved z10 code generation; initial z196 & zEC12 support

 LLVM 3.5 — Further ISA exploitation
—More z196 & zEC12 instructions exploited

 LLVM 3.6 — No performance-related changes
 LLVM 3.7 — z13 vector ISA support

* LLVM 3.8 — Only minor performance-related changes
— Small improvements to floating-point code generation

-20%

 LLVM 3.9 — Misc. code-gen changes / start of micro-arch tuning
— Avoid false FPR dependencies, conditional sibcall/return, FP test data class

* LLVM 4.0 — Focus on micro-architecture tuning
— Post-RA scheduler, tune loop unrolling / strength reduction, tune load-on-condition

©2017 IBM Corporation

‘ IBM Linux Technology Center

Instruction-Set Architecture
Optimizations

©2017 IBM Corporation

| IBM Linux Technology Center

z Systems instruction-set architecture overview

z/Architecture publicly documented by IBM
— z/Architecture Principles of Operation (SA22-7832-10)

Successor to prior architectures going back to 1960s
— System/360
— System/370
— System/370 extended architecture (370-XA)
— Enterprise Systems Architecture/370 (ESA/370)
— Enterprise Systems Architecture/390 (ESA/390)

Updated for each new processor generation
— Eighth Edition: z10
— Ninth Edition: z196
— Tenth Edition: zEC12
— Eleventh Edition: z13 %0

©2017 IBM Corporation

http://publibfi.boulder.ibm.com/epubs/pdf/dz9zr010.pdf

| IBM Linux Technology Center

z/Architecture overview

* Register file
— 16 64-bit general-purpose register
— 16 64-bit floating-point registers
— 32 128-bit vector registers (overlapping FPRS)
— 16 32-bit access registers
— Program Status Word (incl. PC and condition code)

 Instruction set
—>1000 basic instructions, >2000 extended mnemonics
— CISC operations (reg/reg, reg/mem, mem/mem, ...)
— |[EEE floating-point, decimal FP, hexadecimal FP

©2017 IBM Corporation

| IBM Linux Technology Center

z/Architecture: high-word register operations

» 64-bit GPRs treated as two independent 32-bit parts
— Intended to provide register relief (32 “registers” for many operations)

 For example, to add an immediate:
— AGFI %r2, 1 — add 1 to full 64-bit register (64-bit ISA)
—AFl %r2, 1 — add 1 to low 32-bit part (legacy 32-bit ISA)
—AlIH %r2, 1 — add 1 to high 32-bit part (high-word facility)

* Modeled as sub-registers in LLVM
— GR64 — 64-bit GPRs
— GR32 — 32-bit lower half GPRs
— GRH32 — 32-bit upper half GPRs

— GRX32 — union of GR32 and GRH32

« Used in ISEL for operations supported on both halves
» Post-RA expander selects final instruction depending on register
» AFIMux (GRX32) pseudo — AFIl or AlH

©2017 IBM Corporation

| IBM Linux Technology Center

z/Architecture: high-word register operations

 Difficult to implement: instructions with two registers
— E.g. COMPARE could be modeled as CMux (GRX32, GRX32)
— After register allocation, all four combinations possible

— But ISA only has instructions for three of them:

* Low/Low — CR
* High/Low — CHLR
- High/High — CHHR
— Special handling for Low/High case required

» May be convertible to High/Low by updating all users
» Otherwise 2-3 instruction sequence involving rotates

* Even more difficult: ADD with three register operands
— Only 3 combinations supported in ISA: LLL, HHL, HHH
— Some cases would require up to 4 instructions to emulate

« Should ideally be handled in RA directly (like GCC “alternatives”)
— But LLVM RA deliberately makes no instruction selection choices ...

©2017 IBM Corporation

| IBM Linux Technology Center

z/Architecture: conditional instructions

« Condition code — two bits in the PSW
— Comparable to flags bits, but used as single value
— Instructions may set any CC value, no fixed semantics
— Branch instructions may test for any CC combination

Instruction examples
COMPARE (integer)
COMPARE (floating-point)
ADD

ADD LOGICAL

AND

FIND LEFTMOST ONE
TEST UNDER MASK LOW
VECTOR COMPARE EQUAL
CONVERT UTF-8 TO UTF-32

CcCco

Equal

Equal

Zero

Zero, no carry
Zero

No one bit found
All zeros

All elements equal

Data processed

CC1

Low

Low

< Zero

Not zero, no carry

Not zero

Mixed, left bit zero
Some elts. equal

Destination full

CC2 CC3

High

High Unordered

> Zero Overflow
Zero, carry Not zero, carry

One bit found
Mixed, left bit one All ones

No elements equal
Invalid UTF-8 Early exit

© 2017 IBM Corporation

| IBM Linux Technology Center

z/Architecture: more conditional instructions

 Instructions using the condition code

— LOAD ON CONDITION

» Load from memory/register/immediate if CC in mask
— (Conditional) trap instruction

« Special form of (conditional) branch with invalid target

e Instructions that do not use the CC

— COMPARE AND BRANCH / TRAP

« Compare + conditional branch (or trap) as single insn
— BRANCH ON COUNT

« Decrement register and branch if not zero
— LOAD AND TRAP

 Load register from memory and trap if zero

©2017 IBM Corporation

| IBM Linux Technology Center

LLVM code generation for conditional instructions

LLVM pass
Instruction selection

Pre-RA pseudos
Early if-conversion

Peephole optimizer
Post-RA pseudos
(including z specific pass)

Late if-conversion

Optimize comparison against zero
(z specific pass)

Fuse compare operations
(z specific pass)

z/Architecture ISA handling

Select appropriate compare instructions
Generate TEST UNDER MASK

Generate LOC from selects

Generate LOCR from if blocks
Speculative execution of both sides

Optimize explicit uses of CC (e.g. builtins)
Generate LOCHI for immediates

Select low/high instructions
Expand mixed LOCRMux cases

Detect conditional trap, conditional return,
conditional sibling call

Detect branch-on-count, load-and-trap
Convert load to load-and-test
Update CC users with CC mask for other insn

Detect compare-and-branch, compare-and-trap,
compare-and-return, compare-and-sibcall

‘ IBM Linux Technology Center

Processor Micro-Architecture
Optimizations

©2017 IBM Corporation

| IBM Linux Technology Center

z13 processor micro-architecture overview

* Full micro-architecture is not publicly documented

« Overview targeted at compiler developers here:
—IBM z Systems Processor Optimization Primer

IBM z Systems

\

IBM z Systems Processor Optimization Primer
(March 2016)

C. Kevin Shum

Distinguished Engineer
IBM z Systems Micr oprocessor Development

Member of IBM Academy of Technology

©2017 IBM Corporation

https://www.ibm.com/developerworks/community/files/form/anonymous/api/library/ff4563be-756e-49bf-9de9-6a04a08026f1/document/3dff8d34-fcf9-4939-9efc-11f15a3ce0f8/media/IBM%20z%20Systems%20Processor%20Optimization%20Primer.pdf

| IBM Linux Technology Center

z13 high-level instruction & execution flow

Branch | Instruction
prediction | | cache / buffer

3 instructio né J\Ls instructions

Instruction decode/ crack / dispatch / map

3 insimminnsij \f instructions
L JL

Issue queue side0 || V. Branch Q || Issue queue side1
v v
REUD | | RBU1
Lsu | FXUb|Fxua VFUO0 VFU1 FXUa|FXUb| | o,
o | 0|0 | SIMDO SIMD! L R
o MPO T MP1 .
BFUO BFU1
(zZEG12) new instruction flow RN DEUO DEU1
and execution units for relative branches DEX0 DEXT
(213) additional instruction flow Te FPDO FPD1 T
for higher core throughput -
(213) additional execution units for
higher core throughput Bos -
J?‘o‘- . .“_"'\
(213) new execution units *..| Data cache .- &
to accelerate business analytics workloads

©2017 IBM Corporation

| IBM Linux Technology Center

z13 execution engine pipelines

Only 1 of 2 issue sides shown

« Typical pipeline depths and
bypass capabilities shown

« Some instructions may take
longer to execute or bypass
results

« Access registers not shown

ACC - GR access
WB — GR write back

V-ACC - FPR/VR access
VWB - FPR/VR write back

CC - condition code calculation

BYP - data bypass network cycle

FPD, DFU - functions, e.g. divide,

square-root, may take multiple
passes through the pipeline

G2F - GR to VR/FPR moves
F2G - VR/FPR to GR moves

lzsue
Qs

— N
—fed [

0
0005 .
oo -

FXB (multiply/divide
engines not shown)

000 orx

SIMD

BFU

FPD

©2017 IBM Corporation

| IBM Linux Technology Center

Instruction scheduling

« Goals of scheduling for z13

— No exact modeling of OOO execution phase possible
 But: execution latencies still determine critical path length
— Optimize decoder grouping

» Sequence instructions so that decoder groups can be as large as
possible (3 instructions) to optimize dispatch bandwith

— Resource balancing

» Sequence instructions so that over time, usage of the various
execution units is as evenly balanced as possible

— FPd side steering

« Distribute long-running instructions (e.g. FP divide) evenly over
both execution pipeline sides

— FXU side steering

» Distribute dependent instructions to the same side to enable result
bypassing with reduced latency

©2017 IBM Corporation

| IBM Linux Technology Center

Instruction scheduling

* Current LLVM implementation

— Post-RA scheduler as very last MI pass
« Using new SchedStrategy and HazardRecognizer
— Decoder grouping, resource balancing, FPd steering

— FXU steering not yet implemented due to regressions

* Future opportunities
— Pre-RA Ml scheduler

« “Mix up” register usage to get more freedom post-RA
— Better decoder grouping; better FXU side steering; ...

« But must be careful to not cause spilling!
* No implementation without regressions so far ...
 Area of active research in compiler theory

— Global scheduling across block boundaries? ”

© 2017 IBM Corporation =5 ‘.ﬁ

| IBM Linux Technology Center

Tuning code generation

« Caveat: performance results hard to predict
— Positive effects often dominated by negative second-order issues
— E.g. increasing use of branch-on-count caused overall performance regression
— Important goal: tune to avoid “second-order” effects

Loop unrolling

— Important to eliminate small loops which are sensitive
 Loops should preferably be >12 instructions
— Enables "everything" to get rid of small loops, including forced unrolling

— But: limit on number of stores to avoid running out of store tags

Loop strength reduction
—z13 supports only 12-bit unsigned offsets for vector memory accesses
— Scalar code uses 20-bit signed offsets — try to avoid regressions in vectorizer
— New hook isFoldableMemAccessOffset() to handle this

WIP: Cost functions to tune vectorizer decisions

©2017 IBM Corporation

| IBM Linux Technology Center

Outlook

©2017 IBM Corporation

| IBM Linux Technology Center

Status and outlook

« Aside: non-performance related work in 2016
— Profile-directed feedback support (compiler-rt)
— Support for address sanitizer (via BountySource)
— Added LLDB support
— Swift & Rust enablement

 Future work

— Support next-generation z Systems processor

« Twelfth Edition of the z/Architecture
« GCC and binutils support already available

— Improved scheduling / micro-architecture tuning
— Ongoing benchmark analysis efforts

©2017 IBM Corporation

‘ IBM Linux Technology Center

LLVM on z Systems — optimization opportunities

10%

8%

6%

4%

2%

0% . — e
)]
-4%

6%

LLVM 4.0 vs. GCC pre-7.0 (Mar 2017)

-8%

-10%
401.bzip2 429.mcf 456.hmmer 462.libquantum 471.omnetpp 483.xalancbmk
400.perlbench 403.gcc 445.gobmk 458.sjeng 464.h264ref 473.astar

©2017 IBM Corporation

‘ IBM Linux Technology Center

Questions

©2017 IBM Corporation

	IBM Linux Technology Center - Core Linux and Open Source Expertise
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

