
IBM Linux Technology Center

© 2017 IBM Corporation

LLVM performance optimization
for z Systems

Dr. Ulrich Weigand
Senior Technical Staff Member
GNU/Linux Compilers & Toolchain

Date: Mar 27, 2017

IBM Linux Technology Center

2 © 2017 IBM Corporation

Agenda

• LLVM on z Systems Performance History

• Instruction-Set Architecture (ISA) Optimization

• Processor Micro-Architecture Optimization

• Outlook

IBM Linux Technology Center

3 © 2017 IBM Corporation

Performance History

IBM Linux Technology Center

4 © 2017 IBM Corporation

LLVM on z Systems – performance history

P
e

rf
o

rm
a

n
ce

 v
s.

 G
C

C
 p

re
-7

.0
 (

M
a

r
2

0
1

7
)

LLVM Version

3.3 3.4 3.5.0 3.6.0 3.7.0 3.8.0 3.9.0 4.0.0
-25%

-20%

-15%

-10%

-5%

0%

IBM Linux Technology Center

5 © 2017 IBM Corporation

Back-end changes: overview

3.3 3.4 3.5.0 3.6.0 3.7.0 3.8.0 3.9.0 4.0.0
-25%

-20%

-15%

-10%

-5%

0%

• LLVM 3.3 – Initial release
– No focus on performance; z10 only

• LLVM 3.4 – ISA exploitation
– Significantly improved z10 code generation; initial z196 & zEC12 support

• LLVM 3.5 – Further ISA exploitation
–More z196 & zEC12 instructions exploited

• LLVM 3.6 – No performance-related changes

• LLVM 3.7 – z13 vector ISA support

• LLVM 3.8 – Only minor performance-related changes
– Small improvements to floating-point code generation

• LLVM 3.9 – Misc. code-gen changes / start of micro-arch tuning
– Avoid false FPR dependencies, conditional sibcall/return, FP test data class

• LLVM 4.0 – Focus on micro-architecture tuning
– Post-RA scheduler, tune loop unrolling / strength reduction, tune load-on-condition

IBM Linux Technology Center

6 © 2017 IBM Corporation

Instruction-Set Architecture
Optimizations

IBM Linux Technology Center

7 © 2017 IBM Corporation

z Systems instruction-set architecture overview

• z/Architecture publicly documented by IBM
– z/Architecture Principles of Operation (SA22-7832-10)

• Successor to prior architectures going back to 1960s
– System/360

– System/370

– System/370 extended architecture (370-XA)

– Enterprise Systems Architecture/370 (ESA/370)

– Enterprise Systems Architecture/390 (ESA/390)

• Updated for each new processor generation
– Eighth Edition: z10

– Ninth Edition: z196

– Tenth Edition: zEC12

– Eleventh Edition: z13

http://publibfi.boulder.ibm.com/epubs/pdf/dz9zr010.pdf

IBM Linux Technology Center

8 © 2017 IBM Corporation

z/Architecture overview

• Register file
– 16 64-bit general-purpose register

– 16 64-bit floating-point registers

– 32 128-bit vector registers (overlapping FPRs)

– 16 32-bit access registers

– Program Status Word (incl. PC and condition code)

• Instruction set
– >1000 basic instructions, >2000 extended mnemonics

– CISC operations (reg/reg, reg/mem, mem/mem, …)

– IEEE floating-point, decimal FP, hexadecimal FP

– Vector general, integer, floating-point, string instructions

IBM Linux Technology Center

9 © 2017 IBM Corporation

z/Architecture: high-word register operations

• 64-bit GPRs treated as two independent 32-bit parts
– Intended to provide register relief (32 “registers” for many operations)

• For example, to add an immediate:
– AGFI %r2, 1 → add 1 to full 64-bit register (64-bit ISA)

– AFI %r2, 1 → add 1 to low 32-bit part (legacy 32-bit ISA)

– AIH %r2, 1 → add 1 to high 32-bit part (high-word facility)

• Modeled as sub-registers in LLVM
–GR64 → 64-bit GPRs

–GR32 → 32-bit lower half GPRs

–GRH32 → 32-bit upper half GPRs

–GRX32 → union of GR32 and GRH32
• Used in ISEL for operations supported on both halves
• Post-RA expander selects final instruction depending on register
• AFIMux (GRX32) pseudo → AFI or AIH

IBM Linux Technology Center

10 © 2017 IBM Corporation

z/Architecture: high-word register operations

• Difficult to implement: instructions with two registers
– E.g. COMPARE could be modeled as CMux (GRX32, GRX32)

– After register allocation, all four combinations possible

– But ISA only has instructions for three of them:
• Low/Low → CR
• High/Low → CHLR
• High/High → CHHR

– Special handling for Low/High case required
• May be convertible to High/Low by updating all users
• Otherwise 2-3 instruction sequence involving rotates

• Even more difficult: ADD with three register operands
–Only 3 combinations supported in ISA: LLL, HHL, HHH

– Some cases would require up to 4 instructions to emulate

• Should ideally be handled in RA directly (like GCC “alternatives”)
– But LLVM RA deliberately makes no instruction selection choices ...

IBM Linux Technology Center

11 © 2017 IBM Corporation

z/Architecture: conditional instructions

• Condition code – two bits in the PSW
– Comparable to flags bits, but used as single value

– Instructions may set any CC value, no fixed semantics

– Branch instructions may test for any CC combination
Instruction examples CC 0 CC 1 CC 2 CC 3

COMPARE (integer) Equal Low High -

COMPARE (floating-point) Equal Low High Unordered

ADD Zero < Zero > Zero Overflow

ADD LOGICAL Zero, no carry Not zero, no carry Zero, carry Not zero, carry

AND Zero Not zero - -

FIND LEFTMOST ONE No one bit found - One bit found

TEST UNDER MASK LOW All zeros Mixed, left bit zero Mixed, left bit one All ones

VECTOR COMPARE EQUAL All elements equal Some elts. equal - No elements equal

CONVERT UTF-8 TO UTF-32 Data processed Destination full Invalid UTF-8 Early exit

IBM Linux Technology Center

12 © 2017 IBM Corporation

z/Architecture: more conditional instructions

• Instructions using the condition code
– LOAD ON CONDITION

• Load from memory/register/immediate if CC in mask

– (Conditional) trap instruction
• Special form of (conditional) branch with invalid target

• Instructions that do not use the CC
– COMPARE AND BRANCH / TRAP

• Compare + conditional branch (or trap) as single insn

– BRANCH ON COUNT
• Decrement register and branch if not zero

– LOAD AND TRAP
• Load register from memory and trap if zero

IBM Linux Technology Center

13 © 2017 IBM Corporation

LLVM code generation for conditional instructions

LLVM pass z/Architecture ISA handling

Instruction selection Select appropriate compare instructions
Generate TEST UNDER MASK

Pre-RA pseudos Generate LOC from selects

Early if-conversion Generate LOCR from if blocks
Speculative execution of both sides

Peephole optimizer Optimize explicit uses of CC (e.g. builtins)
Generate LOCHI for immediates

Post-RA pseudos
(including z specific pass)

Select low/high instructions
Expand mixed LOCRMux cases

Late if-conversion Detect conditional trap, conditional return,
conditional sibling call

Optimize comparison against zero
(z specific pass)

Detect branch-on-count, load-and-trap
Convert load to load-and-test
Update CC users with CC mask for other insn

Fuse compare operations
(z specific pass)

Detect compare-and-branch, compare-and-trap,
compare-and-return, compare-and-sibcall

IBM Linux Technology Center

14 © 2017 IBM Corporation

Processor Micro-Architecture
Optimizations

IBM Linux Technology Center

15 © 2017 IBM Corporation

z13 processor micro-architecture overview

• Full micro-architecture is not publicly documented

• Overview targeted at compiler developers here:
– IBM z Systems Processor Optimization Primer

https://www.ibm.com/developerworks/community/files/form/anonymous/api/library/ff4563be-756e-49bf-9de9-6a04a08026f1/document/3dff8d34-fcf9-4939-9efc-11f15a3ce0f8/media/IBM%20z%20Systems%20Processor%20Optimization%20Primer.pdf

IBM Linux Technology Center

16 © 2017 IBM Corporation

z13 high-level instruction & execution flow

IBM Linux Technology Center

17 © 2017 IBM Corporation

z13 execution engine pipelines

IBM Linux Technology Center

18 © 2017 IBM Corporation

Instruction scheduling

• Goals of scheduling for z13
– No exact modeling of OOO execution phase possible

• But: execution latencies still determine critical path length

–Optimize decoder grouping
• Sequence instructions so that decoder groups can be as large as

possible (3 instructions) to optimize dispatch bandwith

– Resource balancing
• Sequence instructions so that over time, usage of the various

execution units is as evenly balanced as possible

– FPd side steering
• Distribute long-running instructions (e.g. FP divide) evenly over

both execution pipeline sides

– FXU side steering
• Distribute dependent instructions to the same side to enable result

bypassing with reduced latency

IBM Linux Technology Center

19 © 2017 IBM Corporation

Instruction scheduling

• Current LLVM implementation
– Post-RA scheduler as very last MI pass

• Using new SchedStrategy and HazardRecognizer

– Decoder grouping, resource balancing, FPd steering

– FXU steering not yet implemented due to regressions

• Future opportunities
– Pre-RA MI scheduler

• “Mix up” register usage to get more freedom post-RA
– Better decoder grouping; better FXU side steering; ...

• But must be careful to not cause spilling!
• No implementation without regressions so far …
• Area of active research in compiler theory

–Global scheduling across block boundaries?

IBM Linux Technology Center

20 © 2017 IBM Corporation

Tuning code generation

• Caveat: performance results hard to predict
– Positive effects often dominated by negative second-order issues

– E.g. increasing use of branch-on-count caused overall performance regression

– Important goal: tune to avoid “second-order” effects

• Loop unrolling
– Important to eliminate small loops which are sensitive

• Loops should preferably be >12 instructions

– Enables "everything" to get rid of small loops, including forced unrolling

– But: limit on number of stores to avoid running out of store tags

• Loop strength reduction
– z13 supports only 12-bit unsigned offsets for vector memory accesses

– Scalar code uses 20-bit signed offsets → try to avoid regressions in vectorizer

– New hook isFoldableMemAccessOffset() to handle this

• WIP: Cost functions to tune vectorizer decisions

IBM Linux Technology Center

21 © 2017 IBM Corporation

Outlook

IBM Linux Technology Center

22 © 2017 IBM Corporation

Status and outlook

• Aside: non-performance related work in 2016
– Profile-directed feedback support (compiler-rt)

– Support for address sanitizer (via BountySource)

– Added LLDB support

– Swift & Rust enablement

• Future work
– Support next-generation z Systems processor

• Twelfth Edition of the z/Architecture
• GCC and binutils support already available

– Improved scheduling / micro-architecture tuning

–Ongoing benchmark analysis efforts

IBM Linux Technology Center

23 © 2017 IBM Corporation

LLVM on z Systems – optimization opportunities

L
LV

M
 4

.0
 v

s.
 G

C
C

 p
re

-7
.0

 (
M

a
r

2
0

1
7

)

400.perlbench
401.bzip2

403.gcc
429.mcf

445.gobmk
456.hmmer

458.sjeng
462.libquantum

464.h264ref
471.omnetpp

473.astar
483.xalancbmk

-10%

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

IBM Linux Technology Center

24 © 2017 IBM Corporation

Questions

?

	IBM Linux Technology Center - Core Linux and Open Source Expertise
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

