Google

Compiling Android userspace and
Linux Kernel with LLVM

Nick Desaulniers, Greg Hackmann, and Stephen Hines*

October 18, 2017

*This was/is a really HUGE effort by many other people/teams/companies. We are just the messengers. :)

Making large changes is an adventure

e (Change via decree/mandate can work, ...

e But we found it much easier to build up through sub-quests.
o Initial Clang/LLVM work was not intending to replace GCC.
Eventually, a small group of people saw change as the only reasonable path forward.
Small, incremental improvements/changes are easier.
Got partners, vendors, and even teams from other parts of Google involved early.
Eventually, the end goal was clear:
m “It's time to have just one compiler for Android. One that can help find (and mitigate)
security problems.”

O O O O

Grow your support

A Brief History of LLVM and Android

e 2010 — RenderScript project begins
o Used LLVM bitcode as portable IR (despite repeated warnings NOT to). :P
o On-device bitcode JIT (later becomes AOT, but actual code generation is done on device).
o Uses same LLVM on-device as for building host code with Clang/LLVM - we <3 bootstrapping!

e March 2012 — LOCAL _CLANG appears (Gitiles).

o Compiler-rt (for ASan), libpng, and OpenSSL are among the first users.
o Other users appear as extension-related ABI issues spring up.

e April 2014 — Clang for platform != LLVM on-device (AOSP / Gitiles).
e July 2014 — All host builds use Clang (AOSP / Gitiles).

https://www.google.com/url?q=https://android.googlesource.com/platform/build/%2B/b71e2df30a2a24d5566734b3c41716bee9351fd1&sa=D&ust=1508346416867000&usg=AFQjCNEeimZ1J1lvYrqYg0vDPLse2SFrMw
https://www.google.com/url?q=https://android-review.googlesource.com/%23/c/platform/prebuilts/clang/linux-x86/host/3.5/%2B/90033/&sa=D&ust=1508346416869000&usg=AFQjCNFFlQHsteMPzwe23FHvNBDh41VO9A
https://www.google.com/url?q=https://android.googlesource.com/platform/prebuilts/clang/linux-x86/host/3.5/%2B/a41444fefcdf947ee6d7db653f026cc64734380a&sa=D&ust=1508346416870000&usg=AFQjCNE-B0kfaMXeNVzXSEnO-FdOTsILrQ
https://www.google.com/url?q=https://android-review.googlesource.com/%23/c/platform/build/%2B/90170/&sa=D&ust=1508346416870000&usg=AFQjCNFXCapnyfx_1jhrPDFw559Ft3bAdA
https://www.google.com/url?q=https://android.googlesource.com/platform/build/%2B/92d79cbb41d8757ffa165e26e8ae42f4335e85f6&sa=D&ust=1508346416870000&usg=AFQjCNH5KAPCDw8eQ7urOz5fQfq5dwkRtA

LOCAL_CLANG

Flag for Android’s build system.

If set to true, use Clang to compile this module.
If not defined, use the regular compiler.

Pretty simple, right?

If set to false, use GCC to compile this module.

LOCAL_CLANG := false

e Need to retain some instances of GCC-specific testing.
o Bionic (libc) needed to check that headers/libraries could still work for native application
developers using GCC (NDK).
e Some tests were a little too dependent on GCC implementation details:
o __stack_chk_guard explicitly extern-ed in and mutated in bionic (libc) tests!
e Other areas where we just didn’t know how to fix bugs yet.
o Valgrind was the last instance of this escape to be fixed in AOSP.

m Wrong clobbers for inline assembly in 1 case.
m ABI + runtime library issues (we'll chat about aeabi later).

Escape hatches are vital

Escape hatches are vital

e If we had to turn off Clang entirely each time we hit a bug, none of us would
be here right now.

e We would be chained to our desk fixing bugs still.

e Lots of people working on this makes it parallel, so long as everyone can
make progress — all or nothing is a bottleneck you can't afford.

Two Builds for the Price of Two

e A simultaneous, obvious extension of LOCAL_CLANG was the concept of the
default platform build.

e Original default was GCC.

e We were eventually able to set up a separate build target (actually multiple
device targets) that used Clang as the default toolchain.

e Why didn't we do this first?

o Because devices didn't boot with Clang...
o And many things didn't even compile successfully with Clang!

Example: aeabi functions

void __aeabi_memcpy(void *dest, void *src, int size) // Please ignore the ‘int’. ;)
{

memcpy(dest, src, size);
}
e Looks pretty harmless, but GCC and Clang treat Android ABI differently, at
least for lowering calls to the runtime memcpy (RTLIB:MEMCPY).

void __aeabi_memcpy(void *dest, void *src, int size)
{
__aeabi_memcpy(dest, src, size); // Infinite loop!!!
}
e Discovered this in side-by-side builds after import of new third-party code.

e LOCAL_CLANG allowed us to ignore this issue for a short while.

Side-by-side builds are great

Side-by-side builds are great

e The ability to measure and “compare” things is why software engineering isn't

just an art*.

o Correctness/Conformance Testing
o Code size

o Performance
O

e Helped prevent early regressions — compiler-dependent build breaks go to
code submitters, and not just the wacky toolchain folks.

* not to be confused with Android’s managed runtime, otherwise known as ART.

Bugs happen ...

Sometimes it is the compiler

Assembly parsing is hard

e What does the following assembly code do?

and $1 << 4 - 1, %eax

e GCCassemblerparses (1 << n - 1)as ((1 << n) - 1).
e LLVMassemblerparses (1 << n - 1)as (1 << (n - 1)).
e Bionic hit this ambiguity in an optimized strrchr() (AOSP / Gitiles).

o Compiler/assembler bug or regular code bug?
o Why not both?

https://www.google.com/url?q=https://android-review.googlesource.com/%23/c/platform/bionic/%2B/195747/&sa=D&ust=1508346417161000&usg=AFQjCNEudRkxLpF-AURWB706kygfifRuiA
https://www.google.com/url?q=https://android.googlesource.com/platform/bionic/%2B/592c7b4cd72e18f2f1941df3d63026d7f94ef7ce&sa=D&ust=1508346417162000&usg=AFQjCNED4Yv4AqYQ8MduqR_2Vjp6uf39IA

Undefined Behavior

e Signed integer overflow :(
o -fwrapv makes this defined.
o Can expose other bugs (in addition to harming performance).

e Nonnull manifested a few ways in Android:
o Removing this checks in Binder. (AOSP / Gitiles)
m sp<IBinder> IInterface::asBinder()

{
return this ? onAsBinder() : NULL;

}
m Except people had been calling (nullptr)->asBinder() in lots of places.
e Further cleanup replaced this with a static method. (AOSP / Gitiles)
o [/ src == nullptr
if (!src || !dst) size = 0;

memcpy(dst, src, size);
Google

https://www.google.com/url?q=https://android-review.googlesource.com/%23/c/platform/frameworks/native/%2B/107686/&sa=D&ust=1508346417222000&usg=AFQjCNEaaafCJjF3qWPZeTPESST0DLID3g
https://www.google.com/url?q=https://android.googlesource.com/platform/frameworks/native/%2B/1474f8864faafebc92ff79959bb5c698bd29b704&sa=D&ust=1508346417222000&usg=AFQjCNEzJZEp9zRbDgQ7SLFg86pVoElJpg
https://www.google.com/url?q=https://android-review.googlesource.com/%23/c/platform/frameworks/native/%2B/114729/&sa=D&ust=1508346417223000&usg=AFQjCNGCuxchCIpKsW0ZEUjIHPN_pjMmKQ
https://www.google.com/url?q=https://android.googlesource.com/platform/frameworks/native/%2B/097ca275f4717a2c47a5d49f302ed2b72c8a1370&sa=D&ust=1508346417223000&usg=AFQjCNGHPXjuKwj5GhIRwuKJgbYlZ_YMjw

Inline Assembly Revisited

e Legacy wrapper functions:
o Do some minor action up front.
o Pass existing caller arguments through to another (possibly tail) call.
o Maybe return a different value (always 0 in these cases).
e Input/Output/Clobber constraints might not matter until one day the compiler

says that they do. (AOSP / Gitiles)

e SWEs work to make the compiler happy, even if it isn't correct (enough).
o Clang stomped all the arguments/returns for the inline assembly, while GCC didn’t bother
touching any of the argument/return registers.
o Nobody noticed until we tried to switch to Clang.

o Even a GCC update or slight change to the source files (due to inlining) could have caused a
bug that would likely be misattributed as a “miscompile”.

https://www.google.com/url?q=https://android-review.googlesource.com/%23/c/platform/frameworks/native/%2B/209821/&sa=D&ust=1508346417278000&usg=AFQjCNHrvsUq4KQXCxJNhJ3cxB9uFptsJQ
https://www.google.com/url?q=https://android.googlesource.com/platform/frameworks/native/%2B/3e8fce48a6c768036c11290b93116665e8e8bdda&sa=D&ust=1508346417279000&usg=AFQjCNGOO8mmx2cTy6sRyIbLDiRsAsSx6w

Lots of empathy for other teams

Lots of empathy for other teams

e They are going to have undefined behavior.

e They are going to have general bugs that got exposed by the transition.

e They need support, not an adversary. C++ is a worthy enough adversary for all
of us.

e You're going to want their empathy/understanding when it is a compiler bug.

A Continued History of LLVM and Android

2012 - 2016 — Everything you just saw.

December 2014 — First side-by-side (mostly) Clang build for Nexus 5.
January 2016 — Android Platform defaults to Clang.

April 2016 — 99% Android Platform Clang (valgrind was the last!)

August 2016 — Forbid non-Clang builds (AOSP / Gitiles).
o Whitelist for legacy projects (started in AOSP / Gitiles).

e October 2016 — 100% Clang userland for Google Pixel.

https://www.google.com/url?q=https://android-review.googlesource.com/%23/c/platform/build/%2B/253942/&sa=D&ust=1508346417346000&usg=AFQjCNEYb-Tcb-wkyrdiBzV-9_yLg0GQEA
https://www.google.com/url?q=https://android.googlesource.com/platform/build/%2B/2ee4c1abbfe278d21d1ae75b39d229fa5f8834e6&sa=D&ust=1508346417347000&usg=AFQjCNFJEC81ujHTIFdN34JW4WFop2V_oQ
https://www.google.com/url?q=https://android-review.googlesource.com/%23/c/platform/build/%2B/252988/&sa=D&ust=1508346417347000&usg=AFQjCNEn7WF_BoFTdWHTiBTNbxj4aHW5-A
https://www.google.com/url?q=https://android.googlesource.com/platform/build/%2B/d9cd1fafb5db622cb4277f961dd81975a0c0d330&sa=D&ust=1508346417347000&usg=AFQjCNEWiAyC36-ymUitiJyQ9yj7Zcka0w

The Platform Numbers

e 597 git projects in aosp/master (10/18/2017).
o 37M LOC C/C++ source/header files in aosp/master alone.
o 2M LOC assembly additional!
o 25.3M LOC of C/C++ is in aosp/master external/*.

The above data was generated using David A. Wheeler's 'SLOCCount’ on a fresh checkout of aosp/master. It does not include
duplicates or generated source files either.

e >150 CLs alone to clean up errors that Clang uncovered.

o Some of these were Clang bugs.
o Many of these were actual user bugs.
o Some were both.

e ~2 years from high-level decision to shipping!
e ~6 years if you count our early efforts!

https://www.google.com/url?q=https://www.dwheeler.com/sloccount/&sa=D&ust=1508346417390000&usg=AFQjCNFCwqnYof4UIRiETP2c_pdC1gawhQ

BONUS - How to deprecate something in a short time!

e STLPort (a C++ runtime library) was a blocker for switching to Clang (and
libc++).
e “Unbundled” Android 1st party apps didnt want to switch to libc++/Clang.

e |t's hard to incentivize good behavior.

o “Nothing really changes”, maintenance is viewed as “unnecessary churn’, ...
o But we want/need to remove deprecated components in a reasonable timeframe.
o Sound familiar yet? This story probably resonates with many of us here.

e Enter the “Sleep Constructor”.

The Sleep Constructor

__attribute__((constructor))

void incentivize_stlport_users() {
ALOGE("Hi! I see you're still using stlport. Please stop doing that.\n");
ALOGE("All you have to do is delete the stlport lines from your makefile\n");
ALOGE("and then you'll get the shiny new libc++\n");

sleep(8);

}

e Seriously, we added an 8 second sleep in May 2015! (AOSP)
e And then we doubled it to 16 seconds in June 2015!
e Deleteditin August 2015, because no one was left using STLPort!

https://www.google.com/url?q=https://android-review.googlesource.com/%23/c/platform/external/stlport/%2B/152069/&sa=D&ust=1508346417457000&usg=AFQjCNGrXI-UZnFWaPtjShXnr24DXmOqIg

Platform Takeaways

e Grow your support.
e Escape hatches are vital!
e Side-by-side builds are great.
e Bugs happen — Sometimes it is the compiler.
o People are going to be upset when this happens, so ...

e Lots of empathy for other teams
o s/other teams/everyone/ for when it is actually the compiler.

e When being nice fails — Sleep Constructor!

Linux Kernel in 2014/2015

e Patches provided by LLVMLinux (http://llvm.linuxfoundation.org)
Some work upstreamed
Large out-of-tree patchstack, last updated in January 2015

Kbuild changes in fairly good shape
Many architecture-specific patches labeled “DO-NOT-UPSTREAM” or
“Not-signed-off-by”

Not shippable, but worth keeping an eye on.

e

https://www.google.com/url?q=http://llvm.linuxfoundation.org&sa=D&ust=1508346417511000&usg=AFQjCNFFft02FdQ_zyCgRbl5uxtGMf777Q

Linux Kernel in 2016

e clang/LLVM continued maturing as a toolchain
e Many LLVMLinux patches no longer needed

e Got working on dev boards and gemu, but quickly ran into limitations:
Upstream Kbuild support for LLVM bitrotted

Couldn’t compile crypto code on x86 or ARM64

Misaligned stacks on x86

ARMG64 EFI stub panicked before starting kernel

Core kernel module (futex) didn’t always assemble on ARM64

o O O O O O

Tantalizingly close. Several teams in Google interested in pushing this to

completion.

Why Is the Linux Kernel Special?

23.2 million LOC codebase [0] that evolved simultaneously with GCC, and does
things that most codebases can't:

Act as its own dynamic linker, libc, and libcompiler-rt

Directly access system registers and I/0 memory

Handle CPU faults

Manipulate page tables

Mix 16-bit, 32-bit, and 64-bit code in a single executable

Simultaneously act like an ELF executable, COFF executable, and neither of
the above

https://www.google.com/url?q=https://www.phoronix.com/scan.php?page%3Dnews_item%26px%3DLinux-4.14-Code-Size&sa=D&ust=1508346417596000&usg=AFQjCNEowGT7KecVFBMfH9qB9T5JOJ0K_Q

Why Isn’t the Linux Kernel That Special?

e Clang already builds lots and lots of diverse codebases.
... including FreeBSD kernel!
Tons of bugs already shaken out, relatively few unique corners of the C
language.

e Most of the weirdest, kernel-y, low-level stuff isn’t really meaningful in C
anyway.

e Linux falls back to assembly for things that need very precise semantics (i.e.,
most of the previous slide).

e

Sometimes It's the Kernel ...

clang turns the 11ist_for_each_entry() macro into an infinite loop.

e Take a pointer node
e Walk node backwards offsetof (node, member) bytes to compute pos
e Reconstruct original node by computing &pos->member
e Terminate loop if &pos->member == NULL
#define 1llist_for_each_entry(pos, node, member) \
for ((pos) = llist_entry((node), typeof(*(pos)), member); \
&(pos)->member != NULL; \

(pos) = llist_entry((pos)->member.next, typeof(x(pos)), member))

(source: include/linux/llist.h)

e

Sometimes It's the Kernel ...

Loop only terminates if pointer underflow and pointer overflow cancel each other
out. Not defined behavior!

Code first introduced in August 2011:

f49f23abf3dd lib, Add lock-less NULL terminated single list

Fixed in July 2017, by casting to uintptr_t:

beaec533fc27 llist: clang: introduce member_address_is_nonnull()

https://www.google.com/url?q=https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit?id%3Df49f23abf3dd786ddcac1c1e7db3c2013b07413f&sa=D&ust=1508346417699000&usg=AFQjCNHY3B5oVsdCIVm3Ub_hSP8N3TMZGw
https://www.google.com/url?q=https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit?id%3Dbeaec533fc2701a28a4d667f67c9f59c6e4e0d13&sa=D&ust=1508346417700000&usg=AFQjCNHUX7l6vlIgk3joCYiWuaD90oUpOQ

.. But Sometimes It's the Compiler

The futex module tests an API’s availability by asking it to dereference NULL.:

[*

* This will fail and we want it. [...] NULL is

* guaranteed to fault and we get -EFAULT on functional

* implementation, the non-functional ones will return

* -ENOSYS.

*/
if (cmpxchg_futex_value_locked(&curval, NULL, 0, @) == -EFAULT)

(source: kernel/futex.c)

e

.. But Sometimes It's the Compiler

Clang assigns the NULL constant to a register that can’t be loaded from:

ccC kernel/futex.o
/tmp/futex-f1b216.s: Assembler messages:
/tmp/futex-f1b216.s:14498: Error: integer 64-bit register expected at operand 2
-- “prfm pstlistrm, [xzr]'
/tmp/futex-f1b216.s:14499: Error: operand 2 should be an address with base

register (no offset) -- “ldxr w12, [xzr]’
/tmp/futex-f1b216.s:14502: Error: operand 3 should be an address with base
register (no offset) -- “stlxr wi13,w10,[xzr]’

https://bugs.llvm.org/show_bug.cqi?id=33134 (fixed in r308060)

https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D33134&sa=D&ust=1508346417770000&usg=AFQjCNFW5ecoxmxjZ3Gz8Tl2mcStotH8kA

Linux Kernel in 2017

State of the upstream kernel summarized at https://lkml.org/lkml/2017/8/22/912

e Kbuild, x86_64, and ARM64 support upstreamed

$ git diff --stat 3b61956a41a5..994d12e0b4bb
[...]

28 files changed, 198 insertions(+), 145 deletions(-)

e One out-of-tree patch still needed for ARM64 (LLVM bug 30792)

e Backports to 4.4 and 4.9 available from Chromium and AOSP
(android-{4.4,4.9}-llvm branches)

e Production ready?

https://www.google.com/url?q=https://lkml.org/lkml/2017/8/22/912&sa=D&ust=1508346417818000&usg=AFQjCNEQe2leJQTRGA1ArGVnktYAoGps3Q
https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D30792&sa=D&ust=1508346417819000&usg=AFQjCNEHc9I0gOu68rQ5WzvcsqpdGqpqnw

Pixel 2

File Edit View Search Terminal Help

Benefits

e Consistent toolchain for kernel and userspace
e LLVM development beyond critical mass

Better static analysis + dynamic analysis (sanitizers)
o Sanitizers developed first in LLVM, have significantly more features
o KASAN+ramdumps helps A LOT, recommended for dedicated dogfooders

Additional compiler warning flag coverage

More tools planned in the future (control-flow integrity, LTO, PGO)
Shake out undefined behaviors

Improve both kernel and compiler code bases

LLVM bugs found/hit from Linux Kernel

effort
e [AArch64] -mageneral-regs-only inconsistent with gcc

e false(?) -Wsequence warning

e typeof(const members of struct), -std=gnu89, and -Wduplicate-decl-specifier
vs gcc/.1

e Wrong relocation type in relocatable LTO link

e Clang integrated assembler doesn't accept asm macro defined in one asm
directive and used in another

e Invalid LDR instruction with XZR

https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D30792&sa=D&ust=1508346418353000&usg=AFQjCNEgOrztzsdNu-JIQoYJRcvFbMNOsQ
https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D33065&sa=D&ust=1508346418354000&usg=AFQjCNG7kNsdtqneFSku1pXbrMCB3doD-A
https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D32985&sa=D&ust=1508346418354000&usg=AFQjCNG7SL8rtzOzPmku8wfsBVIyTOTfdQ
https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D32985&sa=D&ust=1508346418354000&usg=AFQjCNG7SL8rtzOzPmku8wfsBVIyTOTfdQ
https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D33096&sa=D&ust=1508346418355000&usg=AFQjCNGIVmhTDBcw-Rex5Vg_Rk65wGHi1w
https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D19749&sa=D&ust=1508346418355000&usg=AFQjCNF0wOrtCIBXcfTXXnfgF7pCtHuSTw
https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D19749&sa=D&ust=1508346418355000&usg=AFQjCNF0wOrtCIBXcfTXXnfgF7pCtHuSTw
https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D33134&sa=D&ust=1508346418355000&usg=AFQjCNH_nQJ5m_pRpidh2jWXbD3KQ1J3IQ

New warnings for our kernel (that found bugs)

Test these with §(CC) -c -x ¢ /dev/null -W<arning> (https://github.com/Barro/compiler-warnings seems neat)

-Wlogical-not-parenthesis
-Warray-bounds
-Wunused-function
-Wimplicit-enum-conversion
-Wformat-extra-args
-Wframe-larger-than=
-Wignored-attributes
-Wduplicate-decl-specifier
-Wshift-overflow

-Wself-assign

-Wsection
-Wtautological-pointer-compare
-Wparentheses-equality
-Wenum-conversion
-Wliteral-conversion
-Wheader-guard
-Wnon-literal-null-conversion
-Waddress-of-packed-member disabled :(

https://www.google.com/url?q=https://github.com/Barro/compiler-warnings&sa=D&ust=1508346418416000&usg=AFQjCNFX4LmiW-_3cz4cm3l1ZkS6Svc59A

Can LLVM compile a working Linux kernel?

Yes*t1:§. Compile vs run is a big difference, too.
* 44 and 49 LTS Chromlum/AndrO|d fOFkS, TOT (41 4'FC5) (assuming no one broke anything since this morning)
T Our device specific configurations

T Run on our specific hardware

§ ARCH=arm64 || ARCH=x86_64

Testing

e Presubmit (compile+boot tests)

o Clang
o GCC
o KASAN
o lint

e Postsubmit
o fuzzing

o regression testing

Try it today!
$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git && \

cd linux && make localmodconfig && make CC=clang

S ARCH=arm64 CROSS_COMPILE=arm64-linux-gnu- make CC=clang HOSTCC=clang

Future Work

e Switch to LLVM tools from binutils.
o Integrated assembler
m Clean up existing assembly code.
m Improve Clang assembly parsers.
o LLD
o control-flow integrity, LTO, PGO

e Continued community involvement both upstream and with our users.

o Public Mailing List: https://groups.google.com/forum/#!forum/android-llvm
o Android toolchain bugs can be filed at: https://github.com/android-ndk/ndk

https://www.google.com/url?q=https://groups.google.com/forum/%23!forum/android-llvm&sa=D&ust=1508346418527000&usg=AFQjCNEx6i5XEPWVGfFIYCx9ct7ii1M8vA
https://www.google.com/url?q=https://github.com/android-ndk/ndk&sa=D&ust=1508346418527000&usg=AFQjCNFxA1JWekA2qUH-SflOW_I_2Z1GJg

Thank you

To our audience, the LLVM community,
and our fellow adventurers for helping
to make Android + LLVM a success!

