
Compiling Android userspace and
Linux Kernel with LLVM

Nick Desaulniers, Greg Hackmann, and Stephen Hines*

October 18, 2017

*This was/is a really HUGE effort by many other people/teams/companies. We are just the messengers. :)

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Making large changes is an adventure
● Change via decree/mandate can work, …
● But we found it much easier to build up through sub-quests.

○ Initial Clang/LLVM work was not intending to replace GCC.
○ Eventually, a small group of people saw change as the only reasonable path forward.
○ Small, incremental improvements/changes are easier.
○ Got partners, vendors, and even teams from other parts of Google involved early.
○ Eventually, the end goal was clear:

■ “It’s time to have just one compiler for Android. One that can help find (and mitigate)
security problems.”

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Grow your support

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

A Brief History of LLVM and Android
● 2010 — RenderScript project begins

○ Used LLVM bitcode as portable IR (despite repeated warnings NOT to). :P
○ On-device bitcode JIT (later becomes AOT, but actual code generation is done on device).
○ Uses same LLVM on-device as for building host code with Clang/LLVM - we <3 bootstrapping!

● March 2012 — LOCAL_CLANG appears (Gitiles).
○ Compiler-rt (for ASan), libpng, and OpenSSL are among the first users.
○ Other users appear as extension-related ABI issues spring up.

● April 2014 — Clang for platform != LLVM on-device (AOSP / Gitiles).
● July 2014 — All host builds use Clang (AOSP / Gitiles).

https://www.google.com/url?q=https://android.googlesource.com/platform/build/%2B/b71e2df30a2a24d5566734b3c41716bee9351fd1&sa=D&ust=1508346416867000&usg=AFQjCNEeimZ1J1lvYrqYg0vDPLse2SFrMw
https://www.google.com/url?q=https://android-review.googlesource.com/%23/c/platform/prebuilts/clang/linux-x86/host/3.5/%2B/90033/&sa=D&ust=1508346416869000&usg=AFQjCNFFlQHsteMPzwe23FHvNBDh41VO9A
https://www.google.com/url?q=https://android.googlesource.com/platform/prebuilts/clang/linux-x86/host/3.5/%2B/a41444fefcdf947ee6d7db653f026cc64734380a&sa=D&ust=1508346416870000&usg=AFQjCNE-B0kfaMXeNVzXSEnO-FdOTsILrQ
https://www.google.com/url?q=https://android-review.googlesource.com/%23/c/platform/build/%2B/90170/&sa=D&ust=1508346416870000&usg=AFQjCNFXCapnyfx_1jhrPDFw559Ft3bAdA
https://www.google.com/url?q=https://android.googlesource.com/platform/build/%2B/92d79cbb41d8757ffa165e26e8ae42f4335e85f6&sa=D&ust=1508346416870000&usg=AFQjCNH5KAPCDw8eQ7urOz5fQfq5dwkRtA

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

● Flag for Android’s build system.
● If set to true, use Clang to compile this module.
● If not defined, use the regular compiler.
● Pretty simple, right?
● If set to false, use GCC to compile this module.

LOCAL_CLANG

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

LOCAL_CLANG := false
● Need to retain some instances of GCC-specific testing.

○ Bionic (libc) needed to check that headers/libraries could still work for native application
developers using GCC (NDK).

● Some tests were a little too dependent on GCC implementation details:
○ __stack_chk_guard explicitly extern-ed in and mutated in bionic (libc) tests!

● Other areas where we just didn’t know how to fix bugs yet.
○ Valgrind was the last instance of this escape to be fixed in AOSP.

■ Wrong clobbers for inline assembly in 1 case.
■ ABI + runtime library issues (we’ll chat about aeabi later).

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Escape hatches are vital

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Escape hatches are vital
● If we had to turn off Clang entirely each time we hit a bug, none of us would

be here right now.
● We would be chained to our desk fixing bugs still.
● Lots of people working on this makes it parallel, so long as everyone can

make progress — all or nothing is a bottleneck you can’t afford.

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Two Builds for the Price of Two
● A simultaneous, obvious extension of LOCAL_CLANG was the concept of the

default platform build.
● Original default was GCC.
● We were eventually able to set up a separate build target (actually multiple

device targets) that used Clang as the default toolchain.
● Why didn’t we do this first?

○ Because devices didn’t boot with Clang...
○ And many things didn’t even compile successfully with Clang!

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Example: aeabi functions
void __aeabi_memcpy(void *dest, void *src, int size) // Please ignore the ‘int’. ;)
{
 memcpy(dest, src, size);
}

● Looks pretty harmless, but GCC and Clang treat Android ABI differently, at
least for lowering calls to the runtime memcpy (RTLIB:MEMCPY).

void __aeabi_memcpy(void *dest, void *src, int size)
{
 __aeabi_memcpy(dest, src, size); // Infinite loop!!!
}

● Discovered this in side-by-side builds after import of new third-party code.
● LOCAL_CLANG allowed us to ignore this issue for a short while.

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Side-by-side builds are great

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Side-by-side builds are great
● The ability to measure and “compare” things is why software engineering isn’t

just an art*.
○ Correctness/Conformance Testing
○ Code size
○ Performance
○ …

● Helped prevent early regressions — compiler-dependent build breaks go to
code submitters, and not just the wacky toolchain folks.

* not to be confused with Android’s managed runtime, otherwise known as ART.

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Bugs happen ...
Sometimes it is the compiler

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Assembly parsing is hard
● What does the following assembly code do?

and $1 << 4 - 1, %eax

● GCC assembler parses (1 << n - 1) as ((1 << n) - 1).
● LLVM assembler parses (1 << n - 1) as (1 << (n - 1)).
● Bionic hit this ambiguity in an optimized strrchr() (AOSP / Gitiles).

○ Compiler/assembler bug or regular code bug?
○ Why not both?

https://www.google.com/url?q=https://android-review.googlesource.com/%23/c/platform/bionic/%2B/195747/&sa=D&ust=1508346417161000&usg=AFQjCNEudRkxLpF-AURWB706kygfifRuiA
https://www.google.com/url?q=https://android.googlesource.com/platform/bionic/%2B/592c7b4cd72e18f2f1941df3d63026d7f94ef7ce&sa=D&ust=1508346417162000&usg=AFQjCNED4Yv4AqYQ8MduqR_2Vjp6uf39IA

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Undefined Behavior
● Signed integer overflow :(

○ -fwrapv makes this defined.
○ Can expose other bugs (in addition to harming performance).

● Nonnull manifested a few ways in Android:
○ Removing this checks in Binder. (AOSP / Gitiles)

■ sp<IBinder> IInterface::asBinder()
{
 return this ? onAsBinder() : NULL;
}

■ Except people had been calling (nullptr)->asBinder() in lots of places.
● Further cleanup replaced this with a static method. (AOSP / Gitiles)

○ // src == nullptr
if (!src || !dst) size = 0;
memcpy(dst, src, size);

https://www.google.com/url?q=https://android-review.googlesource.com/%23/c/platform/frameworks/native/%2B/107686/&sa=D&ust=1508346417222000&usg=AFQjCNEaaafCJjF3qWPZeTPESST0DLID3g
https://www.google.com/url?q=https://android.googlesource.com/platform/frameworks/native/%2B/1474f8864faafebc92ff79959bb5c698bd29b704&sa=D&ust=1508346417222000&usg=AFQjCNEzJZEp9zRbDgQ7SLFg86pVoElJpg
https://www.google.com/url?q=https://android-review.googlesource.com/%23/c/platform/frameworks/native/%2B/114729/&sa=D&ust=1508346417223000&usg=AFQjCNGCuxchCIpKsW0ZEUjIHPN_pjMmKQ
https://www.google.com/url?q=https://android.googlesource.com/platform/frameworks/native/%2B/097ca275f4717a2c47a5d49f302ed2b72c8a1370&sa=D&ust=1508346417223000&usg=AFQjCNGHPXjuKwj5GhIRwuKJgbYlZ_YMjw

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Inline Assembly Revisited
● Legacy wrapper functions:

○ Do some minor action up front.
○ Pass existing caller arguments through to another (possibly tail) call.
○ Maybe return a different value (always 0 in these cases).

● Input/Output/Clobber constraints might not matter until one day the compiler
says that they do. (AOSP / Gitiles)

● SWEs work to make the compiler happy, even if it isn’t correct (enough).
○ Clang stomped all the arguments/returns for the inline assembly, while GCC didn’t bother

touching any of the argument/return registers.
○ Nobody noticed until we tried to switch to Clang.
○ Even a GCC update or slight change to the source files (due to inlining) could have caused a

bug that would likely be misattributed as a “miscompile”.

https://www.google.com/url?q=https://android-review.googlesource.com/%23/c/platform/frameworks/native/%2B/209821/&sa=D&ust=1508346417278000&usg=AFQjCNHrvsUq4KQXCxJNhJ3cxB9uFptsJQ
https://www.google.com/url?q=https://android.googlesource.com/platform/frameworks/native/%2B/3e8fce48a6c768036c11290b93116665e8e8bdda&sa=D&ust=1508346417279000&usg=AFQjCNGOO8mmx2cTy6sRyIbLDiRsAsSx6w

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Lots of empathy for other teams

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Lots of empathy for other teams
● They are going to have undefined behavior.
● They are going to have general bugs that got exposed by the transition.
● They need support, not an adversary. C++ is a worthy enough adversary for all

of us.
● You’re going to want their empathy/understanding when it is a compiler bug.

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

A Continued History of LLVM and Android
● 2012 - 2016 — Everything you just saw.
● December 2014 — First side-by-side (mostly) Clang build for Nexus 5.
● January 2016 — Android Platform defaults to Clang.
● April 2016 — 99% Android Platform Clang (valgrind was the last!)
● August 2016 — Forbid non-Clang builds (AOSP / Gitiles).

○ Whitelist for legacy projects (started in AOSP / Gitiles).

● October 2016 — 100% Clang userland for Google Pixel.

https://www.google.com/url?q=https://android-review.googlesource.com/%23/c/platform/build/%2B/253942/&sa=D&ust=1508346417346000&usg=AFQjCNEYb-Tcb-wkyrdiBzV-9_yLg0GQEA
https://www.google.com/url?q=https://android.googlesource.com/platform/build/%2B/2ee4c1abbfe278d21d1ae75b39d229fa5f8834e6&sa=D&ust=1508346417347000&usg=AFQjCNFJEC81ujHTIFdN34JW4WFop2V_oQ
https://www.google.com/url?q=https://android-review.googlesource.com/%23/c/platform/build/%2B/252988/&sa=D&ust=1508346417347000&usg=AFQjCNEn7WF_BoFTdWHTiBTNbxj4aHW5-A
https://www.google.com/url?q=https://android.googlesource.com/platform/build/%2B/d9cd1fafb5db622cb4277f961dd81975a0c0d330&sa=D&ust=1508346417347000&usg=AFQjCNEWiAyC36-ymUitiJyQ9yj7Zcka0w

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

The Platform Numbers
● 597 git projects in aosp/master (10/18/2017).

○ 37M LOC C/C++ source/header files in aosp/master alone.
○ 2M LOC assembly additional!
○ 25.3M LOC of C/C++ is in aosp/master external/*.

The above data was generated using David A. Wheeler's 'SLOCCount' on a fresh checkout of aosp/master. It does not include
duplicates or generated source files either.

● >150 CLs alone to clean up errors that Clang uncovered.
○ Some of these were Clang bugs.
○ Many of these were actual user bugs.
○ Some were both.

● ~2 years from high-level decision to shipping!
● ~6 years if you count our early efforts!

https://www.google.com/url?q=https://www.dwheeler.com/sloccount/&sa=D&ust=1508346417390000&usg=AFQjCNFCwqnYof4UIRiETP2c_pdC1gawhQ

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

BONUS - How to deprecate something in a short time!
● STLPort (a C++ runtime library) was a blocker for switching to Clang (and

libc++).
● “Unbundled” Android 1st party apps didn’t want to switch to libc++/Clang.
● It’s hard to incentivize good behavior.

○ “Nothing really changes”, maintenance is viewed as “unnecessary churn”, ...
○ But we want/need to remove deprecated components in a reasonable timeframe.
○ Sound familiar yet? This story probably resonates with many of us here.

● Enter the “Sleep Constructor”.

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

The Sleep Constructor
__attribute__((constructor))
void incentivize_stlport_users() {
 ALOGE("Hi! I see you're still using stlport. Please stop doing that.\n");
 ALOGE("All you have to do is delete the stlport lines from your makefile\n");
 ALOGE("and then you'll get the shiny new libc++\n");

 sleep(8);
}

● Seriously, we added an 8 second sleep in May 2015! (AOSP)
● And then we doubled it to 16 seconds in June 2015!
● Deleted it in August 2015, because no one was left using STLPort!

https://www.google.com/url?q=https://android-review.googlesource.com/%23/c/platform/external/stlport/%2B/152069/&sa=D&ust=1508346417457000&usg=AFQjCNGrXI-UZnFWaPtjShXnr24DXmOqIg

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Platform Takeaways
● Grow your support.
● Escape hatches are vital!
● Side-by-side builds are great.
● Bugs happen — Sometimes it is the compiler.

○ People are going to be upset when this happens, so ...
● Lots of empathy for other teams

○ s/other teams/everyone/ for when it is actually the compiler.

● When being nice fails — Sleep Constructor!

Linux Kernel in 2014/2015
● Patches provided by LLVMLinux (http://llvm.linuxfoundation.org)
● Some work upstreamed
● Large out-of-tree patchstack, last updated in January 2015

● Kbuild changes in fairly good shape
● Many architecture-specific patches labeled “DO-NOT-UPSTREAM” or

“Not-signed-off-by”

Not shippable, but worth keeping an eye on.

https://www.google.com/url?q=http://llvm.linuxfoundation.org&sa=D&ust=1508346417511000&usg=AFQjCNFFft02FdQ_zyCgRbl5uxtGMf777Q

Linux Kernel in 2016
● clang/LLVM continued maturing as a toolchain
● Many LLVMLinux patches no longer needed
● Got working on dev boards and qemu, but quickly ran into limitations:

○ Upstream Kbuild support for LLVM bitrotted
○ Couldn’t compile crypto code on x86 or ARM64
○ Misaligned stacks on x86
○ ARM64 EFI stub panicked before starting kernel
○ Core kernel module (futex) didn’t always assemble on ARM64
○ ...

Tantalizingly close. Several teams in Google interested in pushing this to
completion.

Why Is the Linux Kernel Special?
23.2 million LOC codebase [0] that evolved simultaneously with GCC, and does
things that most codebases can’t:

● Act as its own dynamic linker, libc, and libcompiler-rt
● Directly access system registers and I/O memory
● Handle CPU faults
● Manipulate page tables
● Mix 16-bit, 32-bit, and 64-bit code in a single executable
● Simultaneously act like an ELF executable, COFF executable, and neither of

the above
[0] https://www.phoronix.com/scan.php?page=news_item&px=Linux-4.14-Code-Size

https://www.google.com/url?q=https://www.phoronix.com/scan.php?page%3Dnews_item%26px%3DLinux-4.14-Code-Size&sa=D&ust=1508346417596000&usg=AFQjCNEowGT7KecVFBMfH9qB9T5JOJ0K_Q

Why Isn’t the Linux Kernel That Special?
● Clang already builds lots and lots of diverse codebases.
● … including FreeBSD kernel!
● Tons of bugs already shaken out, relatively few unique corners of the C

language.

● Most of the weirdest, kernel-y, low-level stuff isn’t really meaningful in C
anyway.

● Linux falls back to assembly for things that need very precise semantics (i.e.,
most of the previous slide).

Sometimes It’s the Kernel ...
clang turns the llist_for_each_entry() macro into an infinite loop.

● Take a pointer node
● Walk node backwards offsetof(node, member) bytes to compute pos
● Reconstruct original node by computing &pos->member
● Terminate loop if &pos->member == NULL

#define llist_for_each_entry(pos, node, member) \
 for ((pos) = llist_entry((node), typeof(*(pos)), member); \
 &(pos)->member != NULL; \
 (pos) = llist_entry((pos)->member.next, typeof(*(pos)), member))

(source: include/linux/llist.h)

Sometimes It’s the Kernel ...
Loop only terminates if pointer underflow and pointer overflow cancel each other
out. Not defined behavior!

Code first introduced in August 2011:

f49f23abf3dd lib, Add lock-less NULL terminated single list

Fixed in July 2017, by casting to uintptr_t:

beaec533fc27 llist: clang: introduce member_address_is_nonnull()

https://www.google.com/url?q=https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit?id%3Df49f23abf3dd786ddcac1c1e7db3c2013b07413f&sa=D&ust=1508346417699000&usg=AFQjCNHY3B5oVsdCIVm3Ub_hSP8N3TMZGw
https://www.google.com/url?q=https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit?id%3Dbeaec533fc2701a28a4d667f67c9f59c6e4e0d13&sa=D&ust=1508346417700000&usg=AFQjCNHUX7l6vlIgk3joCYiWuaD90oUpOQ

The futex module tests an API’s availability by asking it to dereference NULL:

/*
 * This will fail and we want it. [...] NULL is
 * guaranteed to fault and we get -EFAULT on functional
 * implementation, the non-functional ones will return
 * -ENOSYS.
 */
if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)

(source: kernel/futex.c)

… But Sometimes It’s the Compiler

… But Sometimes It’s the Compiler
Clang assigns the NULL constant to a register that can’t be loaded from:

https://bugs.llvm.org/show_bug.cgi?id=33134 (fixed in r308060)

 CC kernel/futex.o
/tmp/futex-f1b216.s: Assembler messages:
/tmp/futex-f1b216.s:14498: Error: integer 64-bit register expected at operand 2
-- `prfm pstl1strm,[xzr]'
/tmp/futex-f1b216.s:14499: Error: operand 2 should be an address with base
register (no offset) -- `ldxr w12,[xzr]'
/tmp/futex-f1b216.s:14502: Error: operand 3 should be an address with base
register (no offset) -- `stlxr w13,w10,[xzr]'

https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D33134&sa=D&ust=1508346417770000&usg=AFQjCNFW5ecoxmxjZ3Gz8Tl2mcStotH8kA

Linux Kernel in 2017
State of the upstream kernel summarized at https://lkml.org/lkml/2017/8/22/912

● Kbuild, x86_64, and ARM64 support upstreamed

$ git diff --stat 3b61956a41a5..994d12e0b4bb
[...]
 28 files changed, 198 insertions(+), 145 deletions(-)

● One out-of-tree patch still needed for ARM64 (LLVM bug 30792)

● Backports to 4.4 and 4.9 available from Chromium and AOSP
(android-{4.4,4.9}-llvm branches)

● Production ready?

https://www.google.com/url?q=https://lkml.org/lkml/2017/8/22/912&sa=D&ust=1508346417818000&usg=AFQjCNEQe2leJQTRGA1ArGVnktYAoGps3Q
https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D30792&sa=D&ust=1508346417819000&usg=AFQjCNEHc9I0gOu68rQ5WzvcsqpdGqpqnw

Pixel 2

Benefits
● Consistent toolchain for kernel and userspace
● LLVM development beyond critical mass
● Better static analysis + dynamic analysis (sanitizers)

○ Sanitizers developed first in LLVM, have significantly more features
○ KASAN+ramdumps helps A LOT, recommended for dedicated dogfooders

● Additional compiler warning flag coverage
● More tools planned in the future (control-flow integrity, LTO, PGO)
● Shake out undefined behaviors
● Improve both kernel and compiler code bases

LLVM bugs found/hit from Linux Kernel
effort
● [AArch64] -mgeneral-regs-only inconsistent with gcc
● false(?) -Wsequence warning
● typeof(const members of struct), -std=gnu89, and -Wduplicate-decl-specifier

vs gcc7.1
● Wrong relocation type in relocatable LTO link
● Clang integrated assembler doesn't accept asm macro defined in one asm

directive and used in another
● Invalid LDR instruction with XZR

https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D30792&sa=D&ust=1508346418353000&usg=AFQjCNEgOrztzsdNu-JIQoYJRcvFbMNOsQ
https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D33065&sa=D&ust=1508346418354000&usg=AFQjCNG7kNsdtqneFSku1pXbrMCB3doD-A
https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D32985&sa=D&ust=1508346418354000&usg=AFQjCNG7SL8rtzOzPmku8wfsBVIyTOTfdQ
https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D32985&sa=D&ust=1508346418354000&usg=AFQjCNG7SL8rtzOzPmku8wfsBVIyTOTfdQ
https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D33096&sa=D&ust=1508346418355000&usg=AFQjCNGIVmhTDBcw-Rex5Vg_Rk65wGHi1w
https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D19749&sa=D&ust=1508346418355000&usg=AFQjCNF0wOrtCIBXcfTXXnfgF7pCtHuSTw
https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D19749&sa=D&ust=1508346418355000&usg=AFQjCNF0wOrtCIBXcfTXXnfgF7pCtHuSTw
https://www.google.com/url?q=https://bugs.llvm.org/show_bug.cgi?id%3D33134&sa=D&ust=1508346418355000&usg=AFQjCNH_nQJ5m_pRpidh2jWXbD3KQ1J3IQ

New warnings for our kernel (that found bugs)
● -Wlogical-not-parenthesis
● -Warray-bounds
● -Wunused-function
● -Wimplicit-enum-conversion
● -Wformat-extra-args
● -Wframe-larger-than=
● -Wignored-attributes
● -Wduplicate-decl-specifier
● -Wshift-overflow
● -Wself-assign
● -Wsection
● -Wtautological-pointer-compare
● -Wparentheses-equality
● -Wenum-conversion
● -Wliteral-conversion
● -Wheader-guard
● -Wnon-literal-null-conversion
● -Waddress-of-packed-member disabled :(

Test these with $(CC) -c -x c /dev/null -W<arning> (https://github.com/Barro/compiler-warnings seems neat)

https://www.google.com/url?q=https://github.com/Barro/compiler-warnings&sa=D&ust=1508346418416000&usg=AFQjCNFX4LmiW-_3cz4cm3l1ZkS6Svc59A

Can LLVM compile a working Linux kernel?
Yes*†‡¶§. Compile vs run is a big difference, too.

* 4.4 and 4.9 LTS Chromium/Android forks, ToT (4.14-rc5) (assuming no one broke anything since this morning)

† Our device specific configurations

‡ Run on our specific hardware

¶ Cannot assemble or link, still deferring to binutils’ as and ld

§ ARCH=arm64 || ARCH=x86_64

Testing
● Presubmit (compile+boot tests)

○ Clang
○ GCC
○ KASAN
○ lint

● Postsubmit
○ fuzzing
○ regression testing

Try it today!
$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git && \

 cd linux && make localmodconfig && make CC=clang

$ ARCH=arm64 CROSS_COMPILE=arm64-linux-gnu- make CC=clang HOSTCC=clang

Future Work
● Switch to LLVM tools from binutils.

○ Integrated assembler
■ Clean up existing assembly code.
■ Improve Clang assembly parsers.

○ LLD
○ control-flow integrity, LTO, PGO

● Continued community involvement both upstream and with our users.
○ Public Mailing List: https://groups.google.com/forum/#!forum/android-llvm
○ Android toolchain bugs can be filed at: https://github.com/android-ndk/ndk

https://www.google.com/url?q=https://groups.google.com/forum/%23!forum/android-llvm&sa=D&ust=1508346418527000&usg=AFQjCNEx6i5XEPWVGfFIYCx9ct7ii1M8vA
https://www.google.com/url?q=https://github.com/android-ndk/ndk&sa=D&ust=1508346418527000&usg=AFQjCNFxA1JWekA2qUH-SflOW_I_2Z1GJg

Thank you
To our audience, the LLVM community,
and our fellow adventurers for helping
to make Android + LLVM a success!

