
Dominator Trees

and incremental updates that transcend time

Jakub (Kuba) Kuderski

kubakuderski@gmail.com

University of Waterloo

12017 US LLVM Developers’ Meeting – San Jose

Introduction

2

CFG (Control Flow Graph)

Introduction

3

CFG (Control Flow Graph)

Dominance:

Introduction

4

CFG (Control Flow Graph)

Node X dominates node Y iff all paths from

the entry to Y go through X.

Dominance:

5

Dominators

Node X dominates node Y iff all paths from

the entry to Y go through X.

Dominance:

6

{ entry }

Dominators

Node X dominates node Y iff all paths from

the entry to Y go through X.

Dominance:

7

{ entry }

{ entry, A }

Dominators

Node X dominates node Y iff all paths from

the entry to Y go through X.

Dominance:

8

{ entry }

{ entry, A }

{ entry, A, C }

{ entry, A, C, E }{ entry, A, C, D }

{ entry, A, C, F }

Dominators

Node X dominates node Y iff all paths from

the entry to Y go through X.

Dominance:

9

{ entry }

{ entry, A }

{ entry, A, C }

{ entry, A, C, E }{ entry, A, C, D }

{ entry, A, C, F }{ entry, A, B }

{ entry, A, G }

{ entry, A, G, exit }

Dominators

Node X dominates node Y iff all paths from

the entry to Y go through X.

Dominance:

10

{ }

{ entry }

{ A }

{ C }{ C }

{ C }{ A }

{ A }

{ G }

Immediate dominators

Node X dominates node Y iff all paths from

the entry to Y go through X.

Dominance:

11

Dominator Tree:

{ }

{ entry }

{ A }

{ C }{ C }

{ C }{ A }

{ A }

{ G }

A

B C G

exit

entry

D E F

Immediate dominators

12

Tree T is the dominator tree if and only if

it has the parent and the sibling properties.
{ }

{ entry }

{ A }

{ C }{ C }

{ C }{ A }

{ A }

{ G }

A

B C G

exit

entry

D E F

Immediate dominators

13

Postdominator Tree:
{ A }

{ G }

{ F }

{ F }{ F }

{ G }{ G }

{ exit }

{ <virtual exit> }

Immediate postdominators

G

B FA

entry

exit

C D E

<virtual exit>

14

Postdominator Tree:

Multiple exits: D, G, H

C Fentry

A B D

<virtual exit>

E H

Virtual Root

Roots: D, G, H

15

Postdominator Tree:

Multiple exits: D, G, H

C Fentry

A B D

<virtual exit>

E H

Virtual Root

Roots: D, G, H

virtual exit

(nullptr)

16

Inorder Dominator Tree: DFSNumbers invalid: 0 slow queries.
[1] %entry {4294967295,4294967295} [0]
[2] %switch {4294967295,4294967295} [1]
[3] %five {4294967295,4294967295} [2]
[3] %two {4294967295,4294967295} [2]

[4] %exit {4294967295,4294967295} [3]
[3] %four {4294967295,4294967295} [2]

Dominator Tree

switch

two five

exit

entry

four

Textual representation

(for debugging)

calculated level level stored in the tree node

17

Inorder Dominator Tree:
[1] %entry {1,12} [0]
[2] %switch {2,11} [1]
[3] %five {3,4} [2]
[3] %two {5,8} [2]

[4] %exit {6,7} [3]
[3] %four {9,10} [2]

Dominator Tree

switch

two five

exit

entry

four

Textual representation

(for debugging)

calculated level level stored in the tree node

DFS In/Out numbers – calculated lazily

Dominators are important in SSA

● Every def must dominate its uses

○ ... in a valid piece of IR

● Dominators are used to compute the optimal placement of PHI nodes

○ DominanceFrontier

18

Use of dominators in LLVM

● Used with BasicBlocks

○ DominatorTree, PostDominatorTree

○ DominatorTreeWrapperPass, PostDominatorTreeWrapperPass

○ DominanceFrontier, IteratedDominanceFrontier

● Also with MachineBasicBlocks and Clang's CFG

19

Use of dominators in LLVM

• grep -r 'Dominator'

• ?

• grep -r 'Dominance'

• ?

• grep -r 'dominates'

• ?

• grep -rE 'DT\.|DT->' DT. and DT->

• ?

20

Use of dominators in LLVM

• grep -r 'Dominator'

• 2600

• grep -r 'Dominance'

• 320

• grep -r 'dominates'

• 660

• grep -rE 'DT\.|DT->' DT. and DT->

• 1200

21

Problems

● There was no API for automatically updating the DominatorTree

○ Very low-level API for performing manual updates

○ Frequent DominatorTree recalculations

(1 million recalculations when optimizing clang fullLTO, ~3.2% of total optimization time)

● PostDominatorTree was virtually impossible to update manually

○ Too costly to maintain

○ Not used widely in practice

22

Goals

● Make updating the DominatorTree easy

○ To get rid of numerous extremely subtle bugs scattered across the whole optimizer

○ Reduce the number of recalculations

● Make the PostDominatorTree more viable to use

○ By making it possible to update it without doing full recalculations

23

Incremental dominator tree updater

24

● Depth Based Search algorithm

○ Uses Semi-NCA tree construction algorithm

○ Splits updates into 4 categories and tries to bound the search

of affected subtrees using tree level information

L. Georgiadis et al.

https://arxiv.org/pdf/1604.02711.pdf

Incremental dominator tree updater

25

● Depth Based Search algorithm

○ Uses Semi-NCA tree construction algorithm

○ Splits updates into 4 categories and tries to bound the search

of affected subtrees using tree level information

L. Georgiadis et al.

https://arxiv.org/pdf/1604.02711.pdf

● What we have done:

○ Cleaned up existing implementation of the DominatorTree

○ Switched from Simple Lengauer-Tarjan to Semi-NCA

○ Adapted the Depth Based Search algorithm to LLVM

○ Made improvements to the PostDominatorTree

Semi-NCA dominator tree construction algorithm

● Simpler to implement than Simple Lengauer-Tarjan

○ Does not perform path compression

○ Stores levels (depth in tree) in nodes

● Worse computational complexity, but faster in practice

○ Simple Lengauer-Tarjan – O(n log(n))

○ Semi-NCA – O(n2)

26

Semi-NCA dominator tree construction algorithm

● Simpler to implement than Simple Lengauer-Tarjan

○ Does not perform path compression

○ Stores levels (depth in tree) in nodes

● Worse computational complexity, but faster in practice

○ Simple Lengauer-Tarjan – O(n log(n))

○ Semi-NCA – O(n2)

27

Delta (%)

Incremental update API

● Two new functions:

○ DT.insertEdge(From, To)

○ DT.deleteEdge(From, To)

● Following transforms taught to use the new API and preserve dominators:

○ Loop Deletion

○ Loop Rerolling

○ Loop Unswitching

○ Break Critical Edges

○ Aggressive Dead Code Elimination

28

Incremental update API

● Two new functions:

○ DT.insertEdge(From, To)

○ DT.deleteEdge(From, To)

● Following transforms taught to use the new API and preserve dominators:

○ Loop Deletion

○ Loop Rerolling

○ Loop Unswitching

○ Break Critical Edges

○ Aggressive Dead Code Elimination

29

Depth Based Search confused

30

Dominator Tree

switch

two fivedefault

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

exit

Depth Based Search confused

31

Dominator Tree

switch

two fivedefault

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

exit

Depth Based Search confused

32

Dominator Tree

switch

two fivedefault

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

exit

Depth Based Search confused

33

Dominator Tree

switch

two fivedefault

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge(%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

exit

Depth Based Search confused

34

Dominator Tree

switch

two fivedefault

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge(%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

exit

[DT] attach %exit to its only
predecessor reachable from
%switch – to %two

Depth Based Search confused

35

Dominator Tree

switch

two five

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge(%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

exit

[DT] attach %exit to its only
predecessor reachable from
%switch – to %two

Depth Based Search confused

36

Dominator Tree

switch

two five

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge(%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

exit

[DT] attach %exit to its only
predecessor reachable from
%switch – to %two

3. [ADCE] DT.deleteEdge(%switch, %four)
[DT] NCD(%switch, IDom(%four)) is %switch
[DT] %four was only reachable from %switch
[DT] delete subtree %four

Depth Based Search confused

37

Dominator Tree

switch

two five

entry

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge(%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

exit

[DT] attach %exit to its only
predecessor reachable from
%switch – to %two

3. [ADCE] DT.deleteEdge(%switch, %four)
[DT] NCD(%switch, IDom(%four)) is %switch
[DT] %four was only reachable from %switch
[DT] delete subtree %four

Depth Based Search confused

38

Dominator Tree

switch

two five

entry

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge(%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

exit

[DT] attach %exit to its only
predecessor reachable from
%switch – to %two

3. [ADCE] DT.deleteEdge(%switch, %four)
[DT] NCD(%switch, IDom(%four)) is %switch
[DT] %four was only reachable from %switch
[DT] delete subtree %four

[DT] %exit is %four's successor and
Level(%exit) == Level(%four) + 1,
so it must be in %four's subtree

Depth Based Search confused

39

Dominator Tree

switch

two five

entry

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge(%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

[DT] attach %exit to its only
predecessor reachable from
%switch – to %two

3. [ADCE] DT.deleteEdge(%switch, %four)
[DT] NCD(%switch, IDom(%four)) is %switch
[DT] %four was only reachable from %switch
[DT] delete subtree %four

[DT] %exit is %four's successor and
Level(%exit) == Level(%four) + 1,
so it must be in %four's subtree

[DT] delete %exit

Batch updates

● Depth Based Search needs to see a snapshot of the CFG just after each

update

● We do not want to store different versions of the same CFG in DominatorTree

40

Batch updates

● Depth Based Search needs to see a snapshot of the CFG just after each

update

● We do not want to store different versions of the same CFG in DominatorTree

● We need to have a way to ‘diff’ CFG between batch updates

41

Batch updates

● Depth Based Search needs to see a snapshot of the CFG just after each

update

● We do not want to store different versions of the same CFG in DominatorTree

● We need to have a way to ‘diff’ CFG between batch updates

● The list of updates to perform is also the full list of changes to the CFG

42

Batch update algorithm

● Reverse-apply updates to the CFG from the future to get the

snapshots of the CFG in the past

43

● Reverse-apply updates to the CFG from the future to get the

snapshots of the CFG in the past

44

Current CFG

● Reverse-apply updates to the CFG from the future to get the

snapshots of the CFG in the past

45

Current CFG

Updates = {{Insert, C, D},

{Insert, E, D},

{Delete, E, C},

{Insert, F, G}}

● Reverse-apply updates to the CFG from the future to get the

snapshots of the CFG in the past

46

Current CFG

CFG' = CFG \ Updates[3:4]

CFG'' = CFG \ Updates[2:4]

CFG''' = CFG \ Updates[1:4]

CFG'''' = CFG \ Updates[0:4]

Updates = {{Insert, C, D},

{Insert, E, D},

{Delete, E, C},

{Insert, F, G}}

● Reverse-apply updates to the CFG from the future to get the

snapshots of the CFG in the past

47

Current CFG

CFG' = CFG \ Updates[3:4]

CFG'' = CFG \ Updates[2:4]

CFG''' = CFG \ Updates[1:4]

CFG'''' = CFG \ Updates[0:4]

Updates = {{Insert, C, D},

{Insert, E, D},

{Delete, E, C},

{Insert, F, G}}

CFG’’’’

● Reverse-apply updates to the CFG from the future to get the

snapshots of the CFG in the past

48

Current CFG

CFG' = CFG \ Updates[3:4]

CFG'' = CFG \ Updates[2:4]

CFG''' = CFG \ Updates[1:4]

CFG'''' = CFG \ Updates[0:4]

Updates = {{Insert, C, D},

{Insert, E, D},

{Delete, E, C},

{Insert, F, G}}

CFG’’’’

Because every permutation of a sequence

of updates yields the same DominatorTree,

we are free to reorder them internally.

Batch update API

● DT.applyUpdates(Updates)

● In action:

49

0. SmallVector<DominatorTree::UpdateType, 3> Updates;

1. Updates.push_back({DT::Insert, Start, A });

2. Updates.push_back({DT::Insert, A, End });

3. Updates.push_back({DT::Delete, Start, Body});

4. DT.applyUpdates(Updates);

Start

Body

Body2 Body3

End

A

1.

2.

3.

Batch update API

● Used to preserve dominators in:

○ LoopRerolling

○ LoopUnswitching

○ BreakCriticalEdges

○ AggressiveDeadCodeElimination

○ JumpThreading (by Samsung Research)

50

Verifiers

● Old validation: builds a new DominatorTree and checks if it compares equal

○ DT.verifyDominatorTree()

- Not able validate the PostDominatorTree

- Does not check correctness of a freshly calculated tree

+ Relatively cheap

51

Verifiers

● Old validation: builds a new DominatorTree and checks if it compares equal

○ DT.verifyDominatorTree()

- Not able validate the PostDominatorTree

- Does not check correctness of a freshly calculated tree

+ Relatively cheap

52

● New validation: validates every bit of information in the DominatorTree!

○ DT.verify()

+ Able to check both dominators and postdominators

+ Able to validate freshly calculated trees

- Expensive – O(n3)

New validation

● verifyRoots – checks if roots correspond to the CFG

● verifyReachablility – checks if the same nodes are in the CFG and in the DT

● verifyParentProperty – ensures the parent property holds – O(n2)

● verifySiblingProperty – ensures the sibling property holds – O(n3)

● verifyLevels – checks if the tree levels stored in tree nodes are consistent

● verifyDFSNumbers – ensures that (not invalidated) DFS numbers are correct

53

verifyDFSNumbers – bugs possible to find

54

Postdominators and infinite loops

55

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B

Postdominators and infinite loops

56

Postdominator Tree

A

entry

B

<virtual exit>

Postdominators and infinite loops

57

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B

Postdominators and infinite loops

58

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B

Postdominators and infinite loops

59

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B

Postdominators and infinite loops

60

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B , G

Postdominators and infinite loops

61

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B , G

Postdominators and infinite loops

62

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B , G, F

Postdominators and infinite loops

63

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B , G, F

Postdominators and infinite loops

64

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B , G, F

Postdominators and infinite loops

65

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B , F

Postdominators and infinite loops

66

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B , F

Postdominators and infinite loops

67

Postdominator Tree

Roots: B , F

entry

A B

<virtual exit>

F

D

C G

E

Recalculations – currently, with the incremental API

68

Optimizing a fullLTO clang bitcode with -O3, assertions enabled. (Experiments run on 2x E5-2670 CPU)

October 16 2017 – with incremental batch updates

DomTree recalculations: 1,040,000

DomTree updates: 163,500

DomTree: CFG nodes visited: 49,500,000

Nodes visited per second: 1,718,750

Recalculation time: 28.8s / 18m 52s → 2.54%

Update time: 0.6s / 18m 52s → 0.05%

PostDomTree recalculations: 50,000

PostDomTree: CFG nodes visited: 5,800,000

Nodes visited per second: 2,761,905

Optimization time: 2.1s / 18m 52s → 0.19%

June 27 2017 – before switching to Semi-NCA

DomTree recalculations: 1,020,000

DomTree: CFG nodes visited: 48,100,000

Nodes visited per second: 1,705,673

Recalculation time: 28.2s / 15m 15s → 3.1%

PostDomTree recalculations: 50,000

PostDomTree: CFG nodes visited: 2,800,000

Nodes visited per second: 1,818,181

Recalculation time: 1.54s / 15m 15s → 0.16%

TL;DR

69

● Use the incremental API DT.applyUpdates() instead of

DT.changeImmediateDominator(…)

○ May be slower, but works for both dominators and postdominators

○ Is guaranteed to be correct

○ If it's too slow, let me know!

○ When in doubt, add assert(DT.verify()) when working on your pass

Remaining problems

● Interface for incremental updates CFG-level, not IR-level

○ Operates on changed edges

○ Each transform has to collect affected edges on its own

○ Not easily expressible common idioms, e.g. ReplaceAllUsesWith

● After performing incremental updates, next pass may invalidate the

Dominator Tree

○ It will be recalculated anyway

70

Future work

● Converting remainig passes to use the incremental updater

● Simpler interface – a single updater object able to update both the

DominatorTree and PostDominatorTree

● Deferred batch updates – applied lazily when actually needed

● Properly profile and optimize the batch updater

71

Thank you

Questions?

72

Jakub (Kuba) Kuderski

kubakuderski@gmail.com

