
Debugging of optimized code:
Extending the lifetime of local variables and parameters

Wolfgang Pieb

October 18, 2017

Motivation

• Local variables and parameters (including the this pointer) are often optimized

away soon after the last point of use.

void A::func()

{

 if (<last use of this>) {

 handle_error(); <= the this pointer is not visible in the debugger here

 }

}

• By artificially extending the lifetime of these locals and parameters through the end

of their lexical scopes we make them visible for debugging purposes.

-O3 -g -O3 -fextend-lifetimes -g

Implementation

• New clang switches -fextend-lifetimes and -fextend-this-ptr

• New llvm intrinsic llvm.fake.use()

define i32 @_Z3fooi(i32 %param) {
 …

 call void (...) @llvm.fake.use(i32 %param)
}

• The front-end issues calls to llvm.fake.use() for all user-defined local variables and

parameters at the end of their respective lexical scopes.

• With -fextend-this-ptr, only the this pointer’s lifetime is extended.

• Analogous to generating of end-of-lifetime markers.

Example

extern void used(double);

extern void usei(int);

double globd;

int globi;

void foo(int param)

{

 double d = globd;

 if (param) {

 int j = globi;

 usei(j);

 }

 used(d);

}

define void @foo(i32 %param) … {

entry:

 %d = load double, double* @globd, align 8

 …

 br i1 %tobool, label %if.end, label %if.then

if.then

 %j = load i32, i32* @globi

 tail call void @usei(i32 %j)

 tail call void (...) @llvm.fake.use(i32 %j) <= after call to usei()

 br label %if.end

if.end:

 tail call void @used(double %d)

 tail call void (...) @llvm.fake.use(double %d) <= after call to used()

 tail call void (...) @llvm.fake.use(i32 %param) <= end of the function

 ret void

}

Backend implementation

• llvm.fake.use() is translated into the new FAKE_USE machine op with the intrinsic’s

argument as operand.

• FAKE_USE is a meta instruction (i.e. does not produce any executable code).

• Some GVN optimizations are suppressed for FAKE_USE operands.

• SROA on pointer operands of FAKE_USE is disabled.

• Type legalization needed to learn about FAKE_USE and its operands.

Effect on debug location information

• Measuring coverage by determining the percentage of code that is covered within a

variable’s lexical scope.

Code range for

variable’s parent

scope

Location information w/ -O3 -g

Improvement w/ -O3 -g -fextend-lifetimes

• Game 1: Cumulative coverage improvement by 15%

• Game 2: Cumulative coverage improvement by 14%

variable’s first DEF

Effect on runtime performance

As percentage of execution time

80

85

90

95

100

105

110

Game 1 Game 2 Bullet zlib

-O3

-O3 -fextend-lifetimes

-O3 -fextend-this-ptr

Conclusion

• Debugging of optimized code can be improved by extending the lifetime of local

variables and parameters artificially.

• The impact on performance is small (5-7%).

• Positive feedback from users.

• The proposed -Og mode (optimize for debugging) could make use of this

functionality.

