arm Organising benchmarking
LLVM-based compiler:
Arm experience

Evgeny Astigeevich
LLVM Dev Meeting April 2018

Terminology

e Upstream: everything on llvm.org side.
* Downstream: everything on your side.

* Benchmarking a compiler: part of QA process where compiler quality requirements,
such as generated code performance, code size, compilation time and others, are
verified.

e Bisecting a regression: a process of identifying commits caused the regression.
* Bare-metal application: an application which runs without OS supporting it.
* 0OS-hosted application: an application which needs OS to run.

2 © 2018 Arm Limited q rm

Benchmarking a compiler: get answers to

* Do my changes affect the compiler?
* Isthe compiler improving?
* What caused regressions/improvements?

3 © 2018 Arm Limited a rm

What is ARM Compiler 6?

e Toolchain for development of bare-metal applications
« C/C++ and GNU assembly compiler based on Clang/LLVM (armclang)
- Assembler for legacy Arm-syntax assembly
« Linker
« C++ libraries based on LLVM libc++
« Clibraries
- ARM librarian (armar)
- ARM image conversion utility (fromelf)

4 © 2018 Arm Limited q rm

Why did we base our compiler on LLVM?

5 © 2018 Arm Limited a rm

Why did we base our compiler on LLVM?
Previous 4 . Ame 4

Armvs Armvé Armv7-A Armv8-A
Cortex-A17 Cortex-A73 Cortex-A75 g
< Cortex-A15 Cortex-A57 Cortex-A72 performance
1
Arm11MPCore x
Arm1176JZ(F)-S £ g°:ex':: Cortex-A53 Cortex-A55 Mg
Arm1136J(F)-S) narhinienk
Arm968E-S O '
Arm946E-S Cortex-A7 Cortex-A35 Ultr-a. high
Arm926EJ-S Cortex-A5 Cortex-A32 Efﬁﬂency
o Armv7-R Armv8-R
I3 Cortex-R8
(O] .|
Arm1156T2(F)-s | g | CortexR7 Cortex-R52 Real time
o Cortex-R5
O Cortex-R4
Armv4 Armve-M __ Armv7-M - Armv8-M High
E. Cortex-M7 performance
Arm7TDMI] Cortex-M4 Cortex-M33 Performance
Arm920T - Cortex-M3 efficiency
(o} Cortex-MO0+ owest powe
O Cortex-M0 Cortex-M23 2rd are

6 © 2018 Arm Limited a rm

Cortex-A vs Cortex-R vs Cortex-M

7

Highest performance

Optimised for
rich operating systems

Fast response

Optimised for
high performance,
hard real-time applications

Smallest/lowest power

Optimised for
discrete processing and
microcontrollers

)

© 2018 Arm Limited

arm

ARM Compiler product requirements

* Good quality of Cortex-A/R/M code.

* No significant regressions in releases.

8 © 2018 Arm Limited a rm

The benchmarking process highly depends on how an
interaction between upstream and downstream is
organized.

9 © 2018 Arm Limited a rm

Avoiding merge conflicts

We do development upstream as much as possible.
The rough difference is ~20-50K SLOC.

10 © 2018 Arm Limited a rm

Benchmarking Cortex-A code

e Cortex-A can run Linux => More benchmarks can be run
* Benchmarks are CPU-oriented => OS-hosted benchmarking can be used
* Llvm.org already has a working solution: BuildBot + LNT client/server tools

11 © 2018 Arm Limited a rm

Int.llvm.org

LNT

Database ~

nts / Recent Activity

¥ Active Machines

¥ Recent Submissions

12

© 2018 Arm Limited

Suite v nts~ Baselines ~

Active Machines

Machine

livm-juno-Int__clang_DEV__aarch64:1349
livm-tk1-02__clang_DEV__thumbv7:1348
LNT-Broadwell-AVX2-O3__clang_DEV__x86_64:1344
Int-ctmark-aarch64-00-g: 1351
Int-ctmark-aarch64-03-flto: 1353

Recent Submissions

Run Order Started Duration
r330115 @ 57 minutes ago 0:45:02
r330111 @ 59 minutes ago 0:06:40
r330111 @ 1 hour ago 0:02:44

Latest Submission
1 hour ago

24 minutes ago

12 minutes ago

1 hour ago

52 minutes ago

Machine
LNT-Broadwell-AVX2-O3__clang_DEV__x86_64:1344
Int-ctmark-aarch64-03-flto: 1353
Int-ctmark-aarch64-00-g:1351

System~

Results

View Results
View Results
View Results
View Results

View Results

Results
View Results
View Results

View Results

arm

Internal LNT

13

Binaries

[BuildBot

The infrastructure is similar to llvm.org infrastructure: BuildBot, LNT client/server tools.

Benchmarking

bots

LNT server
Results

LNT provides all needed benchmarking functionality out-of-the-box.

The internal LNT works with upstream Clang/LLVM repositories to get bisecting
working.

© 2018 Arm Limited q rm

Benchmarking Cortex-A code

* We use the internal and upstream LNTs to analyze significance of regressions.

14 © 2018 Arm Limited a rm

Benchmarking Cortex-R/M bare-metal code

15 © 2018 Arm Limited a rm

Daily Upstream <> Downstream synchronization

At 6:30am update
upstream copy,
build and test

6:30am was chosen
because of the

lowest development
activity in upstream.

16 © 2018 Arm Limited

All
Passed

Manually
resolve issues

No

Merge to
downstream

Passed

Yes

arm

Repositories status

Commits

Upstream | [T N N

Ll Ll 1 1 |
T 11 T T T 1 1 T 1 1
Merge
Downstream

I I
b01 b02

* Toolchain builds: b01, b02, b03.

17 © 2018 Arm Limited

arm

Nightly downstream benchmarking

Product building

Compare

Build testable Run Submit results

results

toolchain benchmarks to database

18 © 2018 Arm Limited a rm

“What caused regressions/improvements?”

Commits
Upstream : : H | | |

L1l 1 1 1 1 1 1 1 1 1 1 |
T T T 1 1 T 1 1
Merge
Downstream
I I I

b01 b02 b03

* Manual bisecting:
« An upstream commit needed to be merged to downstream. Not always possible.
- Compiler binaries needed to be built per a merge. Not always possible.

19 © 2018 Arm Limited a rm

The first solution: summary

* Pros:
 Very simple to implement.
« Upstream Cl guards you from “bad” commits.
- Merge conflicts are resolved when upstream is less active.
- Nightly toolchain builds are based on a “stable” upstream trunk revision.

* Cons
« No CI. Testing and benchmarking is started after the full toolchain is built.
- Downstream benchmarking results are always outdated.

- Complex merge conflicts can take more than one day and block synchronization.
- Bisecting is very difficult.

20 © 2018 Arm Limited q rm

The first solution worked well enough

* Not many commits into Arm related areas => Not many merge conflicts
* Not many optimization works => No need to automate manual tasks

* Not many embedded benchmarks => Not many regressions

21 © 2018 Arm Limited a rm

But...

22 © 2018 Arm Limited a rm

Increased upstream development activity (100+ commits per
day) => More merge conflicts

23 © 2018 Arm Limited a rm

Complex merge conflicts => Merges were blocked for days =>
Delayed benchmarking => A snowball effect

24 © 2018 Arm Limited a rm

Any building infrastructure instabilities => No toolchain =>
Delayed benchmarking

25 © 2018 Arm Limited a rm

More benchmarking configurations => More regressions

26 © 2018 Arm Limited a rm

At the end of 2016 our solution stopped working...

Engineers might spend a week on bisecting regression. Then it was too late to report.

This resulted a lot of internal regression reports (50+) to be created but nothing was
investigated and reported upstream.

27 © 2018 Arm Limited a rm

We wanted to have fun but the benchmarking was a real
pain in a the neck.

28 © 2018 Arm Limited a rm

The Optimization Team

The team responsible for benchmarking and for implementing optimizations.

2 engineers (inc. a team lead): only benchmarking related tasks, no optimization tasks.
3 engineers (inc. a team lead): some optimization tasks.

4 engineers (inc. a team lead): capable to deliver great results.

29 © 2018 Arm Limited a rm

Problem #1: regressions

e Solution: Continuous Integration

30 © 2018 Arm Limited a rm

Continuous Integration

* |In software engineering, continuous integration (Cl) is the practice of merging all
developer working copies to a shared mainline several times a day.

« https://en.wikipedia.org/wiki/Continuous integration

31 © 2018 Arm Limited a rm

https://en.wikipedia.org/wiki/Continuous_integration

New Upstream <> Downstream schema

No
Any . .
unresolved Create a I.|st Is the “it I\/Ierge'a Is it failed?
conflicts? of commits empty: commit
Push the Push the failed to
merge result to Gerrit for manual
downstream resolution

32 © 2018 Arm Limited q rm

New Upstream <> Downstream schema

It is implemented as Jenkins’ job
and is run every 30 minutes.

33 © 2018 Arm Limited q rm

New Upstream <> Downstream schema

Commits are sorted by date to

solve a multirepo problem

34 © 2018 Arm Limited

Create a list
of commits

arm

New Upstream <> Downstream schema

Push the
merge result to
downstream

If the result is not empty, the
push triggers building armclang
in Jenkins.

35 © 2018 Arm Limited q rm

New Upstream <> Downstream schema

Push the failed to
Gerrit for manual
resolution

A conflict is annotated with 3-
way conflict markers to help an
engineer to resolve it.

36 © 2018 Arm Limited q rm

Results

37

UpStream | - | | I I |]] Clonllmll‘tS]] | - |] | - |]
LI L I | L I | L I | L I | L I
DownStreqml | I I I I 1 L1 1 | - |] | - |] | - |]
LI L I | L I | L I I | L I I | L I

m01 mO02 mO03 Downstream only commits

On average, a merge contains 2-3 upstream commits.

On average, bisecting time reduced from a day to a few hours. We still need to build

armclang per commit.
Most of merge conflicts are easy to resolve.

© 2018 Arm Limited

arm

But we still...

* Did a lot of manual building.

* Did manual bisecting.

* Found that more hardware needed for regression analysis and benchmarking.
* Found hardware dependent regressions.

38 © 2018 Arm Limited a rm

Build cache

* Our build cache is built on Artifactory.

39 © 2018 Arm Limited a rm

Regression tracking system

N
Auto-merge job
J
A 4
N
Cl job Armclang
binaries

[Jenkins]7

Build

cache

Auto-bisecting job

Benchmarking

S IR B

jobs Results VL LNT server]

40 © 2018 Arm Limited a rm

Regression tracking system

On Cortex-R/M benchmarks
are noiseless.

[Auto-bisecting job]

41 © 2018 Arm Limited a rm

Hardware (bare-metal boards)

* The process of initialization can take more time than an actual benchmark run.

42 © 2018 Arm Limited a rm

Hardware (bare-metal boards)

* We use performance simulators where it is possible.

* We moved from vendor-specific boards to FPGA boards.

43 © 2018 Arm Limited a rm

Benchmarking
system

/\

Cortex-A] [Cortex-R/M

benchmarking benchmarking

upstream sources downstream sources
4 N
Cl(BuildBot) + || Cl(Jenkins) + auto-
manual bisecting bisecting
. J
(Toolchain full)
— overnight
. benchmarking)

44 © 2018 Arm Limited q rm

Dealing regressions

e Time is your enemy. ®
* A good report is the key. Focus on creating a reproducer.
e Can be a workaround/downstream patch on a branch but not on the trunk.

45 © 2018 Arm Limited a rm

Preventing regressions

* Be part of the community.
« Monitor llvm mailing lists
« Help with assessing impact
—But we always don’t have time ®.

* Open question: how to automate?

46 © 2018 Arm Limited a rm

Future works

e Unify our systems
e Public build cache

47 © 2018 Arm Limited a rm

Future works

e Unify our systems
e Public build cache

48 © 2018 Arm Limited a rm

Public build cache

° o

Arm AArch32 native build
server (Buildbot slave)

LLVM source control LLVM community build R
repository server (Buildbot master)
— \/ — Google Cloud Storage
Arm AArch64 native build

server (Buildbot slave) 1
Works on Arm
Infrastructure

49 © 2018 Arm Limited a rm

Questions

50 © 2018 Arm Limited a rm

The Arm trademarks featured in this presentation are registered trademarks or
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All
rights reserved. All other marks featured may be trademarks of their respective
owners.

www.arm.com/company/policies/trademarks

51 2018 Arm Limited

