
© 2018 Arm Limited

Organising benchmarking
LLVM-based compiler:

Arm experience
• Evgeny Astigeevich

• LLVM Dev Meeting April 2018

2 © 2018 Arm Limited

Terminology

• Upstream: everything on llvm.org side.
• Downstream: everything on your side.
• Benchmarking a compiler: part of QA process where compiler quality requirements,

such as generated code performance, code size, compilation time and others, are
verified.

• Bisecting a regression: a process of identifying commits caused the regression.
• Bare-metal application: an application which runs without OS supporting it.
• OS-hosted application: an application which needs OS to run.

3 © 2018 Arm Limited

Benchmarking a compiler: get answers to

• Do my changes affect the compiler?
• Is the compiler improving?
• What caused regressions/improvements?

4 © 2018 Arm Limited

What is ARM Compiler 6?

• Toolchain for development of bare-metal applications
• C/C++ and GNU assembly compiler based on Clang/LLVM (armclang)
• Assembler for legacy Arm-syntax assembly
• Linker
• C++ libraries based on LLVM libc++
• C libraries
• ARM librarian (armar)
• ARM image conversion utility (fromelf)

5 © 2018 Arm Limited

Why did we base our compiler on LLVM?

6 © 2018 Arm Limited

Why did we base our compiler on LLVM?

7 © 2018 Arm Limited

Cortex-A vs Cortex-R vs Cortex-M

8 © 2018 Arm Limited

ARM Compiler product requirements

• Good quality of Cortex-A/R/M code.
• No significant regressions in releases.

9 © 2018 Arm Limited

The benchmarking process highly depends on how an
interaction between upstream and downstream is
organized.

10 © 2018 Arm Limited

Avoiding merge conflicts

We do development upstream as much as possible.
The rough difference is ~20-50K SLOC.

11 © 2018 Arm Limited

Benchmarking Cortex-A code

• Cortex-A can run Linux => More benchmarks can be run

• Benchmarks are CPU-oriented => OS-hosted benchmarking can be used

• Llvm.org already has a working solution: BuildBot + LNT client/server tools

12 © 2018 Arm Limited

lnt.llvm.org

13 © 2018 Arm Limited

Internal LNT

• The infrastructure is similar to llvm.org infrastructure: BuildBot, LNT client/server tools.

• LNT provides all needed benchmarking functionality out-of-the-box.

• The internal LNT works with upstream Clang/LLVM repositories to get bisecting
working.

BuildBot

Benchmarking

bots

Build

cache

LNT server

BinariesCI bot

Results

14 © 2018 Arm Limited

Benchmarking Cortex-A code

• We use the internal and upstream LNTs to analyze significance of regressions.

15 © 2018 Arm Limited

Benchmarking Cortex-R/M bare-metal code

16 © 2018 Arm Limited

Daily Upstream ó Downstream synchronization

At 6:30am update
upstream copy,
build and test

Manually
resolve issues

All
Passed

No

Merge to
downstream

Yes

No
Passed

Yes
End

6:30am was chosen
because of the
lowest development
activity in upstream.

17 © 2018 Arm Limited

Repositories status

• Toolchain builds: b01, b02, b03.

Upstream

Downstream

Commits

Merge

b01 b02 b03

18 © 2018 Arm Limited

Product building

Build testable
toolchain

Run
benchmarks

Submit results
to database

Compare
results

Nightly downstream benchmarking

19 © 2018 Arm Limited

“What caused regressions/improvements?”

• Manual bisecting:
• An upstream commit needed to be merged to downstream. Not always possible.
• Compiler binaries needed to be built per a merge. Not always possible.

Upstream

Downstream

Commits

Merge

b01 b02 b03

20 © 2018 Arm Limited

The first solution: summary

• Pros:
• Very simple to implement.
• Upstream CI guards you from “bad” commits.
• Merge conflicts are resolved when upstream is less active.
• Nightly toolchain builds are based on a “stable” upstream trunk revision.

• Cons
• No CI. Testing and benchmarking is started after the full toolchain is built.
• Downstream benchmarking results are always outdated.
• Complex merge conflicts can take more than one day and block synchronization.
• Bisecting is very difficult.

21 © 2018 Arm Limited

The first solution worked well enough

• Not many commits into Arm related areas => Not many merge conflicts
• Not many optimization works => No need to automate manual tasks
• Not many embedded benchmarks => Not many regressions

22 © 2018 Arm Limited

But…

23 © 2018 Arm Limited

Increased upstream development activity (100+ commits per
day) => More merge conflicts

24 © 2018 Arm Limited

Complex merge conflicts => Merges were blocked for days =>
Delayed benchmarking => A snowball effect

25 © 2018 Arm Limited

Any building infrastructure instabilities => No toolchain =>
Delayed benchmarking

26 © 2018 Arm Limited

More benchmarking configurations => More regressions

27 © 2018 Arm Limited

At the end of 2016 our solution stopped working…

Engineers might spend a week on bisecting regression. Then it was too late to report.

This resulted a lot of internal regression reports (50+) to be created but nothing was
investigated and reported upstream.

28 © 2018 Arm Limited

We wanted to have fun but the benchmarking was a real
pain in a the neck.

29 © 2018 Arm Limited

The Optimization Team

• The team responsible for benchmarking and for implementing optimizations.
• 2 engineers (inc. a team lead): only benchmarking related tasks, no optimization tasks.
• 3 engineers (inc. a team lead): some optimization tasks.
• 4 engineers (inc. a team lead): capable to deliver great results.

30 © 2018 Arm Limited

Problem #1: regressions

• Solution: Continuous Integration

31 © 2018 Arm Limited

Continuous Integration

• In software engineering, continuous integration (CI) is the practice of merging all
developer working copies to a shared mainline several times a day.

• https://en.wikipedia.org/wiki/Continuous_integration

https://en.wikipedia.org/wiki/Continuous_integration

32 © 2018 Arm Limited

New Upstream ó Downstream schema

Create a list
of commits

Any
unresolved
conflicts?

End

Merge a
commit

Yes

No

Yes

End

Is the list
empty?

No
Is it failed?

Push the failed to
Gerrit for manual

resolution

No

Push the
merge result to

downstream

Yes

33 © 2018 Arm Limited

New Upstream ó Downstream schema

Create a list
of commits

Any
unresolved
conflicts?

End

Merge a
commit

Yes

No

Yes

End

Is the list
empty?

No
Is it failed?

Push the failed to
Gerrit for manual

resolution

No

Push the
merge result to

downstream

Yes

It is implemented as Jenkins’ job
and is run every 30 minutes.

34 © 2018 Arm Limited

New Upstream ó Downstream schema

Create a list
of commits

Any
unresolved
conflicts?

End

Merge a
commit

Yes

No

Yes

End

Is the list
empty?

No
Is it failed?

Push the failed to
Gerrit for manual

resolution

No

Push the
merge result to

downstream

Yes

Commits are sorted by date to
solve a multirepo problem

35 © 2018 Arm Limited

New Upstream ó Downstream schema

Create a list

of commits

Any

unresolved

conflicts?

End

Merge a

commit

Yes

No

Yes

End

Is the list

empty?

No
Is it failed?

Push the failed to

Gerrit for manual

resolution

No

Push the

merge result to

downstream

Yes

If the result is not empty, the

push triggers building armclang

in Jenkins.

36 © 2018 Arm Limited

New Upstream ó Downstream schema

Create a list

of commits

Any

unresolved

conflicts?

End

Merge a

commit

Yes

No

Yes

End

Is the list

empty?

No
Is it failed?

Push the failed to

Gerrit for manual

resolution

No

Push the

merge result to

downstream

Yes

A conflict is annotated with 3-
way conflict markers to help an
engineer to resolve it.

37 © 2018 Arm Limited

Results

• On average, a merge contains 2-3 upstream commits.
• On average, bisecting time reduced from a day to a few hours. We still need to build

armclang per commit.
• Most of merge conflicts are easy to resolve.

Upstream Commits

Downstream

m01 m02 m03 Downstream only commits

38 © 2018 Arm Limited

But we still…

• Did a lot of manual building.
• Did manual bisecting.
• Found that more hardware needed for regression analysis and benchmarking.
• Found hardware dependent regressions.

39 © 2018 Arm Limited

Build cache

• Our build cache is built on Artifactory.

40 © 2018 Arm Limited

Jenkins

Benchmarking
jobs

Build
cache

LNT server

Armclang
binaries

CI job

Results

Auto-bisecting job

Regression tracking system
Auto-merge job

41 © 2018 Arm Limited

Jenkins

Benchmarking
jobs

Build

cache

LNT server

Armclang
binaries

CI job

Results

Auto-bisecting job

Regression tracking system
Auto-merge job On Cortex-R/M benchmarks

are noiseless.

42 © 2018 Arm Limited

Hardware (bare-metal boards)

• The process of initialization can take more time than an actual benchmark run.

43 © 2018 Arm Limited

Hardware (bare-metal boards)

• We use performance simulators where it is possible.
• We moved from vendor-specific boards to FPGA boards.

44 © 2018 Arm Limited

Benchmarking
system

Cortex-A
benchmarking

Cortex-R/M
benchmarking

CI(BuildBot) +
manual bisecting

upstream sources

CI(Jenkins) + auto-
bisecting

Toolchain full
overnight

benchmarking

downstream sources

45 © 2018 Arm Limited

Dealing regressions

• Time is your enemy. L
• A good report is the key. Focus on creating a reproducer.
• Can be a workaround/downstream patch on a branch but not on the trunk.

46 © 2018 Arm Limited

Preventing regressions

• Be part of the community.
• Monitor llvm mailing lists
• Help with assessing impact

– But we always don’t have time L.

• Open question: how to automate?

47 © 2018 Arm Limited

Future works

• Unify our systems
• Public build cache

48 © 2018 Arm Limited

Future works

• Unify our systems
• Public build cache

49 © 2018 Arm Limited

Public build cache

50 © 2018 Arm Limited

Questions

5151

The Arm trademarks featured in this presentation are registered trademarks or
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All
rights reserved. All other marks featured may be trademarks of their respective
owners.

www.arm.com/company/policies/trademarks

© 2018 Arm Limited

