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Organising benchmarking 
LLVM-based compiler: 

Arm experience
• Evgeny Astigeevich

• LLVM Dev Meeting April 2018
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Terminology

• Upstream: everything on llvm.org side. 
• Downstream: everything on your side.
• Benchmarking a compiler: part of QA process where compiler quality requirements, 

such as generated code performance, code size, compilation time and others, are 
verified.

• Bisecting a regression: a process of identifying commits caused the regression.
• Bare-metal application: an application which runs without OS supporting it.
• OS-hosted application: an application which needs OS to run.
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Benchmarking a compiler: get answers to

• Do my changes affect the compiler?
• Is the compiler improving?
• What caused regressions/improvements?
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What is ARM Compiler 6?

• Toolchain for development of bare-metal applications
• C/C++ and GNU assembly compiler based on Clang/LLVM (armclang)
• Assembler for legacy Arm-syntax assembly
• Linker
• C++ libraries based on LLVM libc++
• C libraries
• ARM librarian (armar)
• ARM image conversion utility (fromelf)
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Why did we base our compiler on LLVM?
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Why did we base our compiler on LLVM?



7 © 2018 Arm Limited 

Cortex-A vs Cortex-R vs Cortex-M
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ARM Compiler product requirements

• Good quality of Cortex-A/R/M code.
• No significant regressions in releases.
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The benchmarking process highly depends on how an 
interaction between upstream and downstream is 
organized.
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Avoiding merge conflicts

We do development upstream as much as possible.
The rough difference is ~20-50K SLOC.
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Benchmarking Cortex-A code

• Cortex-A can run Linux => More benchmarks can be run

• Benchmarks are CPU-oriented => OS-hosted benchmarking can be used

• Llvm.org already has a working solution: BuildBot + LNT client/server tools
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lnt.llvm.org
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Internal LNT

• The infrastructure is similar to llvm.org infrastructure: BuildBot, LNT client/server tools.

• LNT provides all needed benchmarking functionality out-of-the-box.

• The internal LNT works with upstream Clang/LLVM repositories to get bisecting 
working.

BuildBot

Benchmarking

bots

Build

cache

LNT server

BinariesCI bot

Results
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Benchmarking Cortex-A code

• We use the internal and upstream LNTs to analyze significance of regressions.  
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Benchmarking Cortex-R/M bare-metal code
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Daily Upstream ó Downstream synchronization

At 6:30am update 
upstream copy, 
build and test

Manually 
resolve issues

All 
Passed

No

Merge to 
downstream

Yes

No
Passed

Yes
End

6:30am was chosen 
because of the 
lowest development 
activity in upstream.
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Repositories status

• Toolchain builds: b01, b02, b03.

Upstream

Downstream

Commits

Merge

b01 b02 b03
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Product building

Build testable 
toolchain

Run 
benchmarks

Submit results 
to database

Compare 
results

Nightly downstream benchmarking
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“What caused regressions/improvements?”

• Manual bisecting:
• An upstream commit needed to be merged to downstream. Not always possible.
• Compiler binaries needed to be built per a merge. Not always possible.

Upstream

Downstream

Commits

Merge

b01 b02 b03
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The first solution: summary

• Pros:
• Very simple to implement.
• Upstream CI guards you from “bad” commits.
• Merge conflicts are resolved when upstream is less active.
• Nightly toolchain builds are based on a “stable” upstream trunk revision.

• Cons
• No CI. Testing and benchmarking is started after the full toolchain is built.
• Downstream benchmarking results are always outdated.
• Complex merge conflicts can take more than one day and block synchronization.
• Bisecting is very difficult.
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The first solution worked well enough

• Not many commits into Arm related areas => Not many merge conflicts 
• Not many optimization works => No need to automate manual tasks
• Not many embedded benchmarks => Not many regressions
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But…
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Increased upstream development activity (100+ commits per 
day) => More merge conflicts
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Complex merge conflicts => Merges were blocked for days => 
Delayed benchmarking => A snowball effect
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Any building infrastructure instabilities => No toolchain => 
Delayed benchmarking
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More benchmarking configurations => More regressions
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At the end of 2016 our solution stopped working…

Engineers might spend a week on bisecting regression. Then it was too late to report.

This resulted a lot of internal regression reports (50+) to be created but nothing was 
investigated and reported upstream. 
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We wanted to have fun but the benchmarking was a real 
pain in a the neck.
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The Optimization Team

• The team responsible for benchmarking and for implementing optimizations.
• 2 engineers (inc. a team lead): only benchmarking related tasks, no optimization tasks.
• 3 engineers (inc. a team lead): some optimization tasks.
• 4 engineers (inc. a team lead): capable to deliver great results.
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Problem #1: regressions

• Solution: Continuous Integration
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Continuous Integration

• In software engineering, continuous integration (CI) is the practice of merging all 
developer working copies to a shared mainline several times a day.

• https://en.wikipedia.org/wiki/Continuous_integration

https://en.wikipedia.org/wiki/Continuous_integration
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New Upstream ó Downstream schema

Create a list 
of commits

Any 
unresolved 
conflicts?

End

Merge a 
commit

Yes

No

Yes

End

Is the list 
empty?

No
Is it failed?

Push the failed to 
Gerrit for manual 

resolution

No

Push the 
merge result to 

downstream

Yes
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New Upstream ó Downstream schema

Create a list 
of commits

Any 
unresolved 
conflicts?

End

Merge a 
commit

Yes

No

Yes

End

Is the list 
empty?

No
Is it failed?

Push the failed to 
Gerrit for manual 

resolution

No

Push the 
merge result to 

downstream

Yes

It is implemented as Jenkins’ job 
and is run every 30 minutes.
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New Upstream ó Downstream schema

Create a list 
of commits

Any 
unresolved 
conflicts?

End

Merge a 
commit

Yes

No

Yes

End

Is the list 
empty?

No
Is it failed?

Push the failed to 
Gerrit for manual 

resolution

No

Push the 
merge result to 

downstream

Yes

Commits are sorted by date to 
solve a multirepo problem
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New Upstream ó Downstream schema

Create a list 

of commits

Any 

unresolved 

conflicts?

End

Merge a 

commit

Yes

No

Yes

End

Is the list 

empty?

No
Is it failed?

Push the failed to 

Gerrit for manual 

resolution

No

Push the 

merge result to 

downstream

Yes

If the result is not empty, the 

push triggers building armclang

in Jenkins.
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New Upstream ó Downstream schema

Create a list 

of commits

Any 

unresolved 

conflicts?

End

Merge a 

commit

Yes

No

Yes

End

Is the list 

empty?

No
Is it failed?

Push the failed to 

Gerrit for manual 

resolution

No

Push the 

merge result to 

downstream

Yes

A conflict is annotated with 3-
way conflict markers to help an 
engineer to resolve it.
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Results

• On average, a merge contains 2-3 upstream commits.
• On average, bisecting time reduced from a day to a few hours. We still need to build 

armclang per commit.
• Most of merge conflicts are easy to resolve. 

Upstream Commits

Downstream

m01 m02 m03 Downstream only commits
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But we still…

• Did a lot of manual building.
• Did manual bisecting.
• Found that more hardware needed for regression analysis and benchmarking.
• Found hardware dependent regressions.
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Build cache

• Our build cache is built on Artifactory.
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Jenkins

Benchmarking
jobs

Build
cache

LNT server

Armclang
binaries

CI job

Results

Auto-bisecting job

Regression tracking system
Auto-merge job
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Jenkins

Benchmarking
jobs

Build

cache

LNT server

Armclang
binaries

CI job

Results

Auto-bisecting job

Regression tracking system
Auto-merge job On Cortex-R/M benchmarks

are noiseless. 
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Hardware (bare-metal boards)

• The process of initialization can take more time than an actual benchmark run.
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Hardware (bare-metal boards)

• We use performance simulators where it is possible.
• We moved from vendor-specific boards to FPGA boards.
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Benchmarking 
system

Cortex-A 
benchmarking

Cortex-R/M 
benchmarking

CI(BuildBot) + 
manual bisecting

upstream sources

CI(Jenkins) + auto-
bisecting

Toolchain full 
overnight

benchmarking

downstream sources
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Dealing regressions

• Time is your enemy. L
• A good report is the key. Focus on creating a reproducer.
• Can be a workaround/downstream patch on a branch but not on the trunk.
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Preventing regressions

• Be part of the community.
• Monitor llvm mailing lists
• Help with assessing impact

– But we always don’t have time L.

• Open question: how to automate?
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Future works

• Unify our systems
• Public build cache
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Future works

• Unify our systems
• Public build cache
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Public build cache
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Questions
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