
Automatic Profiling for Climate Modeling
Anja Gerbes1, Nabeeh Jumah2, Julian Kunkel3

1Center for Scientific Computing (CSC) 2Universität Hamburg 3Deutsches Klimarechenzentrum (DKRZ)

ABSTRACT
Some applications are time consuming like climate modeling, which include lengthy simulations.
Hence, coding is sensitive for performance. Spending more time on optimization of specific code
parts can improve total performance. Profiling an application is a well-known technique to do that.

Many tools are available for developers to get performance information about their code. With our
provided python package Performance Analysis and Source-Code Instrumentation Toolsuite (PASCIT) is
an automatic instrumentation of an user’s source code possible. Developers mark the parts that they
need performance information about.

We present an effort to profile climate modeling codes with two alternative methods.

• usage of GGDML translation tool to mark directly the computational kernels of an application for
profiling.

• usage of GGDML translation tool to generate a serial code in a first step and then use LLVM/Clang
to instrument some code parts with a profiler’s directives.

The resulting codes are profiled with the LIKWID profiler. Alternatively, we use perf and OProfile’s
ocount & operf to measure hardware characteristics. The performance report with a visualization of
the measured hardware performance counters in generating Radar Charts, Latex Tables, Box Plots are
interesting for scientist to understand the bottlenecks of their codes.

INTRODUCTION
• Code profiling helps in identifying algorithmic bottlenecks, so called hot spots.

• Hot spots are code regions which take the most execution time, the most common source are loops.

• An example of such time consuming loops are computational kernels in climate modeling.

• These stencil computational kernels are in general memory-bound.

• Identifying which parts of the code are responsible for the critical hot spots is important, making a
hot spot faster can have a big pay-off.

• In a previous work Intelligent selection of compiler options to optimize compile time and performance, we
presented an effort in which we explored the compilation process.

– Different combinations of optimization flags of a compiler including processor-specific flags

– Provided optimized compilation time and maintained the application performance

– Automatic detection of compiler flags for performance optimization

• In the current work, we prepare the subject application for profiling with LIKWID.

– Automatic instrumentation and profiling of scientific code

– Two different methods are used to prepare the code for profiling

– A comparison of the profiling results with the two methods is made

METHODOLOGY
• A simple test climate model application is written in C language with GGDML extensions.

• GGDML source-to-source translation tool transforms the code into two different code versions:

– A code that is prepared with OpenMP pragmas & LIKWID markers, which is ready to be profiled.

– A serial code without profiling markers & multithreading pragmas, which has to be marked with
LLVM/Clang.

• The resulting two code versions are profiled with LIKWID, and the results are compared.

GGDML TRANSLATION

• General Grid Definition & Manipulation Lan-
guage (GGDML) source-to-source translation
tool of AIMES Project is a higher-level set of
language extensions to support earth system
modeling.

• It allows to develop models from the scientific
perspective, not machines perspective.

• Applications developed with GGDML need to
be translated with a special translation tool.

• The translation process is highly flexible.

• This allows us

– to configure the process to parallelize the
code with OpenMP.

– to mark the code for LIKWID to make it
ready for profiling.

– to generate serial code to be processed by
Clang for profiling.

CLANG TOOLING
• The interesting thing in using Clang is to modify the Abstract Syntax Tree (AST) on-the-fly to use

the toolsuite for performance analysis and source-code instrumentation.

• The structure of the AST is representing the logical structure of a source code, because an AST
contains the stored position information of every element in this code.

• By reimplementing the RecursiveASTVisitor template class, we can specify which AST nodes we
are interested in by overriding relevant methods.

• The visitor design pattern can be used to reach every node of the tree and perform some action
when the process comes to a given type of nodes.

TEST APPLICATION

• An Atmospheric/Climate modeling code.

• It runs iteratively in multiple time-steps.

• It executes different model components.

• Components execute a variety of kernels.

• Kernels apply stencil operations to compute a
variables’ values over the grid.

• Those kernels are compute intensive codes.

• The application’s performance is determined
by the performance of those kernels.

• Kernels exploit parallel execution capabilities
of the processors using OpenMP.

• Test code targets triangular icosahedral grid.

• The model variables are measured/computed
at the cell centers or on the edges of the cells.

cell

edge

vertex

Triangular grid

PROFILER

• CPU Profiling is necessary to understand CPU
usage quickly and completely

• Perf, Oprofile and LIKWID are a performance
measurement and profiling system to identify
and analyze the hot spots.

• Perf, Oprofile and LIKWID follows the UNIX
design philosophy of „one task, one tool“.

• Typical questions during performance analysis:

– Which parts of the program take the most ex-
ecution time?

– Do the number of software or hardware
events indicate an actual performance issue
to be fixed?

– How can we fix the performance issue?

• LIKWID is not build on top of the Linux perf
interface; this allows LIKWID to provide full
support for new architectures quick and inde-
pendent from special kernel versions.

• LIKWID supports hardware based events and
metrics to each hardware counter, this is more
than just CPU clock cycles.

• Compared LIKWID to Oprofile

– Oprofile does not require any special compi-
lation flags, or even recompiled code.

– Oprofile supports less counters.

– Oprofile & LIKWID supports multi-threaded
code.

– Oprofile & LIKWID sees all processes and
will find bottlenecks in other places.

– Oprofile & LIKWID requires kernel support.

ANALYSIS TOOLSUITE

Yes

No

select further select

values

Results

visualize

execute

command

?

Measurements- Profiler

start

Measurement

finish

Analysis

finish
Measurement

start

Analysis

measured

Profiler

select

Option
Compiler

GGDML

GGDML

select
method

Performance Analysis Evaluation

Configuration Transformation Compiling

- Output

code instrumentation
likwid directives

OpenMP pragmas

generate

serial code

Clang

Our provided analysis toolsuite
is named PASCIT and run the
following steps, depending on
which method was chosen:

Steps of Clang Method:

1. Generate serial code
using GGDML method

2. Global search & replace on
a bunch of C++ files

3. Renaming the file, which is
using for Source-to-Source-
Instrumentation

4. Modify the makefile

5. Build the makefile

6. Instrument the C++ code

Steps of GGDML Method:

1. Parse GGDML-based kernels into an AST

2. Apply some optimization procedures

3. Generate serial code for Clang method

4. Instrument the kernels

5. Translation of DSL enriched code to pure
host language

Performance Analysis & Evaluation Step:

1. Compile instrumented code

2. Profile code

3. Generating output file

• Profiler’s Output ⇒ CSV ⇒ Slices
⇒ Radar Chart | Latex Table | Box Plots
| Rose Diagram | CSV | JSON

RESULTS

Fig. 1: Radar Charts

Experimental Setup
Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz
Ubuntu 17.10, Compiler (gcc-6, clang-3.9)
Profiler (Likwid-4.3.1, Oprofile-1.1.0, Perf-4.4.98)

Successful automatic instrumentation & profiling

Table 1: Hardware Counter lap

INSTR_RETIRED_ANY 18266880
CPU_CLK_UNHALTED_CORE 6323082
CPU_CLK_UNHALTED_REF 5245592
MEM_INST_RETIRED_ALL 7647261
MEM_INST_RETIRED_ALL_LOADS 7247121
MEM_INST_RETIRED_ALL_STORES 428434
L2_TRANS_ALL_REQUESTS 131287
BR_INST_RETIRED_ALL_BRANCHES 205629

CONCLUSION
• Both tools were successful in marking the

code for profiling.

– GGDML source-to-source translation tool
based on higher semantics of the language
extensions.

– Clang source-to-source instrumentation
tool based on the clang node type.

• The two methods could be used for collecting
profiling information.

FUTURE WORK
• Automatic identification of bottlenecks

• Identification of HPC code patterns suitable
for optimization

• Optimization of LLVM translation for HPC
relevant patterns

• Compiler-level optimization of typical HPC
code structures

• PASCIT’s functionality as a black box for other
scientific application domains

• Extension of python package PASCIT

• Support more types of AST nodes

ACKNOWLEDGEMENTS
This work was supported in part by the German
Research Foundation (DFG) through the Priority
Programme 1648 “Software for Exascale Com-
puting” (SPPEXA) (GZ: LU 1353/11-1).

