
Using LLVM in a

Model Checking Workflow

Gyula Sallai

2018 European LLVM Developers Meeting

Introduction

3

Motivation

 Embedded software systems

o Usually written in C

 Confidence in correctness?

Formal
model

Formal
property

Model checking

OK Counterexample

¬(Red ∧ Green)

4

Software model checking

 Automatic transformation from source code

 Model checking is computationally hard

o Undecidable in general

oModel size/complexity must be reduced

Program model
erroneous state
not reachable

Model checking

OK Counterexample

C code

5

LLVM for model checking

 LLVM IR as a language frontend?

o Language-agnostic

o Optimization infrastructure

 Using LLVM IR for model checking

Formal
model

Verification
backend

theta framework1

C

C++

…

LLVM IR

optimizations

1https://github.com/ftsrg/theta

https://github.com/ftsrg/theta

Transformation to formal models

7

Formal model for computer programs

 Control flow automata (CFA)

 error: failing assertions

int i = 0;
int sum = 0;
while (i < 11) {

sum = sum + i;
i = i + 1;

}
assert(i == 11);

8

LLVM IR to formal models

 Gap between the IR and formal models

o Designed for compilation designed for theorem provers

 LLVM IR has more expressive power

o SSA, ϕ-nodes transformation rules

o Pointers theory of arrays, integer addresses

o Global variables promotion to locals

o Procedure calls function inlining

9

LLVM IR to formal models
9

bb0:
x0 = call read()

br(incr, bb1, bb2)

bb1:
x1 = x0 + 1

bb2:
x2 = x0 - 1

bb3:
x4 = ϕ({x1, bb1}, {x2, bb2})

...

1

2

havoc x0

assume not incrassume incr

3

4

x1 := x0 + 1

5

6

x2 := x0 - 1

x4 := x2

7

x4 := x1

CFG CFA

Optimization algorithms

11

Optimizations

 Need to be configurable

 Optimizations in LLVM

o Constant propagation, dead code elimination

o Function inlining

 Other transformations

o Global variables to locals

o Program slicing

12

Program slicing

 Slice: subprogram, which produces the same output and

assigns the same values to a set of variables as the original

program.

0: int i = 0;
1: int x = 0;
2: while (i < 11) {
3: x = x + i;
4: i = i + 1;

}
5: assert(i != 0);

0: int i = 0;
1: int x = 0;
2: while (i < 11) {
3: x = x + i;
4: i = i + 1;

}
5: assert(i != 0);

Criterion: value of i at statement 5

Evaluation

14

Evaluation

 SV-Comp: Competition on Software Verification1

o Verification tasks written in C

 Program categories

o locks: locking mechanisms

o eca: event-driven systems

o ssh: ssh protocol

1 https://sv-comp.sosy-lab.org/2016/

https://sv-comp.sosy-lab.org/2016/

16

Evaluation

Model Vars Locs VarsOpt LocsOpt #Slice VarSlice LocsSlice

locks10 55 236 52 231 10 5.5 27

locks14 75 324 72 319 14 5.5 26.5

eca1 1104 2937 976 2870 1 614 1908

eca2 1040 2854 892 2778 1 590 1936

eca3 3269 10719 2781 10325 1 2408 9050

ssh1 196 693 174 648 1 109 394

Many small slices

Some reduction with
optimizations, more with

slicing

Significant reduction

*Opt: with optimizations
*Slice: with slicing

17

Summary

 Software model checking

 LLVM IR-based model checking

o Transformation to formal models

o Configurable optimizations

o Program slicing

 Future work

o Improved pointer support

o New slicing methods (heuristics...)

CFA
error is not
reachable

Model checking

OK Counterexample

C code

