Using LLVM in a
Model Checking Workflow

Gyula Sallai

2018 European LLVM Developers Meeting




Introduction



= Embedded software systems
o Usually written in C

= Confidence in correctness? l ~(Red A Green) |
Formal
model

property
Model checking g
o
3

Formal




Software model checking

= Automatic transformation from source code

erroneous state

Program model
& not reachable

Model checking

ok

= Model checking is computationally hard
o Undecidable in general
o Model size/complexity must be reduced




LLVM for model checking

= LLVM IR as a language frontend?
o Language-agnostic
o Optimization infrastructure

= Using LLVM IR for model checking

theta framework?

LLVM IR ‘

optimizations

lhttps://github.com/ftsrg/theta

Formal
model

Verification
backend



https://github.com/ftsrg/theta

Transformation to formal models



Formal model for computer programs

= Control flow automata (CFA)

int 1 = 0;

int sum = 9;

while (i < 11) {
sum = sum + 1i;
i=14+ 1;

}

assert(i == 11);

= error: failing assertions




LLVM IR to formal models

= Gap between the IR and formal models
o Designed for compilation < designhed for theorem provers

= LLVM IR has more expressive power
o SSA, @-nodes = transformation rules
o Pointers - theory of arrays, integer addresses
o Global variables > promotion to locals
o Procedure calls - function inlining



LLVM IR to formal models

CFG CFA
l

bbo:
Xy = call read()
br(incr, bbl, bb2)

/\ assume not incr

bbl: bb2:
X, = Xg + 1 X, = Xg - 1
\/ " e
bb3: = X,

X, = @({xy, bbl}, {x,, bb2})




Optimization algorithms



Optimizations

= Need to be configurable

= Optimizations in LLVM
o Constant propagation, dead code elimination
o Function inlining

= Other transformations
o Global variables to locals
o Program slicing

11



Program slicing

= Slice: subprogram, which produces the same output and
assigns the same values to a set of variables as the original
program.

0: int 1 = ©; @: int 1 = O;
1: int x = 9;
2: while (i < 11) { 2: while (i < 11) {
3: X = X + 1;
4: i=1+ 1; 4: i =1+ 1;
} }
5: assert(i != 0); 5: assert(i != 0);

12






= SV-Comp: Competition on Software Verification’
o Verification tasks written in C

= Program categories
o locks: locking mechanisms
o eca: event-driven systems
o ssh: ssh protocol

L https://sv-comp.sosy-lab.org/2016/

14


https://sv-comp.sosy-lab.org/2016/

*Opt: with optimizations
*Slice: with slicing

MM

Many small slices J
locks10 55 236 52 231

locks14 75 324

72 319

Some reduction with
optimizations, more with
slicing

ecal 1104 2937

eca2 1040 2854

eca3 3269 10719 Significant reduction ]

sshi 196 693 174 648 1 109 394

16



= Software model checking

= LLVM IR-based model checking

o Transformation to formal models
o Configurable optimizations
o Program slicing

= Future work
o Improved pointer support o ne 1 -

2: while (i < 11) {

o New slicing methods (heuristics...)




