Prateting The e
S Control-flow Enforcement Technology ™

Ciren Benita Ben Simhon Monday, April 16, 278

ROP Attack

Manipulating The Stack

Defenses Against ROP/JOP/COP Attacks

ol -tlow Enforcement Techmologs

T Pratecton #1 Shadow Stack

Protecting From ROP and Beturn Address Corruption On Stack

Pratefion #2: IndirectBranch Tracking

Protecting From JOP and COP Attacks

Prateting The e
S Control-flow Enforcement Technology ™

Ciren Benita Ben Simhon Monday, April 16, 278

ROP Attack

Manipulating The Stack

Defenses Against ROP/JOP/COP Attacks

ol -tlow Enforcement Techmologs

T Pratecton #1 Shadow Stack

Protecting From ROP and Beturn Address Corruption On Stack

Pratefion #2: IndirectBranch Tracking

Protecting From JOP and COP Attacks

Profecting The Code

B Control-fow Enforcement Technology 8

Oren Benita Ben Simhon Monday, April 16, 2018

[
Motivation &
Overview

ROP Attack

Manipulating The Stack

void functionE()
{

}
[
#| void functionD()

Overview & Agenda

) Using Unintended Gadgels

Disclaimers

- Intel technologies’ features and benefits depend on system
configuration and may require enabled hardware, software or service
activation. Performance varies depending on system configuration.
Learn more at Intel.com, or from the OEM or retailer.

- You may not use or facilitate the use of this document in connection
with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free
license to any patent claim thereafter drafted which includes subject
matter disclosed herein.

- No license (express or implied, by estoppel or otherwise) to any
intellectual property rights is granted by this document.

- Intel disclaims all express and implied warranties, including without
limitation, the implied warranties of merchantability, fithess for a
particular purpose, and non-infringement, as well as any warranty
arising from course of performance, course of dealing, or usage in
trade.

- No computer system can be absolutely secure.

- Intel and the Intel logo are trademarks of Intel Corporation or its
subsidiaries in the U.S. and/or other countries.

« Copyright © Intel Corporation

Dverview & Agendz

Motivation &

Overview

0y

Indirect
Branch

Tracking

—

Analysis &
Summary

. [FFPR 00D Attank

U1Cl11 DCll1llda DCI11 O111111U11 wviviluday, AApri 19, ZU10

R A0P Attack

Manipulating The Stack

void functionE()

{
Unintended gadgets makes the

problem even worst }

void functionD()

{

Return Address E

Return Address D . }
Return Address C —W’
Return Return Address B {

Address —, IEAGCINPAClIEERPN -

void functionB()

{

v

5

L

void functionA()

{

address =i

E

) Nafanann Aaninat DAD /IND /

Motivation & Rnp A"' k
Overview ac

Using Unintended Gadgets

Overview

- Intel Arch allows instruction
decoding to start from any byte

- Intel Arch has variable length
instruction

- Attackers scan the code for
eax meaningful snippets (gadgets)

- Attacker can execute chained
gadgets

Motivation & R“P A"ack

Overvi
e R Is It That Critical?

495

* Tim Rains, David Weston, Matt Miller. Exploitation Trends: From Potential Risk to Actual Risk. In RSA conference 2015.

* Tim Rains, David Weston, Matt Miller. Exploitation Trends: From Potential Risk to Actual Risk. In RSA conference 2015.

=2 Similar Mtack Techninues

JOP - Jump Oriented Programming

- Each gadget block ends with JMP instruction

COP - Call Oriented Programming

- Each gadget block ends with Call instruction

12000

9000

6000

3000

Unintended
M Intended
jmp call jmp+call ret

* Tyler Bletsch, Xuxian Jiang, Vince Freeh. Jump-Oriented
Programming: A New Class of Code-Reuse Attack. April 22, 2010

addre

T ALLOLGRTT Lo TATLULS LA sy

gadgets

{

VOULU TUuncLLonaAag) ‘

T Defenes Aganst ROP/)OP/COP Atacks

Control-flow Enforcement Technology

« Control-flow Integrity (CFl) checks perform the
following: * Prevents ROP attacks
- Indirect branches target only valid target addresses : ;St?i\é?(s control flow to a shadow

« Return instructions should only transfer control to

the call site
- Intel® Control-flow Enforcement Technology (CET) is a Prevents JOP/COP
CPU instruction set extension to implement CFI) i
* Allows branching only to valid

targets

Z57) Protection #1: Shadow Stack

ldigelLs

| Protection #1: Shadow Stack

Protecting From ROP and Return Address Corruption On Stack

- Shadow stack is separate stack used exclusively for control
transfer operations and is separate from data stack

- Shadow stack supporting processors use a new register —
Shadow Stack Pointer (SSP)

- Writes to the shadow stack are restricted to control transfer
instructions and special protected instructions

- Call -> Pushes return address on both stacks
- No parameters passing on shadow stack
- Far calls push Code Segment (CS), Linear Instruction
Pointer (LIP) and SSP

- Ret -> pops return address from both stacks
- Control Flow Protection (#CP) exception in case return
addresses don't match

Shadow Stack Introduces mean Instruction-Per-
Cycle loss of less than 2%

* Calculated using ICC compiler using a suite of microprocessor benchmarks

Data Stack Shadow Stack

Corrupted

Address L

0x1000:
call 0x2000
0x1008:
ret
0x2000:
<Stack Corruption>
ret

Protection #2: Indirect Branch Tracking

Protecti

Ant bar(int 1) {

Leeie e int 800 1
e razurn ALY
1 i

BiY;
1 caten (in &) [int A ©
wowt <o w e -
1 thraa 20
. Faturn 8 ;
i

ity

2z Prezi

Setyymp / Longymp

int foo(int 1) {
if (!setjmp(buf)) {
printf("After setjmp");
bar(i);
}

return 1 + 1i;

}

int bar(int i) {
printf("In longjmp");
longjmp(buf, 1);
return j;

- The compiler needs to save the SSP in the jump buffer

- The compiler increments SSP by skipped number of frames

« New Instructions were introduced RDSSP and INCSSP

Exception Handling

int c() {

int B() {

try return A()
{ }

BO);
} catch (int e) { int AQ) {

cout << e << '\n’; »
} throw 20;
return @; }

}

- C++ runtime library is updated to use indirect jump instead of return

- It also needs to increment the SSP to pop skipped call frames

Context Switching

Different shadow stacks for each privilege level

Each shadow stack is setup by Operating System

- The OS save/restore SSP for thread switching

- New ISA was added SAVEPREVSSP and RSTORSSP

TICL T PUPD TSN AQuul T2 11U UL Suannd

« Control Flow Protection (#CP) exception in case return

addresses don't match

<Stack Corruption>

ret

I3 Profection #2: Indirect Branch Tracking

Protecting From JOP and COP Attacks

« Indirect Branch Tracking (IBT) detects and prevents
attempts to redirect control flow to unintended targets

- IBT introduces new instructions:
- ENDBRANCH32 for 32 bit programs
- ENDBRANCHG64 for 64 bit programs

- ENDBRANCH instructions are NOP instructions on Intel 64
processors that do not support CET

- If a target instruction of indirect jump / call has no
ENDBRANCH instruction a #CP exception is fired

- Compiler instruments ENDBRANCH instruction to:
« |Instructions/functions that their address was taken

- Global functions

indirect call:

typedef int{*FuncPointer)(int);

bool indirect call(FuncPointer func) {
return (*func)(e);

} >
bool check_key(int key) {

e (R N checl
return false;
return true;

}

xorl %edi, %edi
callg *%rax

retg

k key:

endbr64

cmpl $5, %edi
sete %al 6}

retq

- Anew nocf_check attribute was added to:

» Disable ENDBRANCH instruction in the beginning of a function

» Add no_track prefix to indirect jump/call to disable control flow

check

Summary

Fine-grained Indirect Branch Irackin

NO_TRACK Prefix and Legacy Compatibility

CMP $8, %RAX

__attribute((nocf_check)) JG .BB_DEFAULT
int foo(int a) { no_track JMP JumpTable(%RAX)

switch (a)

{ .BBO:
case ©: return 2 - 2; break;
. .BB8:

case 8: return 2 >> 2; break;

default: return a; JumpTable:
} .quad .BBO

}
.quad .BB8

- Software may restrict certain sensitive functions in program address space (e.g. exec, execyv, etc.)
- OS and dynamic loader can setup legacy code page bitmap to support code that was not compiled with
CET enabled or disable legacy interwork

- Software may restrict certain sensitive functions in program address space (e.g. exec, execyv, etc.)
- OS and dynamic loader can setup legacy code page bitmap to support code that was not compiled with
CET enabled or disable legacy interwork

Indirect .
Branch
Tracking

__CALL/IMP—__
(indirect
Not- branch) WrE:
BRANCHor / @ WAIT_FOR_
(BRANCH | ENDBRANCH

and no-track | __--"‘- .
prefixused) . ENDBRANCH

- - Not

ENDBRANCH

No perceptible slowdown was measured on average
* Used ICC compiler and ran SPEC 2006 benchmarks

Code size growth of 0.41%

* Used GCC compiler and ran SPEC 2006 benchmarks

Sl e

Analysis &

Summ

gl CET Security Analysis

Shadow Stack

‘ Enforces a function to return to its call site

Prevents

pivoting the shadow stack because

its page and the SSP are non-writeable

Prevents reusing old-frames in the shadow
stack because you can only release frames

Keeps stack ABI intact — no changes to data
stack layout

Doesn't require other check tools

Can be applied to full stack (kernel to
applications) and support dynamic linking

Not limited to C/C++ programming
languages

Very low performance overhead

Enforces indirect calling / jumping to valid addresses

{no unintended gadgets)

AIR: SPEC 2006 benchmarks are prone to attacks
by 0.02%

Very difficult to chain indirect branches to intended

gadgets and create a meaningful program

SW may instrument checks in intended gadgets

gl CET Security Analysis

Shadow Stack

Enforces a function to return to its call site Doesn’t require other check tools

Prevents pivoting the shadow stack because Can be applied to full stack (kernel to
its page and the SSP are non-writeable applications) and support dynamic linking

Prevents reusing old-frames in the shadow Not limited to C/C++ programming
stack because you can only release frames languages

Keeps stack ABI intact — no changes to data
stack layout

Very low performance overhead

Indirect Branch Tracking A~

Enforces indirect calling / jumping to valid addresses

(no unintended gadgets)

AIR: SPEC 2006 benchmarks are prone to attacks
by 0.02%

Very difficult to chain indirect branches to intended
gadgets and create a meaningful program

SW may instrument checks in intended gadgets

‘ Neglectable performance overhead

an ol-llI‘ ‘—J rlIlll-‘ Il'-"ll

anch Reduction (AIR), quantifies

Average Indirect br
ble indirect targets eliminated by

the fraction of possi|
2 CFI technique [*]

[¥] M. Zhang and R. Sekar. Control Flow Integrity for COTS
Binaries. In USENIX Security, 2013.

Enforces indirect calling / jumping to valid addresses

(no unintended gadgets)

AIR: SPEC 2006 benchmarks are prone to attacks
by 0.02%

Very difficult to chain indirect branches to intended
gadgets and create a meaningful program

SW may instrument checks in intended gadgets

‘ Neglectable performance overhead

an ol-llI‘ ‘—J rlIlll-‘ Il'-"ll

SW may instrument checks in intended gadgets I

Sl CET Status and Future Work

« LLVM already supports Shadow Stack and IBT
(including optimizations)

« The architecture is enabled using -mshstk / -mibt
flags

- Instrumentation is enabled using
-fcf-protection = return/branch flag

- New attribute nocf_check is currently supported

-ICC /| GCC implemented CET and updated
corresponding libraries, program loader and linker (Id)

- MS Compiler is also being updated

iz prezi

- In the future a super set flag of -

mibt & -mshstk called -mcet will be
added

« A fix up for setJump / longJump is

being promoted into LLVM

« LLVM linker will also be updated to

support new ABI flags and
generating IBT-enabled PLT

check

Analysis &
Summary

‘ Control-flow Enforcement Technology (CET)

* Introduces new HW based Control Flow Integrity (CFI) mechanism

l Shadow Stack and Indirect Branch Tracking (IBT)

« Shadow Stack protects against ROP attacks

* Indirect Branch Tracking protects against JOP/COP attacks
)

—[Low Overhead J

« CET introduces competitive protection metric rates while maintaining very
low performance overhead

Prateting The e
S Control-flow Enforcement Technology ™

Ciren Benita Ben Simhon Monday, April 16, 278

ROP Attack

Manipulating The Stack

Defenses Against ROP/JOP/COP Attacks

ol -tlow Enforcement Techmologs

T Pratecton #1 Shadow Stack

Protecting From ROP and Beturn Address Corruption On Stack

Pratefion #2: IndirectBranch Tracking

Protecting From JOP and COP Attacks

