LLVM 19.0.0git
HexagonAsmPrinter.cpp
Go to the documentation of this file.
1//===- HexagonAsmPrinter.cpp - Print machine instrs to Hexagon assembly ---===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains a printer that converts from our internal representation
10// of machine-dependent LLVM code to Hexagon assembly language. This printer is
11// the output mechanism used by `llc'.
12//
13//===----------------------------------------------------------------------===//
14
15#include "HexagonAsmPrinter.h"
16#include "Hexagon.h"
17#include "HexagonInstrInfo.h"
18#include "HexagonRegisterInfo.h"
19#include "HexagonSubtarget.h"
27#include "llvm/ADT/StringRef.h"
28#include "llvm/ADT/Twine.h"
37#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCExpr.h"
40#include "llvm/MC/MCInst.h"
43#include "llvm/MC/MCStreamer.h"
44#include "llvm/MC/MCSymbol.h"
51#include <algorithm>
52#include <cassert>
53#include <cstdint>
54#include <string>
55
56using namespace llvm;
57
58namespace llvm {
59
60void HexagonLowerToMC(const MCInstrInfo &MCII, const MachineInstr *MI,
61 MCInst &MCB, HexagonAsmPrinter &AP);
62
63} // end namespace llvm
64
65#define DEBUG_TYPE "asm-printer"
66
67// Given a scalar register return its pair.
68inline static unsigned getHexagonRegisterPair(unsigned Reg,
69 const MCRegisterInfo *RI) {
70 assert(Hexagon::IntRegsRegClass.contains(Reg));
71 unsigned Pair = *RI->superregs(Reg).begin();
72 assert(Hexagon::DoubleRegsRegClass.contains(Pair));
73 return Pair;
74}
75
77 raw_ostream &O) {
78 const MachineOperand &MO = MI->getOperand(OpNo);
79
80 switch (MO.getType()) {
81 default:
82 llvm_unreachable ("<unknown operand type>");
85 return;
87 O << MO.getImm();
88 return;
90 MO.getMBB()->getSymbol()->print(O, MAI);
91 return;
93 GetCPISymbol(MO.getIndex())->print(O, MAI);
94 return;
96 PrintSymbolOperand(MO, O);
97 return;
98 }
99}
100
101// isBlockOnlyReachableByFallthrough - We need to override this since the
102// default AsmPrinter does not print labels for any basic block that
103// is only reachable by a fall through. That works for all cases except
104// for the case in which the basic block is reachable by a fall through but
105// through an indirect from a jump table. In this case, the jump table
106// will contain a label not defined by AsmPrinter.
108 const MachineBasicBlock *MBB) const {
109 if (MBB->hasAddressTaken())
110 return false;
112}
113
114/// PrintAsmOperand - Print out an operand for an inline asm expression.
116 const char *ExtraCode,
117 raw_ostream &OS) {
118 // Does this asm operand have a single letter operand modifier?
119 if (ExtraCode && ExtraCode[0]) {
120 if (ExtraCode[1] != 0)
121 return true; // Unknown modifier.
122
123 switch (ExtraCode[0]) {
124 default:
125 // See if this is a generic print operand
126 return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, OS);
127 case 'L':
128 case 'H': { // The highest-numbered register of a pair.
129 const MachineOperand &MO = MI->getOperand(OpNo);
130 const MachineFunction &MF = *MI->getParent()->getParent();
132 if (!MO.isReg())
133 return true;
134 Register RegNumber = MO.getReg();
135 // This should be an assert in the frontend.
136 if (Hexagon::DoubleRegsRegClass.contains(RegNumber))
137 RegNumber = TRI->getSubReg(RegNumber, ExtraCode[0] == 'L' ?
138 Hexagon::isub_lo :
139 Hexagon::isub_hi);
141 return false;
142 }
143 case 'I':
144 // Write 'i' if an integer constant, otherwise nothing. Used to print
145 // addi vs add, etc.
146 if (MI->getOperand(OpNo).isImm())
147 OS << "i";
148 return false;
149 }
150 }
151
152 printOperand(MI, OpNo, OS);
153 return false;
154}
155
157 unsigned OpNo,
158 const char *ExtraCode,
159 raw_ostream &O) {
160 if (ExtraCode && ExtraCode[0])
161 return true; // Unknown modifier.
162
163 const MachineOperand &Base = MI->getOperand(OpNo);
164 const MachineOperand &Offset = MI->getOperand(OpNo+1);
165
166 if (Base.isReg())
167 printOperand(MI, OpNo, O);
168 else
169 llvm_unreachable("Unimplemented");
170
171 if (Offset.isImm()) {
172 if (Offset.getImm())
173 O << "+#" << Offset.getImm();
174 } else {
175 llvm_unreachable("Unimplemented");
176 }
177
178 return false;
179}
180
182 MCStreamer &OutStreamer, const MCOperand &Imm,
183 int AlignSize, const MCSubtargetInfo& STI) {
184 MCSymbol *Sym;
185 int64_t Value;
186 if (Imm.getExpr()->evaluateAsAbsolute(Value)) {
187 StringRef sectionPrefix;
188 std::string ImmString;
190 if (AlignSize == 8) {
191 Name = ".CONST_0000000000000000";
192 sectionPrefix = ".gnu.linkonce.l8";
193 ImmString = utohexstr(Value);
194 } else {
195 Name = ".CONST_00000000";
196 sectionPrefix = ".gnu.linkonce.l4";
197 ImmString = utohexstr(static_cast<uint32_t>(Value));
198 }
199
200 std::string symbolName = // Yes, leading zeros are kept.
201 Name.drop_back(ImmString.size()).str() + ImmString;
202 std::string sectionName = sectionPrefix.str() + symbolName;
203
204 MCSectionELF *Section = OutStreamer.getContext().getELFSection(
206 OutStreamer.switchSection(Section);
207
208 Sym = AP.OutContext.getOrCreateSymbol(Twine(symbolName));
209 if (Sym->isUndefined()) {
210 OutStreamer.emitLabel(Sym);
211 OutStreamer.emitSymbolAttribute(Sym, MCSA_Global);
212 OutStreamer.emitIntValue(Value, AlignSize);
213 OutStreamer.emitCodeAlignment(Align(AlignSize), &STI);
214 }
215 } else {
216 assert(Imm.isExpr() && "Expected expression and found none");
217 const MachineOperand &MO = MI.getOperand(1);
218 assert(MO.isGlobal() || MO.isCPI() || MO.isJTI());
219 MCSymbol *MOSymbol = nullptr;
220 if (MO.isGlobal())
221 MOSymbol = AP.getSymbol(MO.getGlobal());
222 else if (MO.isCPI())
223 MOSymbol = AP.GetCPISymbol(MO.getIndex());
224 else if (MO.isJTI())
225 MOSymbol = AP.GetJTISymbol(MO.getIndex());
226 else
227 llvm_unreachable("Unknown operand type!");
228
229 StringRef SymbolName = MOSymbol->getName();
230 std::string LitaName = ".CONST_" + SymbolName.str();
231
232 MCSectionELF *Section = OutStreamer.getContext().getELFSection(
234
235 OutStreamer.switchSection(Section);
236 Sym = AP.OutContext.getOrCreateSymbol(Twine(LitaName));
237 if (Sym->isUndefined()) {
238 OutStreamer.emitLabel(Sym);
239 OutStreamer.emitSymbolAttribute(Sym, MCSA_Local);
240 OutStreamer.emitValue(Imm.getExpr(), AlignSize);
241 OutStreamer.emitCodeAlignment(Align(AlignSize), &STI);
242 }
243 }
244 return Sym;
245}
246
247static MCInst ScaleVectorOffset(MCInst &Inst, unsigned OpNo,
248 unsigned VectorSize, MCContext &Ctx) {
249 MCInst T;
250 T.setOpcode(Inst.getOpcode());
251 for (unsigned i = 0, n = Inst.getNumOperands(); i != n; ++i) {
252 if (i != OpNo) {
253 T.addOperand(Inst.getOperand(i));
254 continue;
255 }
256 MCOperand &ImmOp = Inst.getOperand(i);
257 const auto *HE = static_cast<const HexagonMCExpr*>(ImmOp.getExpr());
258 int32_t V = cast<MCConstantExpr>(HE->getExpr())->getValue();
259 auto *NewCE = MCConstantExpr::create(V / int32_t(VectorSize), Ctx);
260 auto *NewHE = HexagonMCExpr::create(NewCE, Ctx);
261 T.addOperand(MCOperand::createExpr(NewHE));
262 }
263 return T;
264}
265
267 const MachineInstr &MI) {
268 MCInst &MappedInst = static_cast <MCInst &>(Inst);
269 const MCRegisterInfo *RI = OutStreamer->getContext().getRegisterInfo();
270 const MachineFunction &MF = *MI.getParent()->getParent();
271 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
272 unsigned VectorSize = HRI.getRegSizeInBits(Hexagon::HvxVRRegClass) / 8;
273
274 switch (Inst.getOpcode()) {
275 default:
276 return;
277
278 case Hexagon::A2_iconst: {
279 Inst.setOpcode(Hexagon::A2_addi);
280 MCOperand Reg = Inst.getOperand(0);
281 MCOperand S16 = Inst.getOperand(1);
284 Inst.clear();
285 Inst.addOperand(Reg);
286 Inst.addOperand(MCOperand::createReg(Hexagon::R0));
287 Inst.addOperand(S16);
288 break;
289 }
290
291 case Hexagon::A2_tfrf: {
293 Inst.setOpcode(Hexagon::A2_paddif);
295 break;
296 }
297
298 case Hexagon::A2_tfrt: {
300 Inst.setOpcode(Hexagon::A2_paddit);
302 break;
303 }
304
305 case Hexagon::A2_tfrfnew: {
307 Inst.setOpcode(Hexagon::A2_paddifnew);
309 break;
310 }
311
312 case Hexagon::A2_tfrtnew: {
314 Inst.setOpcode(Hexagon::A2_padditnew);
316 break;
317 }
318
319 case Hexagon::A2_zxtb: {
321 Inst.setOpcode(Hexagon::A2_andir);
323 break;
324 }
325
326 // "$dst = CONST64(#$src1)",
327 case Hexagon::CONST64:
328 if (!OutStreamer->hasRawTextSupport()) {
329 const MCOperand &Imm = MappedInst.getOperand(1);
330 MCSectionSubPair Current = OutStreamer->getCurrentSection();
331
332 MCSymbol *Sym =
333 smallData(*this, MI, *OutStreamer, Imm, 8, getSubtargetInfo());
334
335 OutStreamer->switchSection(Current.first, Current.second);
336 MCInst TmpInst;
337 MCOperand &Reg = MappedInst.getOperand(0);
338 TmpInst.setOpcode(Hexagon::L2_loadrdgp);
339 TmpInst.addOperand(Reg);
342 MappedInst = TmpInst;
343
344 }
345 break;
346 case Hexagon::CONST32:
347 if (!OutStreamer->hasRawTextSupport()) {
348 MCOperand &Imm = MappedInst.getOperand(1);
349 MCSectionSubPair Current = OutStreamer->getCurrentSection();
350 MCSymbol *Sym =
351 smallData(*this, MI, *OutStreamer, Imm, 4, getSubtargetInfo());
352 OutStreamer->switchSection(Current.first, Current.second);
353 MCInst TmpInst;
354 MCOperand &Reg = MappedInst.getOperand(0);
355 TmpInst.setOpcode(Hexagon::L2_loadrigp);
356 TmpInst.addOperand(Reg);
359 MappedInst = TmpInst;
360 }
361 break;
362
363 // C2_pxfer_map maps to C2_or instruction. Though, it's possible to use
364 // C2_or during instruction selection itself but it results
365 // into suboptimal code.
366 case Hexagon::C2_pxfer_map: {
367 MCOperand &Ps = Inst.getOperand(1);
368 MappedInst.setOpcode(Hexagon::C2_or);
369 MappedInst.addOperand(Ps);
370 return;
371 }
372
373 // Vector reduce complex multiply by scalar, Rt & 1 map to :hi else :lo
374 // The insn is mapped from the 4 operand to the 3 operand raw form taking
375 // 3 register pairs.
376 case Hexagon::M2_vrcmpys_acc_s1: {
377 MCOperand &Rt = Inst.getOperand(3);
378 assert(Rt.isReg() && "Expected register and none was found");
379 unsigned Reg = RI->getEncodingValue(Rt.getReg());
380 if (Reg & 1)
381 MappedInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_h);
382 else
383 MappedInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_l);
385 return;
386 }
387 case Hexagon::M2_vrcmpys_s1: {
388 MCOperand &Rt = Inst.getOperand(2);
389 assert(Rt.isReg() && "Expected register and none was found");
390 unsigned Reg = RI->getEncodingValue(Rt.getReg());
391 if (Reg & 1)
392 MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1_h);
393 else
394 MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1_l);
396 return;
397 }
398
399 case Hexagon::M2_vrcmpys_s1rp: {
400 MCOperand &Rt = Inst.getOperand(2);
401 assert(Rt.isReg() && "Expected register and none was found");
402 unsigned Reg = RI->getEncodingValue(Rt.getReg());
403 if (Reg & 1)
404 MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1rp_h);
405 else
406 MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1rp_l);
408 return;
409 }
410
411 case Hexagon::A4_boundscheck: {
412 MCOperand &Rs = Inst.getOperand(1);
413 assert(Rs.isReg() && "Expected register and none was found");
414 unsigned Reg = RI->getEncodingValue(Rs.getReg());
415 if (Reg & 1) // Odd mapped to raw:hi, regpair is rodd:odd-1, like r3:2
416 MappedInst.setOpcode(Hexagon::A4_boundscheck_hi);
417 else // raw:lo
418 MappedInst.setOpcode(Hexagon::A4_boundscheck_lo);
420 return;
421 }
422
423 case Hexagon::PS_call_nr:
424 Inst.setOpcode(Hexagon::J2_call);
425 break;
426
427 case Hexagon::S5_asrhub_rnd_sat_goodsyntax: {
428 MCOperand &MO = MappedInst.getOperand(2);
429 int64_t Imm;
430 MCExpr const *Expr = MO.getExpr();
431 bool Success = Expr->evaluateAsAbsolute(Imm);
432 assert(Success && "Expected immediate and none was found");
433 (void)Success;
434 MCInst TmpInst;
435 if (Imm == 0) {
436 TmpInst.setOpcode(Hexagon::S2_vsathub);
437 TmpInst.addOperand(MappedInst.getOperand(0));
438 TmpInst.addOperand(MappedInst.getOperand(1));
439 MappedInst = TmpInst;
440 return;
441 }
442 TmpInst.setOpcode(Hexagon::S5_asrhub_rnd_sat);
443 TmpInst.addOperand(MappedInst.getOperand(0));
444 TmpInst.addOperand(MappedInst.getOperand(1));
446 const MCExpr *Sub = MCBinaryExpr::createSub(Expr, One, OutContext);
447 TmpInst.addOperand(
449 MappedInst = TmpInst;
450 return;
451 }
452
453 case Hexagon::S5_vasrhrnd_goodsyntax:
454 case Hexagon::S2_asr_i_p_rnd_goodsyntax: {
455 MCOperand &MO2 = MappedInst.getOperand(2);
456 MCExpr const *Expr = MO2.getExpr();
457 int64_t Imm;
458 bool Success = Expr->evaluateAsAbsolute(Imm);
459 assert(Success && "Expected immediate and none was found");
460 (void)Success;
461 MCInst TmpInst;
462 if (Imm == 0) {
463 TmpInst.setOpcode(Hexagon::A2_combinew);
464 TmpInst.addOperand(MappedInst.getOperand(0));
465 MCOperand &MO1 = MappedInst.getOperand(1);
466 unsigned High = RI->getSubReg(MO1.getReg(), Hexagon::isub_hi);
467 unsigned Low = RI->getSubReg(MO1.getReg(), Hexagon::isub_lo);
468 // Add a new operand for the second register in the pair.
471 MappedInst = TmpInst;
472 return;
473 }
474
475 if (Inst.getOpcode() == Hexagon::S2_asr_i_p_rnd_goodsyntax)
476 TmpInst.setOpcode(Hexagon::S2_asr_i_p_rnd);
477 else
478 TmpInst.setOpcode(Hexagon::S5_vasrhrnd);
479 TmpInst.addOperand(MappedInst.getOperand(0));
480 TmpInst.addOperand(MappedInst.getOperand(1));
482 const MCExpr *Sub = MCBinaryExpr::createSub(Expr, One, OutContext);
483 TmpInst.addOperand(
485 MappedInst = TmpInst;
486 return;
487 }
488
489 // if ("#u5==0") Assembler mapped to: "Rd=Rs"; else Rd=asr(Rs,#u5-1):rnd
490 case Hexagon::S2_asr_i_r_rnd_goodsyntax: {
491 MCOperand &MO = Inst.getOperand(2);
492 MCExpr const *Expr = MO.getExpr();
493 int64_t Imm;
494 bool Success = Expr->evaluateAsAbsolute(Imm);
495 assert(Success && "Expected immediate and none was found");
496 (void)Success;
497 MCInst TmpInst;
498 if (Imm == 0) {
499 TmpInst.setOpcode(Hexagon::A2_tfr);
500 TmpInst.addOperand(MappedInst.getOperand(0));
501 TmpInst.addOperand(MappedInst.getOperand(1));
502 MappedInst = TmpInst;
503 return;
504 }
505 TmpInst.setOpcode(Hexagon::S2_asr_i_r_rnd);
506 TmpInst.addOperand(MappedInst.getOperand(0));
507 TmpInst.addOperand(MappedInst.getOperand(1));
509 const MCExpr *Sub = MCBinaryExpr::createSub(Expr, One, OutContext);
510 TmpInst.addOperand(
512 MappedInst = TmpInst;
513 return;
514 }
515
516 // Translate a "$Rdd = #imm" to "$Rdd = combine(#[-1,0], #imm)"
517 case Hexagon::A2_tfrpi: {
518 MCInst TmpInst;
519 MCOperand &Rdd = MappedInst.getOperand(0);
520 MCOperand &MO = MappedInst.getOperand(1);
521
522 TmpInst.setOpcode(Hexagon::A2_combineii);
523 TmpInst.addOperand(Rdd);
524 int64_t Imm;
525 bool Success = MO.getExpr()->evaluateAsAbsolute(Imm);
526 if (Success && Imm < 0) {
527 const MCExpr *MOne = MCConstantExpr::create(-1, OutContext);
530 } else {
531 const MCExpr *Zero = MCConstantExpr::create(0, OutContext);
534 }
535 TmpInst.addOperand(MO);
536 MappedInst = TmpInst;
537 return;
538 }
539
540 // Translate a "$Rdd = $Rss" to "$Rdd = combine($Rs, $Rt)"
541 case Hexagon::A2_tfrp: {
542 MCOperand &MO = MappedInst.getOperand(1);
543 unsigned High = RI->getSubReg(MO.getReg(), Hexagon::isub_hi);
544 unsigned Low = RI->getSubReg(MO.getReg(), Hexagon::isub_lo);
545 MO.setReg(High);
546 // Add a new operand for the second register in the pair.
548 MappedInst.setOpcode(Hexagon::A2_combinew);
549 return;
550 }
551
552 case Hexagon::A2_tfrpt:
553 case Hexagon::A2_tfrpf: {
554 MCOperand &MO = MappedInst.getOperand(2);
555 unsigned High = RI->getSubReg(MO.getReg(), Hexagon::isub_hi);
556 unsigned Low = RI->getSubReg(MO.getReg(), Hexagon::isub_lo);
557 MO.setReg(High);
558 // Add a new operand for the second register in the pair.
560 MappedInst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrpt)
561 ? Hexagon::C2_ccombinewt
562 : Hexagon::C2_ccombinewf);
563 return;
564 }
565
566 case Hexagon::A2_tfrptnew:
567 case Hexagon::A2_tfrpfnew: {
568 MCOperand &MO = MappedInst.getOperand(2);
569 unsigned High = RI->getSubReg(MO.getReg(), Hexagon::isub_hi);
570 unsigned Low = RI->getSubReg(MO.getReg(), Hexagon::isub_lo);
571 MO.setReg(High);
572 // Add a new operand for the second register in the pair.
574 MappedInst.setOpcode(Inst.getOpcode() == Hexagon::A2_tfrptnew
575 ? Hexagon::C2_ccombinewnewt
576 : Hexagon::C2_ccombinewnewf);
577 return;
578 }
579
580 case Hexagon::M2_mpysmi: {
581 MCOperand &Imm = MappedInst.getOperand(2);
582 MCExpr const *Expr = Imm.getExpr();
583 int64_t Value;
584 bool Success = Expr->evaluateAsAbsolute(Value);
586 (void)Success;
587 if (Value < 0 && Value > -256) {
588 MappedInst.setOpcode(Hexagon::M2_mpysin);
589 Imm.setExpr(HexagonMCExpr::create(
591 } else
592 MappedInst.setOpcode(Hexagon::M2_mpysip);
593 return;
594 }
595
596 case Hexagon::A2_addsp: {
597 MCOperand &Rt = Inst.getOperand(1);
598 assert(Rt.isReg() && "Expected register and none was found");
599 unsigned Reg = RI->getEncodingValue(Rt.getReg());
600 if (Reg & 1)
601 MappedInst.setOpcode(Hexagon::A2_addsph);
602 else
603 MappedInst.setOpcode(Hexagon::A2_addspl);
605 return;
606 }
607
608 case Hexagon::V6_vd0: {
609 MCInst TmpInst;
610 assert(Inst.getOperand(0).isReg() &&
611 "Expected register and none was found");
612
613 TmpInst.setOpcode(Hexagon::V6_vxor);
614 TmpInst.addOperand(Inst.getOperand(0));
615 TmpInst.addOperand(Inst.getOperand(0));
616 TmpInst.addOperand(Inst.getOperand(0));
617 MappedInst = TmpInst;
618 return;
619 }
620
621 case Hexagon::V6_vdd0: {
622 MCInst TmpInst;
623 assert (Inst.getOperand(0).isReg() &&
624 "Expected register and none was found");
625
626 TmpInst.setOpcode(Hexagon::V6_vsubw_dv);
627 TmpInst.addOperand(Inst.getOperand(0));
628 TmpInst.addOperand(Inst.getOperand(0));
629 TmpInst.addOperand(Inst.getOperand(0));
630 MappedInst = TmpInst;
631 return;
632 }
633
634 case Hexagon::V6_vL32Ub_pi:
635 case Hexagon::V6_vL32b_cur_pi:
636 case Hexagon::V6_vL32b_nt_cur_pi:
637 case Hexagon::V6_vL32b_pi:
638 case Hexagon::V6_vL32b_nt_pi:
639 case Hexagon::V6_vL32b_nt_tmp_pi:
640 case Hexagon::V6_vL32b_tmp_pi:
641 MappedInst = ScaleVectorOffset(Inst, 3, VectorSize, OutContext);
642 return;
643
644 case Hexagon::V6_vL32Ub_ai:
645 case Hexagon::V6_vL32b_ai:
646 case Hexagon::V6_vL32b_cur_ai:
647 case Hexagon::V6_vL32b_nt_ai:
648 case Hexagon::V6_vL32b_nt_cur_ai:
649 case Hexagon::V6_vL32b_nt_tmp_ai:
650 case Hexagon::V6_vL32b_tmp_ai:
651 MappedInst = ScaleVectorOffset(Inst, 2, VectorSize, OutContext);
652 return;
653
654 case Hexagon::V6_vS32Ub_pi:
655 case Hexagon::V6_vS32b_new_pi:
656 case Hexagon::V6_vS32b_nt_new_pi:
657 case Hexagon::V6_vS32b_nt_pi:
658 case Hexagon::V6_vS32b_pi:
659 MappedInst = ScaleVectorOffset(Inst, 2, VectorSize, OutContext);
660 return;
661
662 case Hexagon::V6_vS32Ub_ai:
663 case Hexagon::V6_vS32b_ai:
664 case Hexagon::V6_vS32b_new_ai:
665 case Hexagon::V6_vS32b_nt_ai:
666 case Hexagon::V6_vS32b_nt_new_ai:
667 MappedInst = ScaleVectorOffset(Inst, 1, VectorSize, OutContext);
668 return;
669
670 case Hexagon::V6_vL32b_cur_npred_pi:
671 case Hexagon::V6_vL32b_cur_pred_pi:
672 case Hexagon::V6_vL32b_npred_pi:
673 case Hexagon::V6_vL32b_nt_cur_npred_pi:
674 case Hexagon::V6_vL32b_nt_cur_pred_pi:
675 case Hexagon::V6_vL32b_nt_npred_pi:
676 case Hexagon::V6_vL32b_nt_pred_pi:
677 case Hexagon::V6_vL32b_nt_tmp_npred_pi:
678 case Hexagon::V6_vL32b_nt_tmp_pred_pi:
679 case Hexagon::V6_vL32b_pred_pi:
680 case Hexagon::V6_vL32b_tmp_npred_pi:
681 case Hexagon::V6_vL32b_tmp_pred_pi:
682 MappedInst = ScaleVectorOffset(Inst, 4, VectorSize, OutContext);
683 return;
684
685 case Hexagon::V6_vL32b_cur_npred_ai:
686 case Hexagon::V6_vL32b_cur_pred_ai:
687 case Hexagon::V6_vL32b_npred_ai:
688 case Hexagon::V6_vL32b_nt_cur_npred_ai:
689 case Hexagon::V6_vL32b_nt_cur_pred_ai:
690 case Hexagon::V6_vL32b_nt_npred_ai:
691 case Hexagon::V6_vL32b_nt_pred_ai:
692 case Hexagon::V6_vL32b_nt_tmp_npred_ai:
693 case Hexagon::V6_vL32b_nt_tmp_pred_ai:
694 case Hexagon::V6_vL32b_pred_ai:
695 case Hexagon::V6_vL32b_tmp_npred_ai:
696 case Hexagon::V6_vL32b_tmp_pred_ai:
697 MappedInst = ScaleVectorOffset(Inst, 3, VectorSize, OutContext);
698 return;
699
700 case Hexagon::V6_vS32Ub_npred_pi:
701 case Hexagon::V6_vS32Ub_pred_pi:
702 case Hexagon::V6_vS32b_new_npred_pi:
703 case Hexagon::V6_vS32b_new_pred_pi:
704 case Hexagon::V6_vS32b_npred_pi:
705 case Hexagon::V6_vS32b_nqpred_pi:
706 case Hexagon::V6_vS32b_nt_new_npred_pi:
707 case Hexagon::V6_vS32b_nt_new_pred_pi:
708 case Hexagon::V6_vS32b_nt_npred_pi:
709 case Hexagon::V6_vS32b_nt_nqpred_pi:
710 case Hexagon::V6_vS32b_nt_pred_pi:
711 case Hexagon::V6_vS32b_nt_qpred_pi:
712 case Hexagon::V6_vS32b_pred_pi:
713 case Hexagon::V6_vS32b_qpred_pi:
714 MappedInst = ScaleVectorOffset(Inst, 3, VectorSize, OutContext);
715 return;
716
717 case Hexagon::V6_vS32Ub_npred_ai:
718 case Hexagon::V6_vS32Ub_pred_ai:
719 case Hexagon::V6_vS32b_new_npred_ai:
720 case Hexagon::V6_vS32b_new_pred_ai:
721 case Hexagon::V6_vS32b_npred_ai:
722 case Hexagon::V6_vS32b_nqpred_ai:
723 case Hexagon::V6_vS32b_nt_new_npred_ai:
724 case Hexagon::V6_vS32b_nt_new_pred_ai:
725 case Hexagon::V6_vS32b_nt_npred_ai:
726 case Hexagon::V6_vS32b_nt_nqpred_ai:
727 case Hexagon::V6_vS32b_nt_pred_ai:
728 case Hexagon::V6_vS32b_nt_qpred_ai:
729 case Hexagon::V6_vS32b_pred_ai:
730 case Hexagon::V6_vS32b_qpred_ai:
731 MappedInst = ScaleVectorOffset(Inst, 2, VectorSize, OutContext);
732 return;
733
734 // V65+
735 case Hexagon::V6_vS32b_srls_ai:
736 MappedInst = ScaleVectorOffset(Inst, 1, VectorSize, OutContext);
737 return;
738
739 case Hexagon::V6_vS32b_srls_pi:
740 MappedInst = ScaleVectorOffset(Inst, 2, VectorSize, OutContext);
741 return;
742 }
743}
744
745/// Print out a single Hexagon MI to the current output stream.
747 Hexagon_MC::verifyInstructionPredicates(MI->getOpcode(),
748 getSubtargetInfo().getFeatureBits());
749
750 MCInst MCB;
751 MCB.setOpcode(Hexagon::BUNDLE);
753 const MCInstrInfo &MCII = *Subtarget->getInstrInfo();
754
755 if (MI->isBundle()) {
756 const MachineBasicBlock* MBB = MI->getParent();
757 MachineBasicBlock::const_instr_iterator MII = MI->getIterator();
758
759 for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
760 if (!MII->isDebugInstr() && !MII->isImplicitDef())
761 HexagonLowerToMC(MCII, &*MII, MCB, *this);
762 } else {
763 HexagonLowerToMC(MCII, MI, MCB, *this);
764 }
765
766 const MachineFunction &MF = *MI->getParent()->getParent();
767 const auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
768 if (MI->isBundle() && HII.getBundleNoShuf(*MI))
770
771 MCContext &Ctx = OutStreamer->getContext();
772 bool Ok = HexagonMCInstrInfo::canonicalizePacket(MCII, *Subtarget, Ctx,
773 MCB, nullptr);
774 assert(Ok); (void)Ok;
775 if (HexagonMCInstrInfo::bundleSize(MCB) == 0)
776 return;
777 OutStreamer->emitInstruction(MCB, getSubtargetInfo());
778}
779
782 emitAttributes();
783}
784
787 static_cast<HexagonTargetStreamer &>(*OutStreamer->getTargetStreamer());
790}
791
792void HexagonAsmPrinter::emitAttributes() {
794 static_cast<HexagonTargetStreamer &>(*OutStreamer->getTargetStreamer());
796}
797
799 static const int8_t NoopsInSledCount = 4;
800 // We want to emit the following pattern:
801 //
802 // .L_xray_sled_N:
803 // <xray_sled_base>:
804 // { jump .Ltmp0 }
805 // { nop
806 // nop
807 // nop
808 // nop }
809 // .Ltmp0:
810 //
811 // We need the 4 nop words because at runtime, we'd be patching over the
812 // full 5 words with the following pattern:
813 //
814 // <xray_sled_n>:
815 // { immext(#...) // upper 26-bits of trampoline
816 // r6 = ##... // lower 6-bits of trampoline
817 // immext(#...) // upper 26-bits of func id
818 // r7 = ##... } // lower 6 bits of func id
819 // { callr r6 }
820 //
821 //
822 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
823 OutStreamer->emitLabel(CurSled);
824
825 MCInst *SledJump = new (OutContext) MCInst();
826 SledJump->setOpcode(Hexagon::J2_jump);
827 auto PostSled = OutContext.createTempSymbol();
830
831 // Emit "jump PostSled" instruction, which jumps over the nop series.
832 MCInst SledJumpPacket;
833 SledJumpPacket.setOpcode(Hexagon::BUNDLE);
834 SledJumpPacket.addOperand(MCOperand::createImm(0));
835 SledJumpPacket.addOperand(MCOperand::createInst(SledJump));
836
837 EmitToStreamer(*OutStreamer, SledJumpPacket);
838
839 // FIXME: this will emit individual packets, we should
840 // special-case this and combine them into a single packet.
841 emitNops(NoopsInSledCount);
842
843 OutStreamer->emitLabel(PostSled);
844 recordSled(CurSled, MI, Kind, 2);
845}
846
849}
850
853}
854
857}
858
861}
#define Success
MachineBasicBlock & MBB
static const LLT S16
#define LLVM_EXTERNAL_VISIBILITY
Definition: Compiler.h:135
std::string Name
Symbol * Sym
Definition: ELF_riscv.cpp:479
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
LLVM_EXTERNAL_VISIBILITY void LLVMInitializeHexagonAsmPrinter()
static MCSymbol * smallData(AsmPrinter &AP, const MachineInstr &MI, MCStreamer &OutStreamer, const MCOperand &Imm, int AlignSize, const MCSubtargetInfo &STI)
static MCInst ScaleVectorOffset(MCInst &Inst, unsigned OpNo, unsigned VectorSize, MCContext &Ctx)
static unsigned getHexagonRegisterPair(unsigned Reg, const MCRegisterInfo *RI)
IRTranslator LLVM IR MI
unsigned const TargetRegisterInfo * TRI
uint64_t High
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
This file contains some functions that are useful when dealing with strings.
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition: Value.cpp:469
This class is intended to be used as a driving class for all asm writers.
Definition: AsmPrinter.h:84
MCSymbol * getSymbol(const GlobalValue *GV) const
Definition: AsmPrinter.cpp:700
void emitNops(unsigned N)
Emit N NOP instructions.
void EmitToStreamer(MCStreamer &S, const MCInst &Inst)
Definition: AsmPrinter.cpp:418
TargetMachine & TM
Target machine description.
Definition: AsmPrinter.h:87
virtual MCSymbol * GetCPISymbol(unsigned CPID) const
Return the symbol for the specified constant pool entry.
virtual void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &OS)
Print the MachineOperand as a symbol.
const MCAsmInfo * MAI
Target Asm Printer information.
Definition: AsmPrinter.h:90
MachineFunction * MF
The current machine function.
Definition: AsmPrinter.h:102
virtual bool isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const
Return true if the basic block has exactly one predecessor and the control transfer mechanism between...
MCSymbol * GetJTISymbol(unsigned JTID, bool isLinkerPrivate=false) const
Return the symbol for the specified jump table entry.
void recordSled(MCSymbol *Sled, const MachineInstr &MI, SledKind Kind, uint8_t Version=0)
MCContext & OutContext
This is the context for the output file that we are streaming.
Definition: AsmPrinter.h:94
std::unique_ptr< MCStreamer > OutStreamer
This is the MCStreamer object for the file we are generating.
Definition: AsmPrinter.h:99
const MCSubtargetInfo & getSubtargetInfo() const
Return information about subtarget.
Definition: AsmPrinter.cpp:413
virtual bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, const char *ExtraCode, raw_ostream &OS)
Print the specified operand of MI, an INLINEASM instruction, using the specified assembler variant.
void LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI)
void EmitSled(const MachineInstr &MI, SledKind Kind)
void LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI)
bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, const char *ExtraCode, raw_ostream &OS) override
Print the specified operand of MI, an INLINEASM instruction, using the specified assembler variant as...
bool isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const override
Return true if the basic block has exactly one predecessor and the control transfer mechanism between...
bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, const char *ExtraCode, raw_ostream &OS) override
PrintAsmOperand - Print out an operand for an inline asm expression.
void emitInstruction(const MachineInstr *MI) override
Print out a single Hexagon MI to the current output stream.
void emitEndOfAsmFile(Module &M) override
This virtual method can be overridden by targets that want to emit something at the end of their file...
void LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI)
void emitStartOfAsmFile(Module &M) override
This virtual method can be overridden by targets that want to emit something at the start of their fi...
void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O)
void HexagonProcessInstruction(MCInst &Inst, const MachineInstr &MBB)
static char const * getRegisterName(MCRegister Reg)
static HexagonMCExpr * create(MCExpr const *Expr, MCContext &Ctx)
const HexagonInstrInfo * getInstrInfo() const override
void emitTargetAttributes(const MCSubtargetInfo &STI)
static const MCBinaryExpr * createSub(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx)
Definition: MCExpr.h:621
static const MCConstantExpr * create(int64_t Value, MCContext &Ctx, bool PrintInHex=false, unsigned SizeInBytes=0)
Definition: MCExpr.cpp:194
Context object for machine code objects.
Definition: MCContext.h:76
MCSymbol * createTempSymbol()
Create a temporary symbol with a unique name.
Definition: MCContext.cpp:321
MCSectionELF * getELFSection(const Twine &Section, unsigned Type, unsigned Flags)
Definition: MCContext.h:567
MCSymbol * getOrCreateSymbol(const Twine &Name)
Lookup the symbol inside with the specified Name.
Definition: MCContext.cpp:200
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:35
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:184
unsigned getNumOperands() const
Definition: MCInst.h:208
unsigned getOpcode() const
Definition: MCInst.h:198
void addOperand(const MCOperand Op)
Definition: MCInst.h:210
void setOpcode(unsigned Op)
Definition: MCInst.h:197
void clear()
Definition: MCInst.h:215
const MCOperand & getOperand(unsigned i) const
Definition: MCInst.h:206
Interface to description of machine instruction set.
Definition: MCInstrInfo.h:26
Instances of this class represent operands of the MCInst class.
Definition: MCInst.h:36
static MCOperand createReg(unsigned Reg)
Definition: MCInst.h:134
static MCOperand createExpr(const MCExpr *Val)
Definition: MCInst.h:162
void setReg(unsigned Reg)
Set the register number.
Definition: MCInst.h:75
static MCOperand createImm(int64_t Val)
Definition: MCInst.h:141
unsigned getReg() const
Returns the register number.
Definition: MCInst.h:69
bool isReg() const
Definition: MCInst.h:61
const MCExpr * getExpr() const
Definition: MCInst.h:114
static MCOperand createInst(const MCInst *Val)
Definition: MCInst.h:169
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
iterator_range< MCSuperRegIterator > superregs(MCRegister Reg) const
Return an iterator range over all super-registers of Reg, excluding Reg.
uint16_t getEncodingValue(MCRegister RegNo) const
Returns the encoding for RegNo.
MCRegister getSubReg(MCRegister Reg, unsigned Idx) const
Returns the physical register number of sub-register "Index" for physical register RegNo.
This represents a section on linux, lots of unix variants and some bare metal systems.
Definition: MCSectionELF.h:26
Streaming machine code generation interface.
Definition: MCStreamer.h:212
virtual bool emitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute)=0
Add the given Attribute to Symbol.
MCContext & getContext() const
Definition: MCStreamer.h:297
void emitValue(const MCExpr *Value, unsigned Size, SMLoc Loc=SMLoc())
Definition: MCStreamer.cpp:180
virtual void emitLabel(MCSymbol *Symbol, SMLoc Loc=SMLoc())
Emit a label for Symbol into the current section.
Definition: MCStreamer.cpp:424
virtual void emitIntValue(uint64_t Value, unsigned Size)
Special case of EmitValue that avoids the client having to pass in a MCExpr for constant integers.
Definition: MCStreamer.cpp:134
virtual void emitCodeAlignment(Align Alignment, const MCSubtargetInfo *STI, unsigned MaxBytesToEmit=0)
Emit nops until the byte alignment ByteAlignment is reached.
virtual void switchSection(MCSection *Section, const MCExpr *Subsection=nullptr)
Set the current section where code is being emitted to Section.
Generic base class for all target subtargets.
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx)
Definition: MCExpr.h:397
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:40
void print(raw_ostream &OS, const MCAsmInfo *MAI) const
print - Print the value to the stream OS.
Definition: MCSymbol.cpp:58
StringRef getName() const
getName - Get the symbol name.
Definition: MCSymbol.h:205
static const MCUnaryExpr * createMinus(const MCExpr *Expr, MCContext &Ctx, SMLoc Loc=SMLoc())
Definition: MCExpr.h:462
MCSymbol * getSymbol() const
Return the MCSymbol for this basic block.
bool hasAddressTaken() const
Test whether this block is used as something other than the target of a terminator,...
instr_iterator instr_end()
Instructions::const_iterator const_instr_iterator
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
Representation of each machine instruction.
Definition: MachineInstr.h:69
MachineOperand class - Representation of each machine instruction operand.
const GlobalValue * getGlobal() const
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
bool isCPI() const
isCPI - Tests if this is a MO_ConstantPoolIndex operand.
bool isJTI() const
isJTI - Tests if this is a MO_JumpTableIndex operand.
bool isGlobal() const
isGlobal - Tests if this is a MO_GlobalAddress operand.
MachineOperandType getType() const
getType - Returns the MachineOperandType for this operand.
Register getReg() const
getReg - Returns the register number.
@ MO_Immediate
Immediate operand.
@ MO_ConstantPoolIndex
Address of indexed Constant in Constant Pool.
@ MO_GlobalAddress
Address of a global value.
@ MO_MachineBasicBlock
MachineBasicBlock reference.
@ MO_Register
Register operand.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
std::string str() const
str - Get the contents as an std::string.
Definition: StringRef.h:222
const Triple & getTargetTriple() const
const MCSubtargetInfo * getMCSubtargetInfo() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
bool isOSBinFormatELF() const
Tests whether the OS uses the ELF binary format.
Definition: Triple.h:703
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
LLVM Value Representation.
Definition: Value.h:74
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ SHF_ALLOC
Definition: ELF.h:1157
@ SHF_WRITE
Definition: ELF.h:1154
@ SHT_PROGBITS
Definition: ELF.h:1063
size_t bundleSize(MCInst const &MCI)
void setS27_2_reloc(MCExpr const &Expr, bool Val=true)
void setMemReorderDisabled(MCInst &MCI)
bool canonicalizePacket(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, MCContext &Context, MCInst &MCB, HexagonMCChecker *Checker, bool AttemptCompatibility=false)
void setMustNotExtend(MCExpr const &Expr, bool Val=true)
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
@ Offset
Definition: DWP.cpp:456
Target & getTheHexagonTarget()
void HexagonLowerToMC(const MCInstrInfo &MCII, const MachineInstr *MI, MCInst &MCB, HexagonAsmPrinter &AP)
std::pair< MCSection *, const MCExpr * > MCSectionSubPair
Definition: MCStreamer.h:66
@ MCSA_Local
.local (ELF)
Definition: MCDirectives.h:38
@ MCSA_Global
.type _foo, @gnu_unique_object
Definition: MCDirectives.h:30
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
RegisterAsmPrinter - Helper template for registering a target specific assembly printer,...