LLVM 19.0.0git
InstCombineCalls.cpp
Go to the documentation of this file.
1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitCall, visitInvoke, and visitCallBr functions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APFloat.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/APSInt.h"
17#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/Statistic.h"
26#include "llvm/Analysis/Loads.h"
31#include "llvm/IR/Attributes.h"
32#include "llvm/IR/BasicBlock.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/DebugInfo.h"
38#include "llvm/IR/Function.h"
40#include "llvm/IR/InlineAsm.h"
41#include "llvm/IR/InstrTypes.h"
42#include "llvm/IR/Instruction.h"
45#include "llvm/IR/Intrinsics.h"
46#include "llvm/IR/IntrinsicsAArch64.h"
47#include "llvm/IR/IntrinsicsAMDGPU.h"
48#include "llvm/IR/IntrinsicsARM.h"
49#include "llvm/IR/IntrinsicsHexagon.h"
50#include "llvm/IR/LLVMContext.h"
51#include "llvm/IR/Metadata.h"
53#include "llvm/IR/Statepoint.h"
54#include "llvm/IR/Type.h"
55#include "llvm/IR/User.h"
56#include "llvm/IR/Value.h"
57#include "llvm/IR/ValueHandle.h"
62#include "llvm/Support/Debug.h"
71#include <algorithm>
72#include <cassert>
73#include <cstdint>
74#include <optional>
75#include <utility>
76#include <vector>
77
78#define DEBUG_TYPE "instcombine"
80
81using namespace llvm;
82using namespace PatternMatch;
83
84STATISTIC(NumSimplified, "Number of library calls simplified");
85
87 "instcombine-guard-widening-window",
88 cl::init(3),
89 cl::desc("How wide an instruction window to bypass looking for "
90 "another guard"));
91
92/// Return the specified type promoted as it would be to pass though a va_arg
93/// area.
95 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
96 if (ITy->getBitWidth() < 32)
97 return Type::getInt32Ty(Ty->getContext());
98 }
99 return Ty;
100}
101
102/// Recognize a memcpy/memmove from a trivially otherwise unused alloca.
103/// TODO: This should probably be integrated with visitAllocSites, but that
104/// requires a deeper change to allow either unread or unwritten objects.
106 auto *Src = MI->getRawSource();
107 while (isa<GetElementPtrInst>(Src) || isa<BitCastInst>(Src)) {
108 if (!Src->hasOneUse())
109 return false;
110 Src = cast<Instruction>(Src)->getOperand(0);
111 }
112 return isa<AllocaInst>(Src) && Src->hasOneUse();
113}
114
116 Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
117 MaybeAlign CopyDstAlign = MI->getDestAlign();
118 if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
119 MI->setDestAlignment(DstAlign);
120 return MI;
121 }
122
123 Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
124 MaybeAlign CopySrcAlign = MI->getSourceAlign();
125 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
126 MI->setSourceAlignment(SrcAlign);
127 return MI;
128 }
129
130 // If we have a store to a location which is known constant, we can conclude
131 // that the store must be storing the constant value (else the memory
132 // wouldn't be constant), and this must be a noop.
133 if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
134 // Set the size of the copy to 0, it will be deleted on the next iteration.
135 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
136 return MI;
137 }
138
139 // If the source is provably undef, the memcpy/memmove doesn't do anything
140 // (unless the transfer is volatile).
141 if (hasUndefSource(MI) && !MI->isVolatile()) {
142 // Set the size of the copy to 0, it will be deleted on the next iteration.
143 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
144 return MI;
145 }
146
147 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
148 // load/store.
149 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
150 if (!MemOpLength) return nullptr;
151
152 // Source and destination pointer types are always "i8*" for intrinsic. See
153 // if the size is something we can handle with a single primitive load/store.
154 // A single load+store correctly handles overlapping memory in the memmove
155 // case.
156 uint64_t Size = MemOpLength->getLimitedValue();
157 assert(Size && "0-sized memory transferring should be removed already.");
158
159 if (Size > 8 || (Size&(Size-1)))
160 return nullptr; // If not 1/2/4/8 bytes, exit.
161
162 // If it is an atomic and alignment is less than the size then we will
163 // introduce the unaligned memory access which will be later transformed
164 // into libcall in CodeGen. This is not evident performance gain so disable
165 // it now.
166 if (isa<AtomicMemTransferInst>(MI))
167 if (*CopyDstAlign < Size || *CopySrcAlign < Size)
168 return nullptr;
169
170 // Use an integer load+store unless we can find something better.
171 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
172
173 // If the memcpy has metadata describing the members, see if we can get the
174 // TBAA tag describing our copy.
175 AAMDNodes AACopyMD = MI->getAAMetadata().adjustForAccess(Size);
176
177 Value *Src = MI->getArgOperand(1);
178 Value *Dest = MI->getArgOperand(0);
179 LoadInst *L = Builder.CreateLoad(IntType, Src);
180 // Alignment from the mem intrinsic will be better, so use it.
181 L->setAlignment(*CopySrcAlign);
182 L->setAAMetadata(AACopyMD);
183 MDNode *LoopMemParallelMD =
184 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
185 if (LoopMemParallelMD)
186 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
187 MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
188 if (AccessGroupMD)
189 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
190
191 StoreInst *S = Builder.CreateStore(L, Dest);
192 // Alignment from the mem intrinsic will be better, so use it.
193 S->setAlignment(*CopyDstAlign);
194 S->setAAMetadata(AACopyMD);
195 if (LoopMemParallelMD)
196 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
197 if (AccessGroupMD)
198 S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
199 S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
200
201 if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
202 // non-atomics can be volatile
203 L->setVolatile(MT->isVolatile());
204 S->setVolatile(MT->isVolatile());
205 }
206 if (isa<AtomicMemTransferInst>(MI)) {
207 // atomics have to be unordered
208 L->setOrdering(AtomicOrdering::Unordered);
210 }
211
212 // Set the size of the copy to 0, it will be deleted on the next iteration.
213 MI->setLength(Constant::getNullValue(MemOpLength->getType()));
214 return MI;
215}
216
218 const Align KnownAlignment =
219 getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
220 MaybeAlign MemSetAlign = MI->getDestAlign();
221 if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
222 MI->setDestAlignment(KnownAlignment);
223 return MI;
224 }
225
226 // If we have a store to a location which is known constant, we can conclude
227 // that the store must be storing the constant value (else the memory
228 // wouldn't be constant), and this must be a noop.
229 if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
230 // Set the size of the copy to 0, it will be deleted on the next iteration.
231 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
232 return MI;
233 }
234
235 // Remove memset with an undef value.
236 // FIXME: This is technically incorrect because it might overwrite a poison
237 // value. Change to PoisonValue once #52930 is resolved.
238 if (isa<UndefValue>(MI->getValue())) {
239 // Set the size of the copy to 0, it will be deleted on the next iteration.
240 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
241 return MI;
242 }
243
244 // Extract the length and alignment and fill if they are constant.
245 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
246 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
247 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
248 return nullptr;
249 const uint64_t Len = LenC->getLimitedValue();
250 assert(Len && "0-sized memory setting should be removed already.");
251 const Align Alignment = MI->getDestAlign().valueOrOne();
252
253 // If it is an atomic and alignment is less than the size then we will
254 // introduce the unaligned memory access which will be later transformed
255 // into libcall in CodeGen. This is not evident performance gain so disable
256 // it now.
257 if (isa<AtomicMemSetInst>(MI))
258 if (Alignment < Len)
259 return nullptr;
260
261 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
262 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
263 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
264
265 Value *Dest = MI->getDest();
266
267 // Extract the fill value and store.
268 const uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
269 Constant *FillVal = ConstantInt::get(ITy, Fill);
270 StoreInst *S = Builder.CreateStore(FillVal, Dest, MI->isVolatile());
271 S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
272 auto replaceOpForAssignmentMarkers = [FillC, FillVal](auto *DbgAssign) {
273 if (llvm::is_contained(DbgAssign->location_ops(), FillC))
274 DbgAssign->replaceVariableLocationOp(FillC, FillVal);
275 };
276 for_each(at::getAssignmentMarkers(S), replaceOpForAssignmentMarkers);
277 for_each(at::getDVRAssignmentMarkers(S), replaceOpForAssignmentMarkers);
278
279 S->setAlignment(Alignment);
280 if (isa<AtomicMemSetInst>(MI))
282
283 // Set the size of the copy to 0, it will be deleted on the next iteration.
284 MI->setLength(Constant::getNullValue(LenC->getType()));
285 return MI;
286 }
287
288 return nullptr;
289}
290
291// TODO, Obvious Missing Transforms:
292// * Narrow width by halfs excluding zero/undef lanes
293Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) {
294 Value *LoadPtr = II.getArgOperand(0);
295 const Align Alignment =
296 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
297
298 // If the mask is all ones or undefs, this is a plain vector load of the 1st
299 // argument.
301 LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
302 "unmaskedload");
303 L->copyMetadata(II);
304 return L;
305 }
306
307 // If we can unconditionally load from this address, replace with a
308 // load/select idiom. TODO: use DT for context sensitive query
309 if (isDereferenceablePointer(LoadPtr, II.getType(),
310 II.getModule()->getDataLayout(), &II, &AC)) {
311 LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
312 "unmaskedload");
313 LI->copyMetadata(II);
314 return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3));
315 }
316
317 return nullptr;
318}
319
320// TODO, Obvious Missing Transforms:
321// * Single constant active lane -> store
322// * Narrow width by halfs excluding zero/undef lanes
323Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) {
324 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
325 if (!ConstMask)
326 return nullptr;
327
328 // If the mask is all zeros, this instruction does nothing.
329 if (ConstMask->isNullValue())
330 return eraseInstFromFunction(II);
331
332 // If the mask is all ones, this is a plain vector store of the 1st argument.
333 if (ConstMask->isAllOnesValue()) {
334 Value *StorePtr = II.getArgOperand(1);
335 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
336 StoreInst *S =
337 new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
338 S->copyMetadata(II);
339 return S;
340 }
341
342 if (isa<ScalableVectorType>(ConstMask->getType()))
343 return nullptr;
344
345 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
346 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
347 APInt PoisonElts(DemandedElts.getBitWidth(), 0);
348 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts,
349 PoisonElts))
350 return replaceOperand(II, 0, V);
351
352 return nullptr;
353}
354
355// TODO, Obvious Missing Transforms:
356// * Single constant active lane load -> load
357// * Dereferenceable address & few lanes -> scalarize speculative load/selects
358// * Adjacent vector addresses -> masked.load
359// * Narrow width by halfs excluding zero/undef lanes
360// * Vector incrementing address -> vector masked load
361Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) {
362 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
363 if (!ConstMask)
364 return nullptr;
365
366 // Vector splat address w/known mask -> scalar load
367 // Fold the gather to load the source vector first lane
368 // because it is reloading the same value each time
369 if (ConstMask->isAllOnesValue())
370 if (auto *SplatPtr = getSplatValue(II.getArgOperand(0))) {
371 auto *VecTy = cast<VectorType>(II.getType());
372 const Align Alignment =
373 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
374 LoadInst *L = Builder.CreateAlignedLoad(VecTy->getElementType(), SplatPtr,
375 Alignment, "load.scalar");
376 Value *Shuf =
377 Builder.CreateVectorSplat(VecTy->getElementCount(), L, "broadcast");
378 return replaceInstUsesWith(II, cast<Instruction>(Shuf));
379 }
380
381 return nullptr;
382}
383
384// TODO, Obvious Missing Transforms:
385// * Single constant active lane -> store
386// * Adjacent vector addresses -> masked.store
387// * Narrow store width by halfs excluding zero/undef lanes
388// * Vector incrementing address -> vector masked store
389Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) {
390 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
391 if (!ConstMask)
392 return nullptr;
393
394 // If the mask is all zeros, a scatter does nothing.
395 if (ConstMask->isNullValue())
396 return eraseInstFromFunction(II);
397
398 // Vector splat address -> scalar store
399 if (auto *SplatPtr = getSplatValue(II.getArgOperand(1))) {
400 // scatter(splat(value), splat(ptr), non-zero-mask) -> store value, ptr
401 if (auto *SplatValue = getSplatValue(II.getArgOperand(0))) {
402 if (maskContainsAllOneOrUndef(ConstMask)) {
403 Align Alignment =
404 cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
405 StoreInst *S = new StoreInst(SplatValue, SplatPtr, /*IsVolatile=*/false,
406 Alignment);
407 S->copyMetadata(II);
408 return S;
409 }
410 }
411 // scatter(vector, splat(ptr), splat(true)) -> store extract(vector,
412 // lastlane), ptr
413 if (ConstMask->isAllOnesValue()) {
414 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
415 VectorType *WideLoadTy = cast<VectorType>(II.getArgOperand(1)->getType());
416 ElementCount VF = WideLoadTy->getElementCount();
418 Value *LastLane = Builder.CreateSub(RunTimeVF, Builder.getInt32(1));
419 Value *Extract =
421 StoreInst *S =
422 new StoreInst(Extract, SplatPtr, /*IsVolatile=*/false, Alignment);
423 S->copyMetadata(II);
424 return S;
425 }
426 }
427 if (isa<ScalableVectorType>(ConstMask->getType()))
428 return nullptr;
429
430 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
431 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
432 APInt PoisonElts(DemandedElts.getBitWidth(), 0);
433 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts,
434 PoisonElts))
435 return replaceOperand(II, 0, V);
436 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts,
437 PoisonElts))
438 return replaceOperand(II, 1, V);
439
440 return nullptr;
441}
442
443/// This function transforms launder.invariant.group and strip.invariant.group
444/// like:
445/// launder(launder(%x)) -> launder(%x) (the result is not the argument)
446/// launder(strip(%x)) -> launder(%x)
447/// strip(strip(%x)) -> strip(%x) (the result is not the argument)
448/// strip(launder(%x)) -> strip(%x)
449/// This is legal because it preserves the most recent information about
450/// the presence or absence of invariant.group.
452 InstCombinerImpl &IC) {
453 auto *Arg = II.getArgOperand(0);
454 auto *StrippedArg = Arg->stripPointerCasts();
455 auto *StrippedInvariantGroupsArg = StrippedArg;
456 while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) {
457 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
458 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
459 break;
460 StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts();
461 }
462 if (StrippedArg == StrippedInvariantGroupsArg)
463 return nullptr; // No launders/strips to remove.
464
465 Value *Result = nullptr;
466
467 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
468 Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
469 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
470 Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
471 else
473 "simplifyInvariantGroupIntrinsic only handles launder and strip");
474 if (Result->getType()->getPointerAddressSpace() !=
476 Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
477
478 return cast<Instruction>(Result);
479}
480
482 assert((II.getIntrinsicID() == Intrinsic::cttz ||
483 II.getIntrinsicID() == Intrinsic::ctlz) &&
484 "Expected cttz or ctlz intrinsic");
485 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
486 Value *Op0 = II.getArgOperand(0);
487 Value *Op1 = II.getArgOperand(1);
488 Value *X;
489 // ctlz(bitreverse(x)) -> cttz(x)
490 // cttz(bitreverse(x)) -> ctlz(x)
491 if (match(Op0, m_BitReverse(m_Value(X)))) {
492 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
494 return CallInst::Create(F, {X, II.getArgOperand(1)});
495 }
496
497 if (II.getType()->isIntOrIntVectorTy(1)) {
498 // ctlz/cttz i1 Op0 --> not Op0
499 if (match(Op1, m_Zero()))
500 return BinaryOperator::CreateNot(Op0);
501 // If zero is poison, then the input can be assumed to be "true", so the
502 // instruction simplifies to "false".
503 assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1");
505 }
506
507 // If ctlz/cttz is only used as a shift amount, set is_zero_poison to true.
508 if (II.hasOneUse() && match(Op1, m_Zero()) &&
509 match(II.user_back(), m_Shift(m_Value(), m_Specific(&II))))
510 return IC.replaceOperand(II, 1, IC.Builder.getTrue());
511
512 Constant *C;
513
514 if (IsTZ) {
515 // cttz(-x) -> cttz(x)
516 if (match(Op0, m_Neg(m_Value(X))))
517 return IC.replaceOperand(II, 0, X);
518
519 // cttz(-x & x) -> cttz(x)
520 if (match(Op0, m_c_And(m_Neg(m_Value(X)), m_Deferred(X))))
521 return IC.replaceOperand(II, 0, X);
522
523 // cttz(sext(x)) -> cttz(zext(x))
524 if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) {
525 auto *Zext = IC.Builder.CreateZExt(X, II.getType());
526 auto *CttzZext =
527 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1);
528 return IC.replaceInstUsesWith(II, CttzZext);
529 }
530
531 // Zext doesn't change the number of trailing zeros, so narrow:
532 // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsPoison' parameter is 'true'.
533 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) {
534 auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X,
535 IC.Builder.getTrue());
536 auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType());
537 return IC.replaceInstUsesWith(II, ZextCttz);
538 }
539
540 // cttz(abs(x)) -> cttz(x)
541 // cttz(nabs(x)) -> cttz(x)
542 Value *Y;
544 if (SPF == SPF_ABS || SPF == SPF_NABS)
545 return IC.replaceOperand(II, 0, X);
546
547 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
548 return IC.replaceOperand(II, 0, X);
549
550 // cttz(shl(%const, %val), 1) --> add(cttz(%const, 1), %val)
551 if (match(Op0, m_Shl(m_ImmConstant(C), m_Value(X))) &&
552 match(Op1, m_One())) {
553 Value *ConstCttz =
554 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1);
555 return BinaryOperator::CreateAdd(ConstCttz, X);
556 }
557
558 // cttz(lshr exact (%const, %val), 1) --> sub(cttz(%const, 1), %val)
559 if (match(Op0, m_Exact(m_LShr(m_ImmConstant(C), m_Value(X)))) &&
560 match(Op1, m_One())) {
561 Value *ConstCttz =
562 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1);
563 return BinaryOperator::CreateSub(ConstCttz, X);
564 }
565 } else {
566 // ctlz(lshr(%const, %val), 1) --> add(ctlz(%const, 1), %val)
567 if (match(Op0, m_LShr(m_ImmConstant(C), m_Value(X))) &&
568 match(Op1, m_One())) {
569 Value *ConstCtlz =
570 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1);
571 return BinaryOperator::CreateAdd(ConstCtlz, X);
572 }
573
574 // ctlz(shl nuw (%const, %val), 1) --> sub(ctlz(%const, 1), %val)
575 if (match(Op0, m_NUWShl(m_ImmConstant(C), m_Value(X))) &&
576 match(Op1, m_One())) {
577 Value *ConstCtlz =
578 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1);
579 return BinaryOperator::CreateSub(ConstCtlz, X);
580 }
581 }
582
583 KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
584
585 // Create a mask for bits above (ctlz) or below (cttz) the first known one.
586 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
587 : Known.countMaxLeadingZeros();
588 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
589 : Known.countMinLeadingZeros();
590
591 // If all bits above (ctlz) or below (cttz) the first known one are known
592 // zero, this value is constant.
593 // FIXME: This should be in InstSimplify because we're replacing an
594 // instruction with a constant.
595 if (PossibleZeros == DefiniteZeros) {
596 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
597 return IC.replaceInstUsesWith(II, C);
598 }
599
600 // If the input to cttz/ctlz is known to be non-zero,
601 // then change the 'ZeroIsPoison' parameter to 'true'
602 // because we know the zero behavior can't affect the result.
603 if (!Known.One.isZero() ||
605 if (!match(II.getArgOperand(1), m_One()))
606 return IC.replaceOperand(II, 1, IC.Builder.getTrue());
607 }
608
609 // Add range metadata since known bits can't completely reflect what we know.
610 auto *IT = cast<IntegerType>(Op0->getType()->getScalarType());
611 if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
612 Metadata *LowAndHigh[] = {
613 ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
614 ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
615 II.setMetadata(LLVMContext::MD_range,
617 return &II;
618 }
619
620 return nullptr;
621}
622
624 assert(II.getIntrinsicID() == Intrinsic::ctpop &&
625 "Expected ctpop intrinsic");
626 Type *Ty = II.getType();
627 unsigned BitWidth = Ty->getScalarSizeInBits();
628 Value *Op0 = II.getArgOperand(0);
629 Value *X, *Y;
630
631 // ctpop(bitreverse(x)) -> ctpop(x)
632 // ctpop(bswap(x)) -> ctpop(x)
633 if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X))))
634 return IC.replaceOperand(II, 0, X);
635
636 // ctpop(rot(x)) -> ctpop(x)
637 if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) ||
638 match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) &&
639 X == Y)
640 return IC.replaceOperand(II, 0, X);
641
642 // ctpop(x | -x) -> bitwidth - cttz(x, false)
643 if (Op0->hasOneUse() &&
644 match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) {
645 Function *F =
646 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
647 auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()});
648 auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
649 return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
650 }
651
652 // ctpop(~x & (x - 1)) -> cttz(x, false)
653 if (match(Op0,
655 Function *F =
656 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
657 return CallInst::Create(F, {X, IC.Builder.getFalse()});
658 }
659
660 // Zext doesn't change the number of set bits, so narrow:
661 // ctpop (zext X) --> zext (ctpop X)
662 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
663 Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X);
664 return CastInst::Create(Instruction::ZExt, NarrowPop, Ty);
665 }
666
667 KnownBits Known(BitWidth);
668 IC.computeKnownBits(Op0, Known, 0, &II);
669
670 // If all bits are zero except for exactly one fixed bit, then the result
671 // must be 0 or 1, and we can get that answer by shifting to LSB:
672 // ctpop (X & 32) --> (X & 32) >> 5
673 // TODO: Investigate removing this as its likely unnecessary given the below
674 // `isKnownToBeAPowerOfTwo` check.
675 if ((~Known.Zero).isPowerOf2())
676 return BinaryOperator::CreateLShr(
677 Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2()));
678
679 // More generally we can also handle non-constant power of 2 patterns such as
680 // shl/shr(Pow2, X), (X & -X), etc... by transforming:
681 // ctpop(Pow2OrZero) --> icmp ne X, 0
682 if (IC.isKnownToBeAPowerOfTwo(Op0, /* OrZero */ true))
683 return CastInst::Create(Instruction::ZExt,
686 Ty);
687
688 // Add range metadata since known bits can't completely reflect what we know.
689 auto *IT = cast<IntegerType>(Ty->getScalarType());
690 unsigned MinCount = Known.countMinPopulation();
691 unsigned MaxCount = Known.countMaxPopulation();
692 if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
693 Metadata *LowAndHigh[] = {
694 ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
695 ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
696 II.setMetadata(LLVMContext::MD_range,
698 return &II;
699 }
700
701 return nullptr;
702}
703
704/// Convert a table lookup to shufflevector if the mask is constant.
705/// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
706/// which case we could lower the shufflevector with rev64 instructions
707/// as it's actually a byte reverse.
709 InstCombiner::BuilderTy &Builder) {
710 // Bail out if the mask is not a constant.
711 auto *C = dyn_cast<Constant>(II.getArgOperand(1));
712 if (!C)
713 return nullptr;
714
715 auto *VecTy = cast<FixedVectorType>(II.getType());
716 unsigned NumElts = VecTy->getNumElements();
717
718 // Only perform this transformation for <8 x i8> vector types.
719 if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
720 return nullptr;
721
722 int Indexes[8];
723
724 for (unsigned I = 0; I < NumElts; ++I) {
725 Constant *COp = C->getAggregateElement(I);
726
727 if (!COp || !isa<ConstantInt>(COp))
728 return nullptr;
729
730 Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
731
732 // Make sure the mask indices are in range.
733 if ((unsigned)Indexes[I] >= NumElts)
734 return nullptr;
735 }
736
737 auto *V1 = II.getArgOperand(0);
738 auto *V2 = Constant::getNullValue(V1->getType());
739 return Builder.CreateShuffleVector(V1, V2, ArrayRef(Indexes));
740}
741
742// Returns true iff the 2 intrinsics have the same operands, limiting the
743// comparison to the first NumOperands.
744static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
745 unsigned NumOperands) {
746 assert(I.arg_size() >= NumOperands && "Not enough operands");
747 assert(E.arg_size() >= NumOperands && "Not enough operands");
748 for (unsigned i = 0; i < NumOperands; i++)
749 if (I.getArgOperand(i) != E.getArgOperand(i))
750 return false;
751 return true;
752}
753
754// Remove trivially empty start/end intrinsic ranges, i.e. a start
755// immediately followed by an end (ignoring debuginfo or other
756// start/end intrinsics in between). As this handles only the most trivial
757// cases, tracking the nesting level is not needed:
758//
759// call @llvm.foo.start(i1 0)
760// call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed
761// call @llvm.foo.end(i1 0)
762// call @llvm.foo.end(i1 0) ; &I
763static bool
765 std::function<bool(const IntrinsicInst &)> IsStart) {
766 // We start from the end intrinsic and scan backwards, so that InstCombine
767 // has already processed (and potentially removed) all the instructions
768 // before the end intrinsic.
769 BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend());
770 for (; BI != BE; ++BI) {
771 if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) {
772 if (I->isDebugOrPseudoInst() ||
773 I->getIntrinsicID() == EndI.getIntrinsicID())
774 continue;
775 if (IsStart(*I)) {
776 if (haveSameOperands(EndI, *I, EndI.arg_size())) {
778 IC.eraseInstFromFunction(EndI);
779 return true;
780 }
781 // Skip start intrinsics that don't pair with this end intrinsic.
782 continue;
783 }
784 }
785 break;
786 }
787
788 return false;
789}
790
792 removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) {
793 return I.getIntrinsicID() == Intrinsic::vastart ||
794 I.getIntrinsicID() == Intrinsic::vacopy;
795 });
796 return nullptr;
797}
798
800 assert(Call.arg_size() > 1 && "Need at least 2 args to swap");
801 Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
802 if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
803 Call.setArgOperand(0, Arg1);
804 Call.setArgOperand(1, Arg0);
805 return &Call;
806 }
807 return nullptr;
808}
809
810/// Creates a result tuple for an overflow intrinsic \p II with a given
811/// \p Result and a constant \p Overflow value.
813 Constant *Overflow) {
814 Constant *V[] = {PoisonValue::get(Result->getType()), Overflow};
815 StructType *ST = cast<StructType>(II->getType());
817 return InsertValueInst::Create(Struct, Result, 0);
818}
819
821InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
822 WithOverflowInst *WO = cast<WithOverflowInst>(II);
823 Value *OperationResult = nullptr;
824 Constant *OverflowResult = nullptr;
825 if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
826 WO->getRHS(), *WO, OperationResult, OverflowResult))
827 return createOverflowTuple(WO, OperationResult, OverflowResult);
828 return nullptr;
829}
830
831static bool inputDenormalIsIEEE(const Function &F, const Type *Ty) {
832 Ty = Ty->getScalarType();
833 return F.getDenormalMode(Ty->getFltSemantics()).Input == DenormalMode::IEEE;
834}
835
836static bool inputDenormalIsDAZ(const Function &F, const Type *Ty) {
837 Ty = Ty->getScalarType();
838 return F.getDenormalMode(Ty->getFltSemantics()).inputsAreZero();
839}
840
841/// \returns the compare predicate type if the test performed by
842/// llvm.is.fpclass(x, \p Mask) is equivalent to fcmp o__ x, 0.0 with the
843/// floating-point environment assumed for \p F for type \p Ty
845 const Function &F, Type *Ty) {
846 switch (static_cast<unsigned>(Mask)) {
847 case fcZero:
848 if (inputDenormalIsIEEE(F, Ty))
849 return FCmpInst::FCMP_OEQ;
850 break;
851 case fcZero | fcSubnormal:
852 if (inputDenormalIsDAZ(F, Ty))
853 return FCmpInst::FCMP_OEQ;
854 break;
855 case fcPositive | fcNegZero:
856 if (inputDenormalIsIEEE(F, Ty))
857 return FCmpInst::FCMP_OGE;
858 break;
860 if (inputDenormalIsDAZ(F, Ty))
861 return FCmpInst::FCMP_OGE;
862 break;
864 if (inputDenormalIsIEEE(F, Ty))
865 return FCmpInst::FCMP_OGT;
866 break;
867 case fcNegative | fcPosZero:
868 if (inputDenormalIsIEEE(F, Ty))
869 return FCmpInst::FCMP_OLE;
870 break;
872 if (inputDenormalIsDAZ(F, Ty))
873 return FCmpInst::FCMP_OLE;
874 break;
876 if (inputDenormalIsIEEE(F, Ty))
877 return FCmpInst::FCMP_OLT;
878 break;
879 case fcPosNormal | fcPosInf:
880 if (inputDenormalIsDAZ(F, Ty))
881 return FCmpInst::FCMP_OGT;
882 break;
883 case fcNegNormal | fcNegInf:
884 if (inputDenormalIsDAZ(F, Ty))
885 return FCmpInst::FCMP_OLT;
886 break;
887 case ~fcZero & ~fcNan:
888 if (inputDenormalIsIEEE(F, Ty))
889 return FCmpInst::FCMP_ONE;
890 break;
891 case ~(fcZero | fcSubnormal) & ~fcNan:
892 if (inputDenormalIsDAZ(F, Ty))
893 return FCmpInst::FCMP_ONE;
894 break;
895 default:
896 break;
897 }
898
900}
901
902Instruction *InstCombinerImpl::foldIntrinsicIsFPClass(IntrinsicInst &II) {
903 Value *Src0 = II.getArgOperand(0);
904 Value *Src1 = II.getArgOperand(1);
905 const ConstantInt *CMask = cast<ConstantInt>(Src1);
906 FPClassTest Mask = static_cast<FPClassTest>(CMask->getZExtValue());
907 const bool IsUnordered = (Mask & fcNan) == fcNan;
908 const bool IsOrdered = (Mask & fcNan) == fcNone;
909 const FPClassTest OrderedMask = Mask & ~fcNan;
910 const FPClassTest OrderedInvertedMask = ~OrderedMask & ~fcNan;
911
912 const bool IsStrict =
913 II.getFunction()->getAttributes().hasFnAttr(Attribute::StrictFP);
914
915 Value *FNegSrc;
916 if (match(Src0, m_FNeg(m_Value(FNegSrc)))) {
917 // is.fpclass (fneg x), mask -> is.fpclass x, (fneg mask)
918
919 II.setArgOperand(1, ConstantInt::get(Src1->getType(), fneg(Mask)));
920 return replaceOperand(II, 0, FNegSrc);
921 }
922
923 Value *FAbsSrc;
924 if (match(Src0, m_FAbs(m_Value(FAbsSrc)))) {
925 II.setArgOperand(1, ConstantInt::get(Src1->getType(), inverse_fabs(Mask)));
926 return replaceOperand(II, 0, FAbsSrc);
927 }
928
929 if ((OrderedMask == fcInf || OrderedInvertedMask == fcInf) &&
930 (IsOrdered || IsUnordered) && !IsStrict) {
931 // is.fpclass(x, fcInf) -> fcmp oeq fabs(x), +inf
932 // is.fpclass(x, ~fcInf) -> fcmp one fabs(x), +inf
933 // is.fpclass(x, fcInf|fcNan) -> fcmp ueq fabs(x), +inf
934 // is.fpclass(x, ~(fcInf|fcNan)) -> fcmp une fabs(x), +inf
938 if (OrderedInvertedMask == fcInf)
939 Pred = IsUnordered ? FCmpInst::FCMP_UNE : FCmpInst::FCMP_ONE;
940
941 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Src0);
942 Value *CmpInf = Builder.CreateFCmp(Pred, Fabs, Inf);
943 CmpInf->takeName(&II);
944 return replaceInstUsesWith(II, CmpInf);
945 }
946
947 if ((OrderedMask == fcPosInf || OrderedMask == fcNegInf) &&
948 (IsOrdered || IsUnordered) && !IsStrict) {
949 // is.fpclass(x, fcPosInf) -> fcmp oeq x, +inf
950 // is.fpclass(x, fcNegInf) -> fcmp oeq x, -inf
951 // is.fpclass(x, fcPosInf|fcNan) -> fcmp ueq x, +inf
952 // is.fpclass(x, fcNegInf|fcNan) -> fcmp ueq x, -inf
953 Constant *Inf =
954 ConstantFP::getInfinity(Src0->getType(), OrderedMask == fcNegInf);
955 Value *EqInf = IsUnordered ? Builder.CreateFCmpUEQ(Src0, Inf)
956 : Builder.CreateFCmpOEQ(Src0, Inf);
957
958 EqInf->takeName(&II);
959 return replaceInstUsesWith(II, EqInf);
960 }
961
962 if ((OrderedInvertedMask == fcPosInf || OrderedInvertedMask == fcNegInf) &&
963 (IsOrdered || IsUnordered) && !IsStrict) {
964 // is.fpclass(x, ~fcPosInf) -> fcmp one x, +inf
965 // is.fpclass(x, ~fcNegInf) -> fcmp one x, -inf
966 // is.fpclass(x, ~fcPosInf|fcNan) -> fcmp une x, +inf
967 // is.fpclass(x, ~fcNegInf|fcNan) -> fcmp une x, -inf
969 OrderedInvertedMask == fcNegInf);
970 Value *NeInf = IsUnordered ? Builder.CreateFCmpUNE(Src0, Inf)
971 : Builder.CreateFCmpONE(Src0, Inf);
972 NeInf->takeName(&II);
973 return replaceInstUsesWith(II, NeInf);
974 }
975
976 if (Mask == fcNan && !IsStrict) {
977 // Equivalent of isnan. Replace with standard fcmp if we don't care about FP
978 // exceptions.
979 Value *IsNan =
981 IsNan->takeName(&II);
982 return replaceInstUsesWith(II, IsNan);
983 }
984
985 if (Mask == (~fcNan & fcAllFlags) && !IsStrict) {
986 // Equivalent of !isnan. Replace with standard fcmp.
987 Value *FCmp =
989 FCmp->takeName(&II);
990 return replaceInstUsesWith(II, FCmp);
991 }
992
994
995 // Try to replace with an fcmp with 0
996 //
997 // is.fpclass(x, fcZero) -> fcmp oeq x, 0.0
998 // is.fpclass(x, fcZero | fcNan) -> fcmp ueq x, 0.0
999 // is.fpclass(x, ~fcZero & ~fcNan) -> fcmp one x, 0.0
1000 // is.fpclass(x, ~fcZero) -> fcmp une x, 0.0
1001 //
1002 // is.fpclass(x, fcPosSubnormal | fcPosNormal | fcPosInf) -> fcmp ogt x, 0.0
1003 // is.fpclass(x, fcPositive | fcNegZero) -> fcmp oge x, 0.0
1004 //
1005 // is.fpclass(x, fcNegSubnormal | fcNegNormal | fcNegInf) -> fcmp olt x, 0.0
1006 // is.fpclass(x, fcNegative | fcPosZero) -> fcmp ole x, 0.0
1007 //
1008 if (!IsStrict && (IsOrdered || IsUnordered) &&
1009 (PredType = fpclassTestIsFCmp0(OrderedMask, *II.getFunction(),
1010 Src0->getType())) !=
1013 // Equivalent of == 0.
1014 Value *FCmp = Builder.CreateFCmp(
1015 IsUnordered ? FCmpInst::getUnorderedPredicate(PredType) : PredType,
1016 Src0, Zero);
1017
1018 FCmp->takeName(&II);
1019 return replaceInstUsesWith(II, FCmp);
1020 }
1021
1022 KnownFPClass Known = computeKnownFPClass(Src0, Mask, &II);
1023
1024 // Clear test bits we know must be false from the source value.
1025 // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
1026 // fp_class (ninf x), ninf|pinf|other -> fp_class (ninf x), other
1027 if ((Mask & Known.KnownFPClasses) != Mask) {
1028 II.setArgOperand(
1029 1, ConstantInt::get(Src1->getType(), Mask & Known.KnownFPClasses));
1030 return &II;
1031 }
1032
1033 // If none of the tests which can return false are possible, fold to true.
1034 // fp_class (nnan x), ~(qnan|snan) -> true
1035 // fp_class (ninf x), ~(ninf|pinf) -> true
1036 if (Mask == Known.KnownFPClasses)
1037 return replaceInstUsesWith(II, ConstantInt::get(II.getType(), true));
1038
1039 return nullptr;
1040}
1041
1042static std::optional<bool> getKnownSign(Value *Op, Instruction *CxtI,
1043 const DataLayout &DL, AssumptionCache *AC,
1044 DominatorTree *DT) {
1045 KnownBits Known = computeKnownBits(Op, DL, 0, AC, CxtI, DT);
1046 if (Known.isNonNegative())
1047 return false;
1048 if (Known.isNegative())
1049 return true;
1050
1051 Value *X, *Y;
1052 if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
1054
1056 ICmpInst::ICMP_SLT, Op, Constant::getNullValue(Op->getType()), CxtI, DL);
1057}
1058
1059static std::optional<bool> getKnownSignOrZero(Value *Op, Instruction *CxtI,
1060 const DataLayout &DL,
1061 AssumptionCache *AC,
1062 DominatorTree *DT) {
1063 if (std::optional<bool> Sign = getKnownSign(Op, CxtI, DL, AC, DT))
1064 return Sign;
1065
1066 Value *X, *Y;
1067 if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
1069
1070 return std::nullopt;
1071}
1072
1073/// Return true if two values \p Op0 and \p Op1 are known to have the same sign.
1074static bool signBitMustBeTheSame(Value *Op0, Value *Op1, Instruction *CxtI,
1075 const DataLayout &DL, AssumptionCache *AC,
1076 DominatorTree *DT) {
1077 std::optional<bool> Known1 = getKnownSign(Op1, CxtI, DL, AC, DT);
1078 if (!Known1)
1079 return false;
1080 std::optional<bool> Known0 = getKnownSign(Op0, CxtI, DL, AC, DT);
1081 if (!Known0)
1082 return false;
1083 return *Known0 == *Known1;
1084}
1085
1086/// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This
1087/// can trigger other combines.
1089 InstCombiner::BuilderTy &Builder) {
1090 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1091 assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin ||
1092 MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) &&
1093 "Expected a min or max intrinsic");
1094
1095 // TODO: Match vectors with undef elements, but undef may not propagate.
1096 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1097 Value *X;
1098 const APInt *C0, *C1;
1099 if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) ||
1100 !match(Op1, m_APInt(C1)))
1101 return nullptr;
1102
1103 // Check for necessary no-wrap and overflow constraints.
1104 bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin;
1105 auto *Add = cast<BinaryOperator>(Op0);
1106 if ((IsSigned && !Add->hasNoSignedWrap()) ||
1107 (!IsSigned && !Add->hasNoUnsignedWrap()))
1108 return nullptr;
1109
1110 // If the constant difference overflows, then instsimplify should reduce the
1111 // min/max to the add or C1.
1112 bool Overflow;
1113 APInt CDiff =
1114 IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow);
1115 assert(!Overflow && "Expected simplify of min/max");
1116
1117 // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0
1118 // Note: the "mismatched" no-overflow setting does not propagate.
1119 Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff);
1120 Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC);
1121 return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1))
1122 : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1));
1123}
1124/// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
1125Instruction *InstCombinerImpl::matchSAddSubSat(IntrinsicInst &MinMax1) {
1126 Type *Ty = MinMax1.getType();
1127
1128 // We are looking for a tree of:
1129 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
1130 // Where the min and max could be reversed
1131 Instruction *MinMax2;
1133 const APInt *MinValue, *MaxValue;
1134 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
1135 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
1136 return nullptr;
1137 } else if (match(&MinMax1,
1138 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
1139 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
1140 return nullptr;
1141 } else
1142 return nullptr;
1143
1144 // Check that the constants clamp a saturate, and that the new type would be
1145 // sensible to convert to.
1146 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
1147 return nullptr;
1148 // In what bitwidth can this be treated as saturating arithmetics?
1149 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
1150 // FIXME: This isn't quite right for vectors, but using the scalar type is a
1151 // good first approximation for what should be done there.
1152 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
1153 return nullptr;
1154
1155 // Also make sure that the inner min/max and the add/sub have one use.
1156 if (!MinMax2->hasOneUse() || !AddSub->hasOneUse())
1157 return nullptr;
1158
1159 // Create the new type (which can be a vector type)
1160 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
1161
1162 Intrinsic::ID IntrinsicID;
1163 if (AddSub->getOpcode() == Instruction::Add)
1164 IntrinsicID = Intrinsic::sadd_sat;
1165 else if (AddSub->getOpcode() == Instruction::Sub)
1166 IntrinsicID = Intrinsic::ssub_sat;
1167 else
1168 return nullptr;
1169
1170 // The two operands of the add/sub must be nsw-truncatable to the NewTy. This
1171 // is usually achieved via a sext from a smaller type.
1172 if (ComputeMaxSignificantBits(AddSub->getOperand(0), 0, AddSub) >
1173 NewBitWidth ||
1174 ComputeMaxSignificantBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth)
1175 return nullptr;
1176
1177 // Finally create and return the sat intrinsic, truncated to the new type
1178 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
1179 Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy);
1180 Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy);
1181 Value *Sat = Builder.CreateCall(F, {AT, BT});
1182 return CastInst::Create(Instruction::SExt, Sat, Ty);
1183}
1184
1185
1186/// If we have a clamp pattern like max (min X, 42), 41 -- where the output
1187/// can only be one of two possible constant values -- turn that into a select
1188/// of constants.
1190 InstCombiner::BuilderTy &Builder) {
1191 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1192 Value *X;
1193 const APInt *C0, *C1;
1194 if (!match(I1, m_APInt(C1)) || !I0->hasOneUse())
1195 return nullptr;
1196
1198 switch (II->getIntrinsicID()) {
1199 case Intrinsic::smax:
1200 if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
1201 Pred = ICmpInst::ICMP_SGT;
1202 break;
1203 case Intrinsic::smin:
1204 if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
1205 Pred = ICmpInst::ICMP_SLT;
1206 break;
1207 case Intrinsic::umax:
1208 if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
1209 Pred = ICmpInst::ICMP_UGT;
1210 break;
1211 case Intrinsic::umin:
1212 if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
1213 Pred = ICmpInst::ICMP_ULT;
1214 break;
1215 default:
1216 llvm_unreachable("Expected min/max intrinsic");
1217 }
1218 if (Pred == CmpInst::BAD_ICMP_PREDICATE)
1219 return nullptr;
1220
1221 // max (min X, 42), 41 --> X > 41 ? 42 : 41
1222 // min (max X, 42), 43 --> X < 43 ? 42 : 43
1223 Value *Cmp = Builder.CreateICmp(Pred, X, I1);
1224 return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1);
1225}
1226
1227/// If this min/max has a constant operand and an operand that is a matching
1228/// min/max with a constant operand, constant-fold the 2 constant operands.
1230 IRBuilderBase &Builder,
1231 const SimplifyQuery &SQ) {
1232 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1233 auto *LHS = dyn_cast<MinMaxIntrinsic>(II->getArgOperand(0));
1234 if (!LHS)
1235 return nullptr;
1236
1237 Constant *C0, *C1;
1238 if (!match(LHS->getArgOperand(1), m_ImmConstant(C0)) ||
1239 !match(II->getArgOperand(1), m_ImmConstant(C1)))
1240 return nullptr;
1241
1242 // max (max X, C0), C1 --> max X, (max C0, C1)
1243 // min (min X, C0), C1 --> min X, (min C0, C1)
1244 // umax (smax X, nneg C0), nneg C1 --> smax X, (umax C0, C1)
1245 // smin (umin X, nneg C0), nneg C1 --> umin X, (smin C0, C1)
1246 Intrinsic::ID InnerMinMaxID = LHS->getIntrinsicID();
1247 if (InnerMinMaxID != MinMaxID &&
1248 !(((MinMaxID == Intrinsic::umax && InnerMinMaxID == Intrinsic::smax) ||
1249 (MinMaxID == Intrinsic::smin && InnerMinMaxID == Intrinsic::umin)) &&
1250 isKnownNonNegative(C0, SQ) && isKnownNonNegative(C1, SQ)))
1251 return nullptr;
1252
1254 Value *CondC = Builder.CreateICmp(Pred, C0, C1);
1255 Value *NewC = Builder.CreateSelect(CondC, C0, C1);
1256 return Builder.CreateIntrinsic(InnerMinMaxID, II->getType(),
1257 {LHS->getArgOperand(0), NewC});
1258}
1259
1260/// If this min/max has a matching min/max operand with a constant, try to push
1261/// the constant operand into this instruction. This can enable more folds.
1262static Instruction *
1264 InstCombiner::BuilderTy &Builder) {
1265 // Match and capture a min/max operand candidate.
1266 Value *X, *Y;
1267 Constant *C;
1268 Instruction *Inner;
1270 m_Instruction(Inner),
1272 m_Value(Y))))
1273 return nullptr;
1274
1275 // The inner op must match. Check for constants to avoid infinite loops.
1276 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1277 auto *InnerMM = dyn_cast<IntrinsicInst>(Inner);
1278 if (!InnerMM || InnerMM->getIntrinsicID() != MinMaxID ||
1280 return nullptr;
1281
1282 // max (max X, C), Y --> max (max X, Y), C
1283 Function *MinMax =
1284 Intrinsic::getDeclaration(II->getModule(), MinMaxID, II->getType());
1285 Value *NewInner = Builder.CreateBinaryIntrinsic(MinMaxID, X, Y);
1286 NewInner->takeName(Inner);
1287 return CallInst::Create(MinMax, {NewInner, C});
1288}
1289
1290/// Reduce a sequence of min/max intrinsics with a common operand.
1292 // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1293 auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
1294 auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1));
1295 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1296 if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID ||
1297 RHS->getIntrinsicID() != MinMaxID ||
1298 (!LHS->hasOneUse() && !RHS->hasOneUse()))
1299 return nullptr;
1300
1301 Value *A = LHS->getArgOperand(0);
1302 Value *B = LHS->getArgOperand(1);
1303 Value *C = RHS->getArgOperand(0);
1304 Value *D = RHS->getArgOperand(1);
1305
1306 // Look for a common operand.
1307 Value *MinMaxOp = nullptr;
1308 Value *ThirdOp = nullptr;
1309 if (LHS->hasOneUse()) {
1310 // If the LHS is only used in this chain and the RHS is used outside of it,
1311 // reuse the RHS min/max because that will eliminate the LHS.
1312 if (D == A || C == A) {
1313 // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1314 // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1315 MinMaxOp = RHS;
1316 ThirdOp = B;
1317 } else if (D == B || C == B) {
1318 // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1319 // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1320 MinMaxOp = RHS;
1321 ThirdOp = A;
1322 }
1323 } else {
1324 assert(RHS->hasOneUse() && "Expected one-use operand");
1325 // Reuse the LHS. This will eliminate the RHS.
1326 if (D == A || D == B) {
1327 // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1328 // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1329 MinMaxOp = LHS;
1330 ThirdOp = C;
1331 } else if (C == A || C == B) {
1332 // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1333 // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1334 MinMaxOp = LHS;
1335 ThirdOp = D;
1336 }
1337 }
1338
1339 if (!MinMaxOp || !ThirdOp)
1340 return nullptr;
1341
1342 Module *Mod = II->getModule();
1344 return CallInst::Create(MinMax, { MinMaxOp, ThirdOp });
1345}
1346
1347/// If all arguments of the intrinsic are unary shuffles with the same mask,
1348/// try to shuffle after the intrinsic.
1349static Instruction *
1351 InstCombiner::BuilderTy &Builder) {
1352 // TODO: This should be extended to handle other intrinsics like fshl, ctpop,
1353 // etc. Use llvm::isTriviallyVectorizable() and related to determine
1354 // which intrinsics are safe to shuffle?
1355 switch (II->getIntrinsicID()) {
1356 case Intrinsic::smax:
1357 case Intrinsic::smin:
1358 case Intrinsic::umax:
1359 case Intrinsic::umin:
1360 case Intrinsic::fma:
1361 case Intrinsic::fshl:
1362 case Intrinsic::fshr:
1363 break;
1364 default:
1365 return nullptr;
1366 }
1367
1368 Value *X;
1369 ArrayRef<int> Mask;
1370 if (!match(II->getArgOperand(0),
1371 m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))
1372 return nullptr;
1373
1374 // At least 1 operand must have 1 use because we are creating 2 instructions.
1375 if (none_of(II->args(), [](Value *V) { return V->hasOneUse(); }))
1376 return nullptr;
1377
1378 // See if all arguments are shuffled with the same mask.
1379 SmallVector<Value *, 4> NewArgs(II->arg_size());
1380 NewArgs[0] = X;
1381 Type *SrcTy = X->getType();
1382 for (unsigned i = 1, e = II->arg_size(); i != e; ++i) {
1383 if (!match(II->getArgOperand(i),
1384 m_Shuffle(m_Value(X), m_Undef(), m_SpecificMask(Mask))) ||
1385 X->getType() != SrcTy)
1386 return nullptr;
1387 NewArgs[i] = X;
1388 }
1389
1390 // intrinsic (shuf X, M), (shuf Y, M), ... --> shuf (intrinsic X, Y, ...), M
1391 Instruction *FPI = isa<FPMathOperator>(II) ? II : nullptr;
1392 Value *NewIntrinsic =
1393 Builder.CreateIntrinsic(II->getIntrinsicID(), SrcTy, NewArgs, FPI);
1394 return new ShuffleVectorInst(NewIntrinsic, Mask);
1395}
1396
1397/// Fold the following cases and accepts bswap and bitreverse intrinsics:
1398/// bswap(logic_op(bswap(x), y)) --> logic_op(x, bswap(y))
1399/// bswap(logic_op(bswap(x), bswap(y))) --> logic_op(x, y) (ignores multiuse)
1400template <Intrinsic::ID IntrID>
1402 InstCombiner::BuilderTy &Builder) {
1403 static_assert(IntrID == Intrinsic::bswap || IntrID == Intrinsic::bitreverse,
1404 "This helper only supports BSWAP and BITREVERSE intrinsics");
1405
1406 Value *X, *Y;
1407 // Find bitwise logic op. Check that it is a BinaryOperator explicitly so we
1408 // don't match ConstantExpr that aren't meaningful for this transform.
1410 isa<BinaryOperator>(V)) {
1411 Value *OldReorderX, *OldReorderY;
1412 BinaryOperator::BinaryOps Op = cast<BinaryOperator>(V)->getOpcode();
1413
1414 // If both X and Y are bswap/bitreverse, the transform reduces the number
1415 // of instructions even if there's multiuse.
1416 // If only one operand is bswap/bitreverse, we need to ensure the operand
1417 // have only one use.
1418 if (match(X, m_Intrinsic<IntrID>(m_Value(OldReorderX))) &&
1419 match(Y, m_Intrinsic<IntrID>(m_Value(OldReorderY)))) {
1420 return BinaryOperator::Create(Op, OldReorderX, OldReorderY);
1421 }
1422
1423 if (match(X, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderX))))) {
1424 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, Y);
1425 return BinaryOperator::Create(Op, OldReorderX, NewReorder);
1426 }
1427
1428 if (match(Y, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderY))))) {
1429 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, X);
1430 return BinaryOperator::Create(Op, NewReorder, OldReorderY);
1431 }
1432 }
1433 return nullptr;
1434}
1435
1436/// CallInst simplification. This mostly only handles folding of intrinsic
1437/// instructions. For normal calls, it allows visitCallBase to do the heavy
1438/// lifting.
1440 // Don't try to simplify calls without uses. It will not do anything useful,
1441 // but will result in the following folds being skipped.
1442 if (!CI.use_empty()) {
1444 Args.reserve(CI.arg_size());
1445 for (Value *Op : CI.args())
1446 Args.push_back(Op);
1447 if (Value *V = simplifyCall(&CI, CI.getCalledOperand(), Args,
1448 SQ.getWithInstruction(&CI)))
1449 return replaceInstUsesWith(CI, V);
1450 }
1451
1452 if (Value *FreedOp = getFreedOperand(&CI, &TLI))
1453 return visitFree(CI, FreedOp);
1454
1455 // If the caller function (i.e. us, the function that contains this CallInst)
1456 // is nounwind, mark the call as nounwind, even if the callee isn't.
1457 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
1458 CI.setDoesNotThrow();
1459 return &CI;
1460 }
1461
1462 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
1463 if (!II) return visitCallBase(CI);
1464
1465 // For atomic unordered mem intrinsics if len is not a positive or
1466 // not a multiple of element size then behavior is undefined.
1467 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II))
1468 if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength()))
1469 if (NumBytes->isNegative() ||
1470 (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) {
1472 assert(AMI->getType()->isVoidTy() &&
1473 "non void atomic unordered mem intrinsic");
1474 return eraseInstFromFunction(*AMI);
1475 }
1476
1477 // Intrinsics cannot occur in an invoke or a callbr, so handle them here
1478 // instead of in visitCallBase.
1479 if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
1480 bool Changed = false;
1481
1482 // memmove/cpy/set of zero bytes is a noop.
1483 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
1484 if (NumBytes->isNullValue())
1485 return eraseInstFromFunction(CI);
1486 }
1487
1488 // No other transformations apply to volatile transfers.
1489 if (auto *M = dyn_cast<MemIntrinsic>(MI))
1490 if (M->isVolatile())
1491 return nullptr;
1492
1493 // If we have a memmove and the source operation is a constant global,
1494 // then the source and dest pointers can't alias, so we can change this
1495 // into a call to memcpy.
1496 if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
1497 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1498 if (GVSrc->isConstant()) {
1499 Module *M = CI.getModule();
1500 Intrinsic::ID MemCpyID =
1501 isa<AtomicMemMoveInst>(MMI)
1502 ? Intrinsic::memcpy_element_unordered_atomic
1503 : Intrinsic::memcpy;
1504 Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1505 CI.getArgOperand(1)->getType(),
1506 CI.getArgOperand(2)->getType() };
1507 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
1508 Changed = true;
1509 }
1510 }
1511
1512 if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1513 // memmove(x,x,size) -> noop.
1514 if (MTI->getSource() == MTI->getDest())
1515 return eraseInstFromFunction(CI);
1516 }
1517
1518 // If we can determine a pointer alignment that is bigger than currently
1519 // set, update the alignment.
1520 if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1522 return I;
1523 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
1524 if (Instruction *I = SimplifyAnyMemSet(MSI))
1525 return I;
1526 }
1527
1528 if (Changed) return II;
1529 }
1530
1531 // For fixed width vector result intrinsics, use the generic demanded vector
1532 // support.
1533 if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) {
1534 auto VWidth = IIFVTy->getNumElements();
1535 APInt PoisonElts(VWidth, 0);
1536 APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1537 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, PoisonElts)) {
1538 if (V != II)
1539 return replaceInstUsesWith(*II, V);
1540 return II;
1541 }
1542 }
1543
1544 if (II->isCommutative()) {
1545 if (auto Pair = matchSymmetricPair(II->getOperand(0), II->getOperand(1))) {
1546 replaceOperand(*II, 0, Pair->first);
1547 replaceOperand(*II, 1, Pair->second);
1548 return II;
1549 }
1550
1551 if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI))
1552 return NewCall;
1553 }
1554
1555 // Unused constrained FP intrinsic calls may have declared side effect, which
1556 // prevents it from being removed. In some cases however the side effect is
1557 // actually absent. To detect this case, call SimplifyConstrainedFPCall. If it
1558 // returns a replacement, the call may be removed.
1559 if (CI.use_empty() && isa<ConstrainedFPIntrinsic>(CI)) {
1561 return eraseInstFromFunction(CI);
1562 }
1563
1564 Intrinsic::ID IID = II->getIntrinsicID();
1565 switch (IID) {
1566 case Intrinsic::objectsize: {
1567 SmallVector<Instruction *> InsertedInstructions;
1568 if (Value *V = lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/false,
1569 &InsertedInstructions)) {
1570 for (Instruction *Inserted : InsertedInstructions)
1571 Worklist.add(Inserted);
1572 return replaceInstUsesWith(CI, V);
1573 }
1574 return nullptr;
1575 }
1576 case Intrinsic::abs: {
1577 Value *IIOperand = II->getArgOperand(0);
1578 bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue();
1579
1580 // abs(-x) -> abs(x)
1581 // TODO: Copy nsw if it was present on the neg?
1582 Value *X;
1583 if (match(IIOperand, m_Neg(m_Value(X))))
1584 return replaceOperand(*II, 0, X);
1585 if (match(IIOperand, m_Select(m_Value(), m_Value(X), m_Neg(m_Deferred(X)))))
1586 return replaceOperand(*II, 0, X);
1587 if (match(IIOperand, m_Select(m_Value(), m_Neg(m_Value(X)), m_Deferred(X))))
1588 return replaceOperand(*II, 0, X);
1589
1590 Value *Y;
1591 // abs(a * abs(b)) -> abs(a * b)
1592 if (match(IIOperand,
1594 m_Intrinsic<Intrinsic::abs>(m_Value(Y)))))) {
1595 bool NSW =
1596 cast<Instruction>(IIOperand)->hasNoSignedWrap() && IntMinIsPoison;
1597 auto *XY = NSW ? Builder.CreateNSWMul(X, Y) : Builder.CreateMul(X, Y);
1598 return replaceOperand(*II, 0, XY);
1599 }
1600
1601 if (std::optional<bool> Known =
1602 getKnownSignOrZero(IIOperand, II, DL, &AC, &DT)) {
1603 // abs(x) -> x if x >= 0 (include abs(x-y) --> x - y where x >= y)
1604 // abs(x) -> x if x > 0 (include abs(x-y) --> x - y where x > y)
1605 if (!*Known)
1606 return replaceInstUsesWith(*II, IIOperand);
1607
1608 // abs(x) -> -x if x < 0
1609 // abs(x) -> -x if x < = 0 (include abs(x-y) --> y - x where x <= y)
1610 if (IntMinIsPoison)
1611 return BinaryOperator::CreateNSWNeg(IIOperand);
1612 return BinaryOperator::CreateNeg(IIOperand);
1613 }
1614
1615 // abs (sext X) --> zext (abs X*)
1616 // Clear the IsIntMin (nsw) bit on the abs to allow narrowing.
1617 if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) {
1618 Value *NarrowAbs =
1619 Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse());
1620 return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType());
1621 }
1622
1623 // Match a complicated way to check if a number is odd/even:
1624 // abs (srem X, 2) --> and X, 1
1625 const APInt *C;
1626 if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2)
1627 return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1));
1628
1629 break;
1630 }
1631 case Intrinsic::umin: {
1632 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1633 // umin(x, 1) == zext(x != 0)
1634 if (match(I1, m_One())) {
1635 assert(II->getType()->getScalarSizeInBits() != 1 &&
1636 "Expected simplify of umin with max constant");
1637 Value *Zero = Constant::getNullValue(I0->getType());
1638 Value *Cmp = Builder.CreateICmpNE(I0, Zero);
1639 return CastInst::Create(Instruction::ZExt, Cmp, II->getType());
1640 }
1641 [[fallthrough]];
1642 }
1643 case Intrinsic::umax: {
1644 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1645 Value *X, *Y;
1646 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) &&
1647 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1648 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1649 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1650 }
1651 Constant *C;
1652 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1653 I0->hasOneUse()) {
1654 if (Constant *NarrowC = getLosslessUnsignedTrunc(C, X->getType())) {
1655 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1656 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1657 }
1658 }
1659 // If both operands of unsigned min/max are sign-extended, it is still ok
1660 // to narrow the operation.
1661 [[fallthrough]];
1662 }
1663 case Intrinsic::smax:
1664 case Intrinsic::smin: {
1665 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1666 Value *X, *Y;
1667 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) &&
1668 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1669 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1670 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1671 }
1672
1673 Constant *C;
1674 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1675 I0->hasOneUse()) {
1676 if (Constant *NarrowC = getLosslessSignedTrunc(C, X->getType())) {
1677 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1678 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1679 }
1680 }
1681
1682 // umin(i1 X, i1 Y) -> and i1 X, Y
1683 // smax(i1 X, i1 Y) -> and i1 X, Y
1684 if ((IID == Intrinsic::umin || IID == Intrinsic::smax) &&
1685 II->getType()->isIntOrIntVectorTy(1)) {
1686 return BinaryOperator::CreateAnd(I0, I1);
1687 }
1688
1689 // umax(i1 X, i1 Y) -> or i1 X, Y
1690 // smin(i1 X, i1 Y) -> or i1 X, Y
1691 if ((IID == Intrinsic::umax || IID == Intrinsic::smin) &&
1692 II->getType()->isIntOrIntVectorTy(1)) {
1693 return BinaryOperator::CreateOr(I0, I1);
1694 }
1695
1696 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
1697 // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y)
1698 // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y)
1699 // TODO: Canonicalize neg after min/max if I1 is constant.
1700 if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) &&
1701 (I0->hasOneUse() || I1->hasOneUse())) {
1703 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y);
1704 return BinaryOperator::CreateNSWNeg(InvMaxMin);
1705 }
1706 }
1707
1708 // (umax X, (xor X, Pow2))
1709 // -> (or X, Pow2)
1710 // (umin X, (xor X, Pow2))
1711 // -> (and X, ~Pow2)
1712 // (smax X, (xor X, Pos_Pow2))
1713 // -> (or X, Pos_Pow2)
1714 // (smin X, (xor X, Pos_Pow2))
1715 // -> (and X, ~Pos_Pow2)
1716 // (smax X, (xor X, Neg_Pow2))
1717 // -> (and X, ~Neg_Pow2)
1718 // (smin X, (xor X, Neg_Pow2))
1719 // -> (or X, Neg_Pow2)
1720 if ((match(I0, m_c_Xor(m_Specific(I1), m_Value(X))) ||
1721 match(I1, m_c_Xor(m_Specific(I0), m_Value(X)))) &&
1722 isKnownToBeAPowerOfTwo(X, /* OrZero */ true)) {
1723 bool UseOr = IID == Intrinsic::smax || IID == Intrinsic::umax;
1724 bool UseAndN = IID == Intrinsic::smin || IID == Intrinsic::umin;
1725
1726 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
1727 auto KnownSign = getKnownSign(X, II, DL, &AC, &DT);
1728 if (KnownSign == std::nullopt) {
1729 UseOr = false;
1730 UseAndN = false;
1731 } else if (*KnownSign /* true is Signed. */) {
1732 UseOr ^= true;
1733 UseAndN ^= true;
1734 Type *Ty = I0->getType();
1735 // Negative power of 2 must be IntMin. It's possible to be able to
1736 // prove negative / power of 2 without actually having known bits, so
1737 // just get the value by hand.
1740 }
1741 }
1742 if (UseOr)
1743 return BinaryOperator::CreateOr(I0, X);
1744 else if (UseAndN)
1745 return BinaryOperator::CreateAnd(I0, Builder.CreateNot(X));
1746 }
1747
1748 // If we can eliminate ~A and Y is free to invert:
1749 // max ~A, Y --> ~(min A, ~Y)
1750 //
1751 // Examples:
1752 // max ~A, ~Y --> ~(min A, Y)
1753 // max ~A, C --> ~(min A, ~C)
1754 // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z))
1755 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
1756 Value *A;
1757 if (match(X, m_OneUse(m_Not(m_Value(A)))) &&
1758 !isFreeToInvert(A, A->hasOneUse())) {
1759 if (Value *NotY = getFreelyInverted(Y, Y->hasOneUse(), &Builder)) {
1761 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY);
1762 return BinaryOperator::CreateNot(InvMaxMin);
1763 }
1764 }
1765 return nullptr;
1766 };
1767
1768 if (Instruction *I = moveNotAfterMinMax(I0, I1))
1769 return I;
1770 if (Instruction *I = moveNotAfterMinMax(I1, I0))
1771 return I;
1772
1774 return I;
1775
1776 // minmax (X & NegPow2C, Y & NegPow2C) --> minmax(X, Y) & NegPow2C
1777 const APInt *RHSC;
1778 if (match(I0, m_OneUse(m_And(m_Value(X), m_NegatedPower2(RHSC)))) &&
1779 match(I1, m_OneUse(m_And(m_Value(Y), m_SpecificInt(*RHSC)))))
1780 return BinaryOperator::CreateAnd(Builder.CreateBinaryIntrinsic(IID, X, Y),
1781 ConstantInt::get(II->getType(), *RHSC));
1782
1783 // smax(X, -X) --> abs(X)
1784 // smin(X, -X) --> -abs(X)
1785 // umax(X, -X) --> -abs(X)
1786 // umin(X, -X) --> abs(X)
1787 if (isKnownNegation(I0, I1)) {
1788 // We can choose either operand as the input to abs(), but if we can
1789 // eliminate the only use of a value, that's better for subsequent
1790 // transforms/analysis.
1791 if (I0->hasOneUse() && !I1->hasOneUse())
1792 std::swap(I0, I1);
1793
1794 // This is some variant of abs(). See if we can propagate 'nsw' to the abs
1795 // operation and potentially its negation.
1796 bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true);
1798 Intrinsic::abs, I0,
1799 ConstantInt::getBool(II->getContext(), IntMinIsPoison));
1800
1801 // We don't have a "nabs" intrinsic, so negate if needed based on the
1802 // max/min operation.
1803 if (IID == Intrinsic::smin || IID == Intrinsic::umax)
1804 Abs = Builder.CreateNeg(Abs, "nabs", IntMinIsPoison);
1805 return replaceInstUsesWith(CI, Abs);
1806 }
1807
1808 if (Instruction *Sel = foldClampRangeOfTwo(II, Builder))
1809 return Sel;
1810
1811 if (Instruction *SAdd = matchSAddSubSat(*II))
1812 return SAdd;
1813
1814 if (Value *NewMinMax = reassociateMinMaxWithConstants(II, Builder, SQ))
1815 return replaceInstUsesWith(*II, NewMinMax);
1816
1818 return R;
1819
1820 if (Instruction *NewMinMax = factorizeMinMaxTree(II))
1821 return NewMinMax;
1822
1823 // Try to fold minmax with constant RHS based on range information
1824 if (match(I1, m_APIntAllowUndef(RHSC))) {
1825 ICmpInst::Predicate Pred =
1827 bool IsSigned = MinMaxIntrinsic::isSigned(IID);
1829 I0, IsSigned, SQ.getWithInstruction(II));
1830 if (!LHS_CR.isFullSet()) {
1831 if (LHS_CR.icmp(Pred, *RHSC))
1832 return replaceInstUsesWith(*II, I0);
1833 if (LHS_CR.icmp(ICmpInst::getSwappedPredicate(Pred), *RHSC))
1834 return replaceInstUsesWith(*II,
1835 ConstantInt::get(II->getType(), *RHSC));
1836 }
1837 }
1838
1839 break;
1840 }
1841 case Intrinsic::bitreverse: {
1842 Value *IIOperand = II->getArgOperand(0);
1843 // bitrev (zext i1 X to ?) --> X ? SignBitC : 0
1844 Value *X;
1845 if (match(IIOperand, m_ZExt(m_Value(X))) &&
1846 X->getType()->isIntOrIntVectorTy(1)) {
1847 Type *Ty = II->getType();
1849 return SelectInst::Create(X, ConstantInt::get(Ty, SignBit),
1851 }
1852
1853 if (Instruction *crossLogicOpFold =
1854 foldBitOrderCrossLogicOp<Intrinsic::bitreverse>(IIOperand, Builder))
1855 return crossLogicOpFold;
1856
1857 break;
1858 }
1859 case Intrinsic::bswap: {
1860 Value *IIOperand = II->getArgOperand(0);
1861
1862 // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as
1863 // inverse-shift-of-bswap:
1864 // bswap (shl X, Y) --> lshr (bswap X), Y
1865 // bswap (lshr X, Y) --> shl (bswap X), Y
1866 Value *X, *Y;
1867 if (match(IIOperand, m_OneUse(m_LogicalShift(m_Value(X), m_Value(Y))))) {
1868 // The transform allows undef vector elements, so try a constant match
1869 // first. If knownbits can handle that case, that clause could be removed.
1870 unsigned BitWidth = IIOperand->getType()->getScalarSizeInBits();
1871 const APInt *C;
1872 if ((match(Y, m_APIntAllowUndef(C)) && (*C & 7) == 0) ||
1874 Value *NewSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
1875 BinaryOperator::BinaryOps InverseShift =
1876 cast<BinaryOperator>(IIOperand)->getOpcode() == Instruction::Shl
1877 ? Instruction::LShr
1878 : Instruction::Shl;
1879 return BinaryOperator::Create(InverseShift, NewSwap, Y);
1880 }
1881 }
1882
1883 KnownBits Known = computeKnownBits(IIOperand, 0, II);
1884 uint64_t LZ = alignDown(Known.countMinLeadingZeros(), 8);
1885 uint64_t TZ = alignDown(Known.countMinTrailingZeros(), 8);
1886 unsigned BW = Known.getBitWidth();
1887
1888 // bswap(x) -> shift(x) if x has exactly one "active byte"
1889 if (BW - LZ - TZ == 8) {
1890 assert(LZ != TZ && "active byte cannot be in the middle");
1891 if (LZ > TZ) // -> shl(x) if the "active byte" is in the low part of x
1892 return BinaryOperator::CreateNUWShl(
1893 IIOperand, ConstantInt::get(IIOperand->getType(), LZ - TZ));
1894 // -> lshr(x) if the "active byte" is in the high part of x
1895 return BinaryOperator::CreateExactLShr(
1896 IIOperand, ConstantInt::get(IIOperand->getType(), TZ - LZ));
1897 }
1898
1899 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1900 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1901 unsigned C = X->getType()->getScalarSizeInBits() - BW;
1902 Value *CV = ConstantInt::get(X->getType(), C);
1903 Value *V = Builder.CreateLShr(X, CV);
1904 return new TruncInst(V, IIOperand->getType());
1905 }
1906
1907 if (Instruction *crossLogicOpFold =
1908 foldBitOrderCrossLogicOp<Intrinsic::bswap>(IIOperand, Builder)) {
1909 return crossLogicOpFold;
1910 }
1911
1912 // Try to fold into bitreverse if bswap is the root of the expression tree.
1913 if (Instruction *BitOp = matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ false,
1914 /*MatchBitReversals*/ true))
1915 return BitOp;
1916 break;
1917 }
1918 case Intrinsic::masked_load:
1919 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
1920 return replaceInstUsesWith(CI, SimplifiedMaskedOp);
1921 break;
1922 case Intrinsic::masked_store:
1923 return simplifyMaskedStore(*II);
1924 case Intrinsic::masked_gather:
1925 return simplifyMaskedGather(*II);
1926 case Intrinsic::masked_scatter:
1927 return simplifyMaskedScatter(*II);
1928 case Intrinsic::launder_invariant_group:
1929 case Intrinsic::strip_invariant_group:
1930 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
1931 return replaceInstUsesWith(*II, SkippedBarrier);
1932 break;
1933 case Intrinsic::powi:
1934 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
1935 // 0 and 1 are handled in instsimplify
1936 // powi(x, -1) -> 1/x
1937 if (Power->isMinusOne())
1938 return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0),
1939 II->getArgOperand(0), II);
1940 // powi(x, 2) -> x*x
1941 if (Power->equalsInt(2))
1943 II->getArgOperand(0), II);
1944
1945 if (!Power->getValue()[0]) {
1946 Value *X;
1947 // If power is even:
1948 // powi(-x, p) -> powi(x, p)
1949 // powi(fabs(x), p) -> powi(x, p)
1950 // powi(copysign(x, y), p) -> powi(x, p)
1951 if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) ||
1952 match(II->getArgOperand(0), m_FAbs(m_Value(X))) ||
1953 match(II->getArgOperand(0),
1954 m_Intrinsic<Intrinsic::copysign>(m_Value(X), m_Value())))
1955 return replaceOperand(*II, 0, X);
1956 }
1957 }
1958 break;
1959
1960 case Intrinsic::cttz:
1961 case Intrinsic::ctlz:
1962 if (auto *I = foldCttzCtlz(*II, *this))
1963 return I;
1964 break;
1965
1966 case Intrinsic::ctpop:
1967 if (auto *I = foldCtpop(*II, *this))
1968 return I;
1969 break;
1970
1971 case Intrinsic::fshl:
1972 case Intrinsic::fshr: {
1973 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1974 Type *Ty = II->getType();
1975 unsigned BitWidth = Ty->getScalarSizeInBits();
1976 Constant *ShAmtC;
1977 if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC))) {
1978 // Canonicalize a shift amount constant operand to modulo the bit-width.
1979 Constant *WidthC = ConstantInt::get(Ty, BitWidth);
1980 Constant *ModuloC =
1981 ConstantFoldBinaryOpOperands(Instruction::URem, ShAmtC, WidthC, DL);
1982 if (!ModuloC)
1983 return nullptr;
1984 if (ModuloC != ShAmtC)
1985 return replaceOperand(*II, 2, ModuloC);
1986
1988 m_One()) &&
1989 "Shift amount expected to be modulo bitwidth");
1990
1991 // Canonicalize funnel shift right by constant to funnel shift left. This
1992 // is not entirely arbitrary. For historical reasons, the backend may
1993 // recognize rotate left patterns but miss rotate right patterns.
1994 if (IID == Intrinsic::fshr) {
1995 // fshr X, Y, C --> fshl X, Y, (BitWidth - C)
1996 Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
1997 Module *Mod = II->getModule();
1998 Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
1999 return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
2000 }
2001 assert(IID == Intrinsic::fshl &&
2002 "All funnel shifts by simple constants should go left");
2003
2004 // fshl(X, 0, C) --> shl X, C
2005 // fshl(X, undef, C) --> shl X, C
2006 if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
2007 return BinaryOperator::CreateShl(Op0, ShAmtC);
2008
2009 // fshl(0, X, C) --> lshr X, (BW-C)
2010 // fshl(undef, X, C) --> lshr X, (BW-C)
2011 if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
2012 return BinaryOperator::CreateLShr(Op1,
2013 ConstantExpr::getSub(WidthC, ShAmtC));
2014
2015 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
2016 if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
2017 Module *Mod = II->getModule();
2018 Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty);
2019 return CallInst::Create(Bswap, { Op0 });
2020 }
2021 if (Instruction *BitOp =
2022 matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ true,
2023 /*MatchBitReversals*/ true))
2024 return BitOp;
2025 }
2026
2027 // Left or right might be masked.
2029 return &CI;
2030
2031 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
2032 // so only the low bits of the shift amount are demanded if the bitwidth is
2033 // a power-of-2.
2034 if (!isPowerOf2_32(BitWidth))
2035 break;
2037 KnownBits Op2Known(BitWidth);
2038 if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
2039 return &CI;
2040 break;
2041 }
2042 case Intrinsic::ptrmask: {
2043 unsigned BitWidth = DL.getPointerTypeSizeInBits(II->getType());
2044 KnownBits Known(BitWidth);
2045 if (SimplifyDemandedInstructionBits(*II, Known))
2046 return II;
2047
2048 Value *InnerPtr, *InnerMask;
2049 bool Changed = false;
2050 // Combine:
2051 // (ptrmask (ptrmask p, A), B)
2052 // -> (ptrmask p, (and A, B))
2053 if (match(II->getArgOperand(0),
2054 m_OneUse(m_Intrinsic<Intrinsic::ptrmask>(m_Value(InnerPtr),
2055 m_Value(InnerMask))))) {
2056 assert(II->getArgOperand(1)->getType() == InnerMask->getType() &&
2057 "Mask types must match");
2058 // TODO: If InnerMask == Op1, we could copy attributes from inner
2059 // callsite -> outer callsite.
2060 Value *NewMask = Builder.CreateAnd(II->getArgOperand(1), InnerMask);
2061 replaceOperand(CI, 0, InnerPtr);
2062 replaceOperand(CI, 1, NewMask);
2063 Changed = true;
2064 }
2065
2066 // See if we can deduce non-null.
2067 if (!CI.hasRetAttr(Attribute::NonNull) &&
2068 (Known.isNonZero() ||
2069 isKnownNonZero(II, getSimplifyQuery().getWithInstruction(II)))) {
2070 CI.addRetAttr(Attribute::NonNull);
2071 Changed = true;
2072 }
2073
2074 unsigned NewAlignmentLog =
2076 std::min(BitWidth - 1, Known.countMinTrailingZeros()));
2077 // Known bits will capture if we had alignment information associated with
2078 // the pointer argument.
2079 if (NewAlignmentLog > Log2(CI.getRetAlign().valueOrOne())) {
2081 CI.getContext(), Align(uint64_t(1) << NewAlignmentLog)));
2082 Changed = true;
2083 }
2084 if (Changed)
2085 return &CI;
2086 break;
2087 }
2088 case Intrinsic::uadd_with_overflow:
2089 case Intrinsic::sadd_with_overflow: {
2090 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2091 return I;
2092
2093 // Given 2 constant operands whose sum does not overflow:
2094 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
2095 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
2096 Value *X;
2097 const APInt *C0, *C1;
2098 Value *Arg0 = II->getArgOperand(0);
2099 Value *Arg1 = II->getArgOperand(1);
2100 bool IsSigned = IID == Intrinsic::sadd_with_overflow;
2101 bool HasNWAdd = IsSigned
2102 ? match(Arg0, m_NSWAddLike(m_Value(X), m_APInt(C0)))
2103 : match(Arg0, m_NUWAddLike(m_Value(X), m_APInt(C0)));
2104 if (HasNWAdd && match(Arg1, m_APInt(C1))) {
2105 bool Overflow;
2106 APInt NewC =
2107 IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
2108 if (!Overflow)
2109 return replaceInstUsesWith(
2111 IID, X, ConstantInt::get(Arg1->getType(), NewC)));
2112 }
2113 break;
2114 }
2115
2116 case Intrinsic::umul_with_overflow:
2117 case Intrinsic::smul_with_overflow:
2118 case Intrinsic::usub_with_overflow:
2119 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2120 return I;
2121 break;
2122
2123 case Intrinsic::ssub_with_overflow: {
2124 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2125 return I;
2126
2127 Constant *C;
2128 Value *Arg0 = II->getArgOperand(0);
2129 Value *Arg1 = II->getArgOperand(1);
2130 // Given a constant C that is not the minimum signed value
2131 // for an integer of a given bit width:
2132 //
2133 // ssubo X, C -> saddo X, -C
2134 if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
2135 Value *NegVal = ConstantExpr::getNeg(C);
2136 // Build a saddo call that is equivalent to the discovered
2137 // ssubo call.
2138 return replaceInstUsesWith(
2139 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
2140 Arg0, NegVal));
2141 }
2142
2143 break;
2144 }
2145
2146 case Intrinsic::uadd_sat:
2147 case Intrinsic::sadd_sat:
2148 case Intrinsic::usub_sat:
2149 case Intrinsic::ssub_sat: {
2150 SaturatingInst *SI = cast<SaturatingInst>(II);
2151 Type *Ty = SI->getType();
2152 Value *Arg0 = SI->getLHS();
2153 Value *Arg1 = SI->getRHS();
2154
2155 // Make use of known overflow information.
2156 OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
2157 Arg0, Arg1, SI);
2158 switch (OR) {
2160 break;
2162 if (SI->isSigned())
2163 return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
2164 else
2165 return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
2167 unsigned BitWidth = Ty->getScalarSizeInBits();
2168 APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
2169 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
2170 }
2172 unsigned BitWidth = Ty->getScalarSizeInBits();
2173 APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
2174 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
2175 }
2176 }
2177
2178 // usub_sat((sub nuw C, A), C1) -> usub_sat(usub_sat(C, C1), A)
2179 // which after that:
2180 // usub_sat((sub nuw C, A), C1) -> usub_sat(C - C1, A) if C1 u< C
2181 // usub_sat((sub nuw C, A), C1) -> 0 otherwise
2182 Constant *C, *C1;
2183 Value *A;
2184 if (IID == Intrinsic::usub_sat &&
2185 match(Arg0, m_NUWSub(m_ImmConstant(C), m_Value(A))) &&
2186 match(Arg1, m_ImmConstant(C1))) {
2187 auto *NewC = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, C, C1);
2188 auto *NewSub =
2189 Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, NewC, A);
2190 return replaceInstUsesWith(*SI, NewSub);
2191 }
2192
2193 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
2194 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
2195 C->isNotMinSignedValue()) {
2196 Value *NegVal = ConstantExpr::getNeg(C);
2197 return replaceInstUsesWith(
2199 Intrinsic::sadd_sat, Arg0, NegVal));
2200 }
2201
2202 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
2203 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
2204 // if Val and Val2 have the same sign
2205 if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
2206 Value *X;
2207 const APInt *Val, *Val2;
2208 APInt NewVal;
2209 bool IsUnsigned =
2210 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
2211 if (Other->getIntrinsicID() == IID &&
2212 match(Arg1, m_APInt(Val)) &&
2213 match(Other->getArgOperand(0), m_Value(X)) &&
2214 match(Other->getArgOperand(1), m_APInt(Val2))) {
2215 if (IsUnsigned)
2216 NewVal = Val->uadd_sat(*Val2);
2217 else if (Val->isNonNegative() == Val2->isNonNegative()) {
2218 bool Overflow;
2219 NewVal = Val->sadd_ov(*Val2, Overflow);
2220 if (Overflow) {
2221 // Both adds together may add more than SignedMaxValue
2222 // without saturating the final result.
2223 break;
2224 }
2225 } else {
2226 // Cannot fold saturated addition with different signs.
2227 break;
2228 }
2229
2230 return replaceInstUsesWith(
2232 IID, X, ConstantInt::get(II->getType(), NewVal)));
2233 }
2234 }
2235 break;
2236 }
2237
2238 case Intrinsic::minnum:
2239 case Intrinsic::maxnum:
2240 case Intrinsic::minimum:
2241 case Intrinsic::maximum: {
2242 Value *Arg0 = II->getArgOperand(0);
2243 Value *Arg1 = II->getArgOperand(1);
2244 Value *X, *Y;
2245 if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
2246 (Arg0->hasOneUse() || Arg1->hasOneUse())) {
2247 // If both operands are negated, invert the call and negate the result:
2248 // min(-X, -Y) --> -(max(X, Y))
2249 // max(-X, -Y) --> -(min(X, Y))
2250 Intrinsic::ID NewIID;
2251 switch (IID) {
2252 case Intrinsic::maxnum:
2253 NewIID = Intrinsic::minnum;
2254 break;
2255 case Intrinsic::minnum:
2256 NewIID = Intrinsic::maxnum;
2257 break;
2258 case Intrinsic::maximum:
2259 NewIID = Intrinsic::minimum;
2260 break;
2261 case Intrinsic::minimum:
2262 NewIID = Intrinsic::maximum;
2263 break;
2264 default:
2265 llvm_unreachable("unexpected intrinsic ID");
2266 }
2267 Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
2268 Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
2269 FNeg->copyIRFlags(II);
2270 return FNeg;
2271 }
2272
2273 // m(m(X, C2), C1) -> m(X, C)
2274 const APFloat *C1, *C2;
2275 if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
2276 if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
2277 ((match(M->getArgOperand(0), m_Value(X)) &&
2278 match(M->getArgOperand(1), m_APFloat(C2))) ||
2279 (match(M->getArgOperand(1), m_Value(X)) &&
2280 match(M->getArgOperand(0), m_APFloat(C2))))) {
2281 APFloat Res(0.0);
2282 switch (IID) {
2283 case Intrinsic::maxnum:
2284 Res = maxnum(*C1, *C2);
2285 break;
2286 case Intrinsic::minnum:
2287 Res = minnum(*C1, *C2);
2288 break;
2289 case Intrinsic::maximum:
2290 Res = maximum(*C1, *C2);
2291 break;
2292 case Intrinsic::minimum:
2293 Res = minimum(*C1, *C2);
2294 break;
2295 default:
2296 llvm_unreachable("unexpected intrinsic ID");
2297 }
2299 IID, X, ConstantFP::get(Arg0->getType(), Res), II);
2300 // TODO: Conservatively intersecting FMF. If Res == C2, the transform
2301 // was a simplification (so Arg0 and its original flags could
2302 // propagate?)
2303 if (auto *CI = dyn_cast<CallInst>(V))
2304 CI->andIRFlags(M);
2305 return replaceInstUsesWith(*II, V);
2306 }
2307 }
2308
2309 // m((fpext X), (fpext Y)) -> fpext (m(X, Y))
2310 if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) &&
2311 match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) &&
2312 X->getType() == Y->getType()) {
2313 Value *NewCall =
2314 Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName());
2315 return new FPExtInst(NewCall, II->getType());
2316 }
2317
2318 // max X, -X --> fabs X
2319 // min X, -X --> -(fabs X)
2320 // TODO: Remove one-use limitation? That is obviously better for max,
2321 // hence why we don't check for one-use for that. However,
2322 // it would be an extra instruction for min (fnabs), but
2323 // that is still likely better for analysis and codegen.
2324 auto IsMinMaxOrXNegX = [IID, &X](Value *Op0, Value *Op1) {
2325 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Specific(X)))
2326 return Op0->hasOneUse() ||
2327 (IID != Intrinsic::minimum && IID != Intrinsic::minnum);
2328 return false;
2329 };
2330
2331 if (IsMinMaxOrXNegX(Arg0, Arg1) || IsMinMaxOrXNegX(Arg1, Arg0)) {
2332 Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
2333 if (IID == Intrinsic::minimum || IID == Intrinsic::minnum)
2334 R = Builder.CreateFNegFMF(R, II);
2335 return replaceInstUsesWith(*II, R);
2336 }
2337
2338 break;
2339 }
2340 case Intrinsic::matrix_multiply: {
2341 // Optimize negation in matrix multiplication.
2342
2343 // -A * -B -> A * B
2344 Value *A, *B;
2345 if (match(II->getArgOperand(0), m_FNeg(m_Value(A))) &&
2346 match(II->getArgOperand(1), m_FNeg(m_Value(B)))) {
2347 replaceOperand(*II, 0, A);
2348 replaceOperand(*II, 1, B);
2349 return II;
2350 }
2351
2352 Value *Op0 = II->getOperand(0);
2353 Value *Op1 = II->getOperand(1);
2354 Value *OpNotNeg, *NegatedOp;
2355 unsigned NegatedOpArg, OtherOpArg;
2356 if (match(Op0, m_FNeg(m_Value(OpNotNeg)))) {
2357 NegatedOp = Op0;
2358 NegatedOpArg = 0;
2359 OtherOpArg = 1;
2360 } else if (match(Op1, m_FNeg(m_Value(OpNotNeg)))) {
2361 NegatedOp = Op1;
2362 NegatedOpArg = 1;
2363 OtherOpArg = 0;
2364 } else
2365 // Multiplication doesn't have a negated operand.
2366 break;
2367
2368 // Only optimize if the negated operand has only one use.
2369 if (!NegatedOp->hasOneUse())
2370 break;
2371
2372 Value *OtherOp = II->getOperand(OtherOpArg);
2373 VectorType *RetTy = cast<VectorType>(II->getType());
2374 VectorType *NegatedOpTy = cast<VectorType>(NegatedOp->getType());
2375 VectorType *OtherOpTy = cast<VectorType>(OtherOp->getType());
2376 ElementCount NegatedCount = NegatedOpTy->getElementCount();
2377 ElementCount OtherCount = OtherOpTy->getElementCount();
2378 ElementCount RetCount = RetTy->getElementCount();
2379 // (-A) * B -> A * (-B), if it is cheaper to negate B and vice versa.
2380 if (ElementCount::isKnownGT(NegatedCount, OtherCount) &&
2381 ElementCount::isKnownLT(OtherCount, RetCount)) {
2382 Value *InverseOtherOp = Builder.CreateFNeg(OtherOp);
2383 replaceOperand(*II, NegatedOpArg, OpNotNeg);
2384 replaceOperand(*II, OtherOpArg, InverseOtherOp);
2385 return II;
2386 }
2387 // (-A) * B -> -(A * B), if it is cheaper to negate the result
2388 if (ElementCount::isKnownGT(NegatedCount, RetCount)) {
2389 SmallVector<Value *, 5> NewArgs(II->args());
2390 NewArgs[NegatedOpArg] = OpNotNeg;
2391 Instruction *NewMul =
2392 Builder.CreateIntrinsic(II->getType(), IID, NewArgs, II);
2393 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(NewMul, II));
2394 }
2395 break;
2396 }
2397 case Intrinsic::fmuladd: {
2398 // Canonicalize fast fmuladd to the separate fmul + fadd.
2399 if (II->isFast()) {
2403 II->getArgOperand(1));
2405 Add->takeName(II);
2406 return replaceInstUsesWith(*II, Add);
2407 }
2408
2409 // Try to simplify the underlying FMul.
2410 if (Value *V = simplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
2411 II->getFastMathFlags(),
2412 SQ.getWithInstruction(II))) {
2413 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
2414 FAdd->copyFastMathFlags(II);
2415 return FAdd;
2416 }
2417
2418 [[fallthrough]];
2419 }
2420 case Intrinsic::fma: {
2421 // fma fneg(x), fneg(y), z -> fma x, y, z
2422 Value *Src0 = II->getArgOperand(0);
2423 Value *Src1 = II->getArgOperand(1);
2424 Value *X, *Y;
2425 if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
2426 replaceOperand(*II, 0, X);
2427 replaceOperand(*II, 1, Y);
2428 return II;
2429 }
2430
2431 // fma fabs(x), fabs(x), z -> fma x, x, z
2432 if (match(Src0, m_FAbs(m_Value(X))) &&
2433 match(Src1, m_FAbs(m_Specific(X)))) {
2434 replaceOperand(*II, 0, X);
2435 replaceOperand(*II, 1, X);
2436 return II;
2437 }
2438
2439 // Try to simplify the underlying FMul. We can only apply simplifications
2440 // that do not require rounding.
2441 if (Value *V = simplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1),
2442 II->getFastMathFlags(),
2443 SQ.getWithInstruction(II))) {
2444 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
2445 FAdd->copyFastMathFlags(II);
2446 return FAdd;
2447 }
2448
2449 // fma x, y, 0 -> fmul x, y
2450 // This is always valid for -0.0, but requires nsz for +0.0 as
2451 // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own.
2452 if (match(II->getArgOperand(2), m_NegZeroFP()) ||
2453 (match(II->getArgOperand(2), m_PosZeroFP()) &&
2455 return BinaryOperator::CreateFMulFMF(Src0, Src1, II);
2456
2457 break;
2458 }
2459 case Intrinsic::copysign: {
2460 Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1);
2461 if (std::optional<bool> KnownSignBit = computeKnownFPSignBit(
2462 Sign, /*Depth=*/0, getSimplifyQuery().getWithInstruction(II))) {
2463 if (*KnownSignBit) {
2464 // If we know that the sign argument is negative, reduce to FNABS:
2465 // copysign Mag, -Sign --> fneg (fabs Mag)
2466 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
2467 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II));
2468 }
2469
2470 // If we know that the sign argument is positive, reduce to FABS:
2471 // copysign Mag, +Sign --> fabs Mag
2472 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
2473 return replaceInstUsesWith(*II, Fabs);
2474 }
2475
2476 // Propagate sign argument through nested calls:
2477 // copysign Mag, (copysign ?, X) --> copysign Mag, X
2478 Value *X;
2479 if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X))))
2480 return replaceOperand(*II, 1, X);
2481
2482 // Clear sign-bit of constant magnitude:
2483 // copysign -MagC, X --> copysign MagC, X
2484 // TODO: Support constant folding for fabs
2485 const APFloat *MagC;
2486 if (match(Mag, m_APFloat(MagC)) && MagC->isNegative()) {
2487 APFloat PosMagC = *MagC;
2488 PosMagC.clearSign();
2489 return replaceOperand(*II, 0, ConstantFP::get(Mag->getType(), PosMagC));
2490 }
2491
2492 // Peek through changes of magnitude's sign-bit. This call rewrites those:
2493 // copysign (fabs X), Sign --> copysign X, Sign
2494 // copysign (fneg X), Sign --> copysign X, Sign
2495 if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X))))
2496 return replaceOperand(*II, 0, X);
2497
2498 break;
2499 }
2500 case Intrinsic::fabs: {
2501 Value *Cond, *TVal, *FVal;
2502 if (match(II->getArgOperand(0),
2503 m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) {
2504 // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF
2505 if (isa<Constant>(TVal) && isa<Constant>(FVal)) {
2506 CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal});
2507 CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal});
2508 return SelectInst::Create(Cond, AbsT, AbsF);
2509 }
2510 // fabs (select Cond, -FVal, FVal) --> fabs FVal
2511 if (match(TVal, m_FNeg(m_Specific(FVal))))
2512 return replaceOperand(*II, 0, FVal);
2513 // fabs (select Cond, TVal, -TVal) --> fabs TVal
2514 if (match(FVal, m_FNeg(m_Specific(TVal))))
2515 return replaceOperand(*II, 0, TVal);
2516 }
2517
2518 Value *Magnitude, *Sign;
2519 if (match(II->getArgOperand(0),
2520 m_CopySign(m_Value(Magnitude), m_Value(Sign)))) {
2521 // fabs (copysign x, y) -> (fabs x)
2522 CallInst *AbsSign =
2523 Builder.CreateCall(II->getCalledFunction(), {Magnitude});
2524 AbsSign->copyFastMathFlags(II);
2525 return replaceInstUsesWith(*II, AbsSign);
2526 }
2527
2528 [[fallthrough]];
2529 }
2530 case Intrinsic::ceil:
2531 case Intrinsic::floor:
2532 case Intrinsic::round:
2533 case Intrinsic::roundeven:
2534 case Intrinsic::nearbyint:
2535 case Intrinsic::rint:
2536 case Intrinsic::trunc: {
2537 Value *ExtSrc;
2538 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
2539 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
2540 Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
2541 return new FPExtInst(NarrowII, II->getType());
2542 }
2543 break;
2544 }
2545 case Intrinsic::cos:
2546 case Intrinsic::amdgcn_cos: {
2547 Value *X, *Sign;
2548 Value *Src = II->getArgOperand(0);
2549 if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X))) ||
2550 match(Src, m_CopySign(m_Value(X), m_Value(Sign)))) {
2551 // cos(-x) --> cos(x)
2552 // cos(fabs(x)) --> cos(x)
2553 // cos(copysign(x, y)) --> cos(x)
2554 return replaceOperand(*II, 0, X);
2555 }
2556 break;
2557 }
2558 case Intrinsic::sin: {
2559 Value *X;
2560 if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
2561 // sin(-x) --> -sin(x)
2562 Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II);
2563 Instruction *FNeg = UnaryOperator::CreateFNeg(NewSin);
2564 FNeg->copyFastMathFlags(II);
2565 return FNeg;
2566 }
2567 break;
2568 }
2569 case Intrinsic::ldexp: {
2570 // ldexp(ldexp(x, a), b) -> ldexp(x, a + b)
2571 //
2572 // The danger is if the first ldexp would overflow to infinity or underflow
2573 // to zero, but the combined exponent avoids it. We ignore this with
2574 // reassoc.
2575 //
2576 // It's also safe to fold if we know both exponents are >= 0 or <= 0 since
2577 // it would just double down on the overflow/underflow which would occur
2578 // anyway.
2579 //
2580 // TODO: Could do better if we had range tracking for the input value
2581 // exponent. Also could broaden sign check to cover == 0 case.
2582 Value *Src = II->getArgOperand(0);
2583 Value *Exp = II->getArgOperand(1);
2584 Value *InnerSrc;
2585 Value *InnerExp;
2586 if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ldexp>(
2587 m_Value(InnerSrc), m_Value(InnerExp)))) &&
2588 Exp->getType() == InnerExp->getType()) {
2589 FastMathFlags FMF = II->getFastMathFlags();
2590 FastMathFlags InnerFlags = cast<FPMathOperator>(Src)->getFastMathFlags();
2591
2592 if ((FMF.allowReassoc() && InnerFlags.allowReassoc()) ||
2593 signBitMustBeTheSame(Exp, InnerExp, II, DL, &AC, &DT)) {
2594 // TODO: Add nsw/nuw probably safe if integer type exceeds exponent
2595 // width.
2596 Value *NewExp = Builder.CreateAdd(InnerExp, Exp);
2597 II->setArgOperand(1, NewExp);
2598 II->setFastMathFlags(InnerFlags); // Or the inner flags.
2599 return replaceOperand(*II, 0, InnerSrc);
2600 }
2601 }
2602
2603 break;
2604 }
2605 case Intrinsic::ptrauth_auth:
2606 case Intrinsic::ptrauth_resign: {
2607 // (sign|resign) + (auth|resign) can be folded by omitting the middle
2608 // sign+auth component if the key and discriminator match.
2609 bool NeedSign = II->getIntrinsicID() == Intrinsic::ptrauth_resign;
2610 Value *Key = II->getArgOperand(1);
2611 Value *Disc = II->getArgOperand(2);
2612
2613 // AuthKey will be the key we need to end up authenticating against in
2614 // whatever we replace this sequence with.
2615 Value *AuthKey = nullptr, *AuthDisc = nullptr, *BasePtr;
2616 if (auto CI = dyn_cast<CallBase>(II->getArgOperand(0))) {
2617 BasePtr = CI->getArgOperand(0);
2618 if (CI->getIntrinsicID() == Intrinsic::ptrauth_sign) {
2619 if (CI->getArgOperand(1) != Key || CI->getArgOperand(2) != Disc)
2620 break;
2621 } else if (CI->getIntrinsicID() == Intrinsic::ptrauth_resign) {
2622 if (CI->getArgOperand(3) != Key || CI->getArgOperand(4) != Disc)
2623 break;
2624 AuthKey = CI->getArgOperand(1);
2625 AuthDisc = CI->getArgOperand(2);
2626 } else
2627 break;
2628 } else
2629 break;
2630
2631 unsigned NewIntrin;
2632 if (AuthKey && NeedSign) {
2633 // resign(0,1) + resign(1,2) = resign(0, 2)
2634 NewIntrin = Intrinsic::ptrauth_resign;
2635 } else if (AuthKey) {
2636 // resign(0,1) + auth(1) = auth(0)
2637 NewIntrin = Intrinsic::ptrauth_auth;
2638 } else if (NeedSign) {
2639 // sign(0) + resign(0, 1) = sign(1)
2640 NewIntrin = Intrinsic::ptrauth_sign;
2641 } else {
2642 // sign(0) + auth(0) = nop
2643 replaceInstUsesWith(*II, BasePtr);
2645 return nullptr;
2646 }
2647
2648 SmallVector<Value *, 4> CallArgs;
2649 CallArgs.push_back(BasePtr);
2650 if (AuthKey) {
2651 CallArgs.push_back(AuthKey);
2652 CallArgs.push_back(AuthDisc);
2653 }
2654
2655 if (NeedSign) {
2656 CallArgs.push_back(II->getArgOperand(3));
2657 CallArgs.push_back(II->getArgOperand(4));
2658 }
2659
2660 Function *NewFn = Intrinsic::getDeclaration(II->getModule(), NewIntrin);
2661 return CallInst::Create(NewFn, CallArgs);
2662 }
2663 case Intrinsic::arm_neon_vtbl1:
2664 case Intrinsic::aarch64_neon_tbl1:
2665 if (Value *V = simplifyNeonTbl1(*II, Builder))
2666 return replaceInstUsesWith(*II, V);
2667 break;
2668
2669 case Intrinsic::arm_neon_vmulls:
2670 case Intrinsic::arm_neon_vmullu:
2671 case Intrinsic::aarch64_neon_smull:
2672 case Intrinsic::aarch64_neon_umull: {
2673 Value *Arg0 = II->getArgOperand(0);
2674 Value *Arg1 = II->getArgOperand(1);
2675
2676 // Handle mul by zero first:
2677 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
2679 }
2680
2681 // Check for constant LHS & RHS - in this case we just simplify.
2682 bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
2683 IID == Intrinsic::aarch64_neon_umull);
2684 VectorType *NewVT = cast<VectorType>(II->getType());
2685 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
2686 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
2687 Value *V0 = Builder.CreateIntCast(CV0, NewVT, /*isSigned=*/!Zext);
2688 Value *V1 = Builder.CreateIntCast(CV1, NewVT, /*isSigned=*/!Zext);
2689 return replaceInstUsesWith(CI, Builder.CreateMul(V0, V1));
2690 }
2691
2692 // Couldn't simplify - canonicalize constant to the RHS.
2693 std::swap(Arg0, Arg1);
2694 }
2695
2696 // Handle mul by one:
2697 if (Constant *CV1 = dyn_cast<Constant>(Arg1))
2698 if (ConstantInt *Splat =
2699 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
2700 if (Splat->isOne())
2701 return CastInst::CreateIntegerCast(Arg0, II->getType(),
2702 /*isSigned=*/!Zext);
2703
2704 break;
2705 }
2706 case Intrinsic::arm_neon_aesd:
2707 case Intrinsic::arm_neon_aese:
2708 case Intrinsic::aarch64_crypto_aesd:
2709 case Intrinsic::aarch64_crypto_aese: {
2710 Value *DataArg = II->getArgOperand(0);
2711 Value *KeyArg = II->getArgOperand(1);
2712
2713 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
2714 Value *Data, *Key;
2715 if (match(KeyArg, m_ZeroInt()) &&
2716 match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
2717 replaceOperand(*II, 0, Data);
2718 replaceOperand(*II, 1, Key);
2719 return II;
2720 }
2721 break;
2722 }
2723 case Intrinsic::hexagon_V6_vandvrt:
2724 case Intrinsic::hexagon_V6_vandvrt_128B: {
2725 // Simplify Q -> V -> Q conversion.
2726 if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
2727 Intrinsic::ID ID0 = Op0->getIntrinsicID();
2728 if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
2729 ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
2730 break;
2731 Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1);
2732 uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue();
2733 uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue();
2734 // Check if every byte has common bits in Bytes and Mask.
2735 uint64_t C = Bytes1 & Mask1;
2736 if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000))
2737 return replaceInstUsesWith(*II, Op0->getArgOperand(0));
2738 }
2739 break;
2740 }
2741 case Intrinsic::stackrestore: {
2742 enum class ClassifyResult {
2743 None,
2744 Alloca,
2745 StackRestore,
2746 CallWithSideEffects,
2747 };
2748 auto Classify = [](const Instruction *I) {
2749 if (isa<AllocaInst>(I))
2750 return ClassifyResult::Alloca;
2751
2752 if (auto *CI = dyn_cast<CallInst>(I)) {
2753 if (auto *II = dyn_cast<IntrinsicInst>(CI)) {
2754 if (II->getIntrinsicID() == Intrinsic::stackrestore)
2755 return ClassifyResult::StackRestore;
2756
2757 if (II->mayHaveSideEffects())
2758 return ClassifyResult::CallWithSideEffects;
2759 } else {
2760 // Consider all non-intrinsic calls to be side effects
2761 return ClassifyResult::CallWithSideEffects;
2762 }
2763 }
2764
2765 return ClassifyResult::None;
2766 };
2767
2768 // If the stacksave and the stackrestore are in the same BB, and there is
2769 // no intervening call, alloca, or stackrestore of a different stacksave,
2770 // remove the restore. This can happen when variable allocas are DCE'd.
2771 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
2772 if (SS->getIntrinsicID() == Intrinsic::stacksave &&
2773 SS->getParent() == II->getParent()) {
2774 BasicBlock::iterator BI(SS);
2775 bool CannotRemove = false;
2776 for (++BI; &*BI != II; ++BI) {
2777 switch (Classify(&*BI)) {
2778 case ClassifyResult::None:
2779 // So far so good, look at next instructions.
2780 break;
2781
2782 case ClassifyResult::StackRestore:
2783 // If we found an intervening stackrestore for a different
2784 // stacksave, we can't remove the stackrestore. Otherwise, continue.
2785 if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS)
2786 CannotRemove = true;
2787 break;
2788
2789 case ClassifyResult::Alloca:
2790 case ClassifyResult::CallWithSideEffects:
2791 // If we found an alloca, a non-intrinsic call, or an intrinsic
2792 // call with side effects, we can't remove the stackrestore.
2793 CannotRemove = true;
2794 break;
2795 }
2796 if (CannotRemove)
2797 break;
2798 }
2799
2800 if (!CannotRemove)
2801 return eraseInstFromFunction(CI);
2802 }
2803 }
2804
2805 // Scan down this block to see if there is another stack restore in the
2806 // same block without an intervening call/alloca.
2807 BasicBlock::iterator BI(II);
2808 Instruction *TI = II->getParent()->getTerminator();
2809 bool CannotRemove = false;
2810 for (++BI; &*BI != TI; ++BI) {
2811 switch (Classify(&*BI)) {
2812 case ClassifyResult::None:
2813 // So far so good, look at next instructions.
2814 break;
2815
2816 case ClassifyResult::StackRestore:
2817 // If there is a stackrestore below this one, remove this one.
2818 return eraseInstFromFunction(CI);
2819
2820 case ClassifyResult::Alloca:
2821 case ClassifyResult::CallWithSideEffects:
2822 // If we found an alloca, a non-intrinsic call, or an intrinsic call
2823 // with side effects (such as llvm.stacksave and llvm.read_register),
2824 // we can't remove the stack restore.
2825 CannotRemove = true;
2826 break;
2827 }
2828 if (CannotRemove)
2829 break;
2830 }
2831
2832 // If the stack restore is in a return, resume, or unwind block and if there
2833 // are no allocas or calls between the restore and the return, nuke the
2834 // restore.
2835 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
2836 return eraseInstFromFunction(CI);
2837 break;
2838 }
2839 case Intrinsic::lifetime_end:
2840 // Asan needs to poison memory to detect invalid access which is possible
2841 // even for empty lifetime range.
2842 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
2843 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
2844 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
2845 break;
2846
2847 if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) {
2848 return I.getIntrinsicID() == Intrinsic::lifetime_start;
2849 }))
2850 return nullptr;
2851 break;
2852 case Intrinsic::assume: {
2853 Value *IIOperand = II->getArgOperand(0);
2855 II->getOperandBundlesAsDefs(OpBundles);
2856
2857 /// This will remove the boolean Condition from the assume given as
2858 /// argument and remove the assume if it becomes useless.
2859 /// always returns nullptr for use as a return values.
2860 auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * {
2861 assert(isa<AssumeInst>(Assume));
2862 if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II)))
2863 return eraseInstFromFunction(CI);
2865 return nullptr;
2866 };
2867 // Remove an assume if it is followed by an identical assume.
2868 // TODO: Do we need this? Unless there are conflicting assumptions, the
2869 // computeKnownBits(IIOperand) below here eliminates redundant assumes.
2871 if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
2872 return RemoveConditionFromAssume(Next);
2873
2874 // Canonicalize assume(a && b) -> assume(a); assume(b);
2875 // Note: New assumption intrinsics created here are registered by
2876 // the InstCombineIRInserter object.
2877 FunctionType *AssumeIntrinsicTy = II->getFunctionType();
2878 Value *AssumeIntrinsic = II->getCalledOperand();
2879 Value *A, *B;
2880 if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) {
2881 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles,
2882 II->getName());
2883 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
2884 return eraseInstFromFunction(*II);
2885 }
2886 // assume(!(a || b)) -> assume(!a); assume(!b);
2887 if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) {
2888 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
2889 Builder.CreateNot(A), OpBundles, II->getName());
2890 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
2891 Builder.CreateNot(B), II->getName());
2892 return eraseInstFromFunction(*II);
2893 }
2894
2895 // assume( (load addr) != null ) -> add 'nonnull' metadata to load
2896 // (if assume is valid at the load)
2897 CmpInst::Predicate Pred;
2899 if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
2900 Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
2901 LHS->getType()->isPointerTy() &&
2903 MDNode *MD = MDNode::get(II->getContext(), std::nullopt);
2904 LHS->setMetadata(LLVMContext::MD_nonnull, MD);
2905 LHS->setMetadata(LLVMContext::MD_noundef, MD);
2906 return RemoveConditionFromAssume(II);
2907
2908 // TODO: apply nonnull return attributes to calls and invokes
2909 // TODO: apply range metadata for range check patterns?
2910 }
2911
2912 // Separate storage assumptions apply to the underlying allocations, not any
2913 // particular pointer within them. When evaluating the hints for AA purposes
2914 // we getUnderlyingObject them; by precomputing the answers here we can
2915 // avoid having to do so repeatedly there.
2916 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
2918 if (OBU.getTagName() == "separate_storage") {
2919 assert(OBU.Inputs.size() == 2);
2920 auto MaybeSimplifyHint = [&](const Use &U) {
2921 Value *Hint = U.get();
2922 // Not having a limit is safe because InstCombine removes unreachable
2923 // code.
2924 Value *UnderlyingObject = getUnderlyingObject(Hint, /*MaxLookup*/ 0);
2925 if (Hint != UnderlyingObject)
2926 replaceUse(const_cast<Use &>(U), UnderlyingObject);
2927 };
2928 MaybeSimplifyHint(OBU.Inputs[0]);
2929 MaybeSimplifyHint(OBU.Inputs[1]);
2930 }
2931 }
2932
2933 // Convert nonnull assume like:
2934 // %A = icmp ne i32* %PTR, null
2935 // call void @llvm.assume(i1 %A)
2936 // into
2937 // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
2939 match(IIOperand, m_Cmp(Pred, m_Value(A), m_Zero())) &&
2940 Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) {
2941 if (auto *Replacement = buildAssumeFromKnowledge(
2942 {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) {
2943
2944 Replacement->insertBefore(Next);
2945 AC.registerAssumption(Replacement);
2946 return RemoveConditionFromAssume(II);
2947 }
2948 }
2949
2950 // Convert alignment assume like:
2951 // %B = ptrtoint i32* %A to i64
2952 // %C = and i64 %B, Constant
2953 // %D = icmp eq i64 %C, 0
2954 // call void @llvm.assume(i1 %D)
2955 // into
2956 // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64 Constant + 1)]
2957 uint64_t AlignMask;
2959 match(IIOperand,
2960 m_Cmp(Pred, m_And(m_Value(A), m_ConstantInt(AlignMask)),
2961 m_Zero())) &&
2962 Pred == CmpInst::ICMP_EQ) {
2963 if (isPowerOf2_64(AlignMask + 1)) {
2964 uint64_t Offset = 0;
2966 if (match(A, m_PtrToInt(m_Value(A)))) {
2967 /// Note: this doesn't preserve the offset information but merges
2968 /// offset and alignment.
2969 /// TODO: we can generate a GEP instead of merging the alignment with
2970 /// the offset.
2971 RetainedKnowledge RK{Attribute::Alignment,
2972 (unsigned)MinAlign(Offset, AlignMask + 1), A};
2973 if (auto *Replacement =
2974 buildAssumeFromKnowledge(RK, Next, &AC, &DT)) {
2975
2976 Replacement->insertAfter(II);
2977 AC.registerAssumption(Replacement);
2978 }
2979 return RemoveConditionFromAssume(II);
2980 }
2981 }
2982 }
2983
2984 /// Canonicalize Knowledge in operand bundles.
2986 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
2987 auto &BOI = II->bundle_op_info_begin()[Idx];
2989 llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI);
2990 if (BOI.End - BOI.Begin > 2)
2991 continue; // Prevent reducing knowledge in an align with offset since
2992 // extracting a RetainedKnowledge from them looses offset
2993 // information
2994 RetainedKnowledge CanonRK =
2995 llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK,
2997 &getDominatorTree());
2998 if (CanonRK == RK)
2999 continue;
3000 if (!CanonRK) {
3001 if (BOI.End - BOI.Begin > 0) {
3002 Worklist.pushValue(II->op_begin()[BOI.Begin]);
3003 Value::dropDroppableUse(II->op_begin()[BOI.Begin]);
3004 }
3005 continue;
3006 }
3007 assert(RK.AttrKind == CanonRK.AttrKind);
3008 if (BOI.End - BOI.Begin > 0)
3009 II->op_begin()[BOI.Begin].set(CanonRK.WasOn);
3010 if (BOI.End - BOI.Begin > 1)
3011 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
3012 Type::getInt64Ty(II->getContext()), CanonRK.ArgValue));
3013 if (RK.WasOn)
3015 return II;
3016 }
3017 }
3018
3019 // If there is a dominating assume with the same condition as this one,
3020 // then this one is redundant, and should be removed.
3021 KnownBits Known(1);
3022 computeKnownBits(IIOperand, Known, 0, II);
3023 if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II)))
3024 return eraseInstFromFunction(*II);
3025
3026 // assume(false) is unreachable.
3027 if (match(IIOperand, m_CombineOr(m_Zero(), m_Undef()))) {
3029 return eraseInstFromFunction(*II);
3030 }
3031
3032 // Update the cache of affected values for this assumption (we might be
3033 // here because we just simplified the condition).
3034 AC.updateAffectedValues(cast<AssumeInst>(II));
3035 break;
3036 }
3037 case Intrinsic::experimental_guard: {
3038 // Is this guard followed by another guard? We scan forward over a small
3039 // fixed window of instructions to handle common cases with conditions
3040 // computed between guards.
3041 Instruction *NextInst = II->getNextNonDebugInstruction();
3042 for (unsigned i = 0; i < GuardWideningWindow; i++) {
3043 // Note: Using context-free form to avoid compile time blow up
3044 if (!isSafeToSpeculativelyExecute(NextInst))
3045 break;
3046 NextInst = NextInst->getNextNonDebugInstruction();
3047 }
3048 Value *NextCond = nullptr;
3049 if (match(NextInst,
3050 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
3051 Value *CurrCond = II->getArgOperand(0);
3052
3053 // Remove a guard that it is immediately preceded by an identical guard.
3054 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
3055 if (CurrCond != NextCond) {
3057 while (MoveI != NextInst) {
3058 auto *Temp = MoveI;
3059 MoveI = MoveI->getNextNonDebugInstruction();
3060 Temp->moveBefore(II);
3061 }
3062 replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond));
3063 }
3064 eraseInstFromFunction(*NextInst);
3065 return II;
3066 }
3067 break;
3068 }
3069 case Intrinsic::vector_insert: {
3070 Value *Vec = II->getArgOperand(0);
3071 Value *SubVec = II->getArgOperand(1);
3072 Value *Idx = II->getArgOperand(2);
3073 auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
3074 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
3075 auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType());
3076
3077 // Only canonicalize if the destination vector, Vec, and SubVec are all
3078 // fixed vectors.
3079 if (DstTy && VecTy && SubVecTy) {
3080 unsigned DstNumElts = DstTy->getNumElements();
3081 unsigned VecNumElts = VecTy->getNumElements();
3082 unsigned SubVecNumElts = SubVecTy->getNumElements();
3083 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
3084
3085 // An insert that entirely overwrites Vec with SubVec is a nop.
3086 if (VecNumElts == SubVecNumElts)
3087 return replaceInstUsesWith(CI, SubVec);
3088
3089 // Widen SubVec into a vector of the same width as Vec, since
3090 // shufflevector requires the two input vectors to be the same width.
3091 // Elements beyond the bounds of SubVec within the widened vector are
3092 // undefined.
3093 SmallVector<int, 8> WidenMask;
3094 unsigned i;
3095 for (i = 0; i != SubVecNumElts; ++i)
3096 WidenMask.push_back(i);
3097 for (; i != VecNumElts; ++i)
3098 WidenMask.push_back(PoisonMaskElem);
3099
3100 Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask);
3101
3103 for (unsigned i = 0; i != IdxN; ++i)
3104 Mask.push_back(i);
3105 for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
3106 Mask.push_back(i);
3107 for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
3108 Mask.push_back(i);
3109
3110 Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask);
3111 return replaceInstUsesWith(CI, Shuffle);
3112 }
3113 break;
3114 }
3115 case Intrinsic::vector_extract: {
3116 Value *Vec = II->getArgOperand(0);
3117 Value *Idx = II->getArgOperand(1);
3118
3119 Type *ReturnType = II->getType();
3120 // (extract_vector (insert_vector InsertTuple, InsertValue, InsertIdx),
3121 // ExtractIdx)
3122 unsigned ExtractIdx = cast<ConstantInt>(Idx)->getZExtValue();
3123 Value *InsertTuple, *InsertIdx, *InsertValue;
3124 if (match(Vec, m_Intrinsic<Intrinsic::vector_insert>(m_Value(InsertTuple),
3125 m_Value(InsertValue),
3126 m_Value(InsertIdx))) &&
3127 InsertValue->getType() == ReturnType) {
3128 unsigned Index = cast<ConstantInt>(InsertIdx)->getZExtValue();
3129 // Case where we get the same index right after setting it.
3130 // extract.vector(insert.vector(InsertTuple, InsertValue, Idx), Idx) -->
3131 // InsertValue
3132 if (ExtractIdx == Index)
3133 return replaceInstUsesWith(CI, InsertValue);
3134 // If we are getting a different index than what was set in the
3135 // insert.vector intrinsic. We can just set the input tuple to the one up
3136 // in the chain. extract.vector(insert.vector(InsertTuple, InsertValue,
3137 // InsertIndex), ExtractIndex)
3138 // --> extract.vector(InsertTuple, ExtractIndex)
3139 else
3140 return replaceOperand(CI, 0, InsertTuple);
3141 }
3142
3143 auto *DstTy = dyn_cast<VectorType>(ReturnType);
3144 auto *VecTy = dyn_cast<VectorType>(Vec->getType());
3145
3146 if (DstTy && VecTy) {
3147 auto DstEltCnt = DstTy->getElementCount();
3148 auto VecEltCnt = VecTy->getElementCount();
3149 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
3150
3151 // Extracting the entirety of Vec is a nop.
3152 if (DstEltCnt == VecTy->getElementCount()) {
3153 replaceInstUsesWith(CI, Vec);
3154 return eraseInstFromFunction(CI);
3155 }
3156
3157 // Only canonicalize to shufflevector if the destination vector and
3158 // Vec are fixed vectors.
3159 if (VecEltCnt.isScalable() || DstEltCnt.isScalable())
3160 break;
3161
3163 for (unsigned i = 0; i != DstEltCnt.getKnownMinValue(); ++i)
3164 Mask.push_back(IdxN + i);
3165
3166 Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask);
3167 return replaceInstUsesWith(CI, Shuffle);
3168 }
3169 break;
3170 }
3171 case Intrinsic::experimental_vector_reverse: {
3172 Value *BO0, *BO1, *X, *Y;
3173 Value *Vec = II->getArgOperand(0);
3174 if (match(Vec, m_OneUse(m_BinOp(m_Value(BO0), m_Value(BO1))))) {
3175 auto *OldBinOp = cast<BinaryOperator>(Vec);
3176 if (match(BO0, m_VecReverse(m_Value(X)))) {
3177 // rev(binop rev(X), rev(Y)) --> binop X, Y
3178 if (match(BO1, m_VecReverse(m_Value(Y))))
3180 OldBinOp->getOpcode(), X, Y,
3181 OldBinOp, OldBinOp->getName(),
3182 II->getIterator()));
3183 // rev(binop rev(X), BO1Splat) --> binop X, BO1Splat
3184 if (isSplatValue(BO1))
3186 OldBinOp->getOpcode(), X, BO1,
3187 OldBinOp, OldBinOp->getName(),
3188 II->getIterator()));
3189 }
3190 // rev(binop BO0Splat, rev(Y)) --> binop BO0Splat, Y
3191 if (match(BO1, m_VecReverse(m_Value(Y))) && isSplatValue(BO0))
3192 return replaceInstUsesWith(CI,
3194 OldBinOp->getOpcode(), BO0, Y, OldBinOp,
3195 OldBinOp->getName(), II->getIterator()));
3196 }
3197 // rev(unop rev(X)) --> unop X
3198 if (match(Vec, m_OneUse(m_UnOp(m_VecReverse(m_Value(X)))))) {
3199 auto *OldUnOp = cast<UnaryOperator>(Vec);
3201 OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(),
3202 II->getIterator());
3203 return replaceInstUsesWith(CI, NewUnOp);
3204 }
3205 break;
3206 }
3207 case Intrinsic::vector_reduce_or:
3208 case Intrinsic::vector_reduce_and: {
3209 // Canonicalize logical or/and reductions:
3210 // Or reduction for i1 is represented as:
3211 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3212 // %res = cmp ne iReduxWidth %val, 0
3213 // And reduction for i1 is represented as:
3214 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3215 // %res = cmp eq iReduxWidth %val, 11111
3216 Value *Arg = II->getArgOperand(0);
3217 Value *Vect;
3218 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3219 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3220 if (FTy->getElementType() == Builder.getInt1Ty()) {
3222 Vect, Builder.getIntNTy(FTy->getNumElements()));
3223 if (IID == Intrinsic::vector_reduce_and) {
3224 Res = Builder.CreateICmpEQ(
3226 } else {
3227 assert(IID == Intrinsic::vector_reduce_or &&
3228 "Expected or reduction.");
3229 Res = Builder.CreateIsNotNull(Res);
3230 }
3231 if (Arg != Vect)
3232 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
3233 II->getType());
3234 return replaceInstUsesWith(CI, Res);
3235 }
3236 }
3237 [[fallthrough]];
3238 }
3239 case Intrinsic::vector_reduce_add: {
3240 if (IID == Intrinsic::vector_reduce_add) {
3241 // Convert vector_reduce_add(ZExt(<n x i1>)) to
3242 // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
3243 // Convert vector_reduce_add(SExt(<n x i1>)) to
3244 // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
3245 // Convert vector_reduce_add(<n x i1>) to
3246 // Trunc(ctpop(bitcast <n x i1> to in)).
3247 Value *Arg = II->getArgOperand(0);
3248 Value *Vect;
3249 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3250 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3251 if (FTy->getElementType() == Builder.getInt1Ty()) {
3253 Vect, Builder.getIntNTy(FTy->getNumElements()));
3254 Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V);
3255 if (Res->getType() != II->getType())
3256 Res = Builder.CreateZExtOrTrunc(Res, II->getType());
3257 if (Arg != Vect &&
3258 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt)
3259 Res = Builder.CreateNeg(Res);
3260 return replaceInstUsesWith(CI, Res);
3261 }
3262 }
3263 }
3264 [[fallthrough]];
3265 }
3266 case Intrinsic::vector_reduce_xor: {
3267 if (IID == Intrinsic::vector_reduce_xor) {
3268 // Exclusive disjunction reduction over the vector with
3269 // (potentially-extended) i1 element type is actually a
3270 // (potentially-extended) arithmetic `add` reduction over the original
3271 // non-extended value:
3272 // vector_reduce_xor(?ext(<n x i1>))
3273 // -->
3274 // ?ext(vector_reduce_add(<n x i1>))
3275 Value *Arg = II->getArgOperand(0);
3276 Value *Vect;
3277 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3278 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3279 if (FTy->getElementType() == Builder.getInt1Ty()) {
3280 Value *Res = Builder.CreateAddReduce(Vect);
3281 if (Arg != Vect)
3282 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
3283 II->getType());
3284 return replaceInstUsesWith(CI, Res);
3285 }
3286 }
3287 }
3288 [[fallthrough]];
3289 }
3290 case Intrinsic::vector_reduce_mul: {
3291 if (IID == Intrinsic::vector_reduce_mul) {
3292 // Multiplicative reduction over the vector with (potentially-extended)
3293 // i1 element type is actually a (potentially zero-extended)
3294 // logical `and` reduction over the original non-extended value:
3295 // vector_reduce_mul(?ext(<n x i1>))
3296 // -->
3297 // zext(vector_reduce_and(<n x i1>))
3298 Value *Arg = II->getArgOperand(0);
3299 Value *Vect;
3300 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3301 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3302 if (FTy->getElementType() == Builder.getInt1Ty()) {
3303 Value *Res = Builder.CreateAndReduce(Vect);
3304 if (Res->getType() != II->getType())
3305 Res = Builder.CreateZExt(Res, II->getType());
3306 return replaceInstUsesWith(CI, Res);
3307 }
3308 }
3309 }
3310 [[fallthrough]];
3311 }
3312 case Intrinsic::vector_reduce_umin:
3313 case Intrinsic::vector_reduce_umax: {
3314 if (IID == Intrinsic::vector_reduce_umin ||
3315 IID == Intrinsic::vector_reduce_umax) {
3316 // UMin/UMax reduction over the vector with (potentially-extended)
3317 // i1 element type is actually a (potentially-extended)
3318 // logical `and`/`or` reduction over the original non-extended value:
3319 // vector_reduce_u{min,max}(?ext(<n x i1>))
3320 // -->
3321 // ?ext(vector_reduce_{and,or}(<n x i1>))
3322 Value *Arg = II->getArgOperand(0);
3323 Value *Vect;
3324 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3325 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3326 if (FTy->getElementType() == Builder.getInt1Ty()) {
3327 Value *Res = IID == Intrinsic::vector_reduce_umin
3328 ? Builder.CreateAndReduce(Vect)
3329 : Builder.CreateOrReduce(Vect);
3330 if (Arg != Vect)
3331 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
3332 II->getType());
3333 return replaceInstUsesWith(CI, Res);
3334 }
3335 }
3336 }
3337 [[fallthrough]];
3338 }
3339 case Intrinsic::vector_reduce_smin:
3340 case Intrinsic::vector_reduce_smax: {
3341 if (IID == Intrinsic::vector_reduce_smin ||
3342 IID == Intrinsic::vector_reduce_smax) {
3343 // SMin/SMax reduction over the vector with (potentially-extended)
3344 // i1 element type is actually a (potentially-extended)
3345 // logical `and`/`or` reduction over the original non-extended value:
3346 // vector_reduce_s{min,max}(<n x i1>)
3347 // -->
3348 // vector_reduce_{or,and}(<n x i1>)
3349 // and
3350 // vector_reduce_s{min,max}(sext(<n x i1>))
3351 // -->
3352 // sext(vector_reduce_{or,and}(<n x i1>))
3353 // and
3354 // vector_reduce_s{min,max}(zext(<n x i1>))
3355 // -->
3356 // zext(vector_reduce_{and,or}(<n x i1>))
3357 Value *Arg = II->getArgOperand(0);
3358 Value *Vect;
3359 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3360 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3361 if (FTy->getElementType() == Builder.getInt1Ty()) {
3362 Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd;
3363 if (Arg != Vect)
3364 ExtOpc = cast<CastInst>(Arg)->getOpcode();
3365 Value *Res = ((IID == Intrinsic::vector_reduce_smin) ==
3366 (ExtOpc == Instruction::CastOps::ZExt))
3367 ? Builder.CreateAndReduce(Vect)
3368 : Builder.CreateOrReduce(Vect);
3369 if (Arg != Vect)
3370 Res = Builder.CreateCast(ExtOpc, Res, II->getType());
3371 return replaceInstUsesWith(CI, Res);
3372 }
3373 }
3374 }
3375 [[fallthrough]];
3376 }
3377 case Intrinsic::vector_reduce_fmax:
3378 case Intrinsic::vector_reduce_fmin:
3379 case Intrinsic::vector_reduce_fadd:
3380 case Intrinsic::vector_reduce_fmul: {
3381 bool CanBeReassociated = (IID != Intrinsic::vector_reduce_fadd &&
3382 IID != Intrinsic::vector_reduce_fmul) ||
3383 II->hasAllowReassoc();
3384 const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd ||
3385 IID == Intrinsic::vector_reduce_fmul)
3386 ? 1
3387 : 0;
3388 Value *Arg = II->getArgOperand(ArgIdx);
3389 Value *V;
3390 ArrayRef<int> Mask;
3391 if (!isa<FixedVectorType>(Arg->getType()) || !CanBeReassociated ||
3392 !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) ||
3393 !cast<ShuffleVectorInst>(Arg)->isSingleSource())
3394 break;
3395 int Sz = Mask.size();
3396 SmallBitVector UsedIndices(Sz);
3397 for (int Idx : Mask) {
3398 if (Idx == PoisonMaskElem || UsedIndices.test(Idx))
3399 break;
3400 UsedIndices.set(Idx);
3401 }
3402 // Can remove shuffle iff just shuffled elements, no repeats, undefs, or
3403 // other changes.
3404 if (UsedIndices.all()) {
3405 replaceUse(II->getOperandUse(ArgIdx), V);
3406 return nullptr;
3407 }
3408 break;
3409 }
3410 case Intrinsic::is_fpclass: {
3411 if (Instruction *I = foldIntrinsicIsFPClass(*II))
3412 return I;
3413 break;
3414 }
3415 case Intrinsic::threadlocal_address: {
3418 if (MinAlign > Align.valueOrOne()) {
3420 return II;
3421 }
3422 break;
3423 }
3424 default: {
3425 // Handle target specific intrinsics
3426 std::optional<Instruction *> V = targetInstCombineIntrinsic(*II);
3427 if (V)
3428 return *V;
3429 break;
3430 }
3431 }
3432
3433 // Try to fold intrinsic into select operands. This is legal if:
3434 // * The intrinsic is speculatable.
3435 // * The select condition is not a vector, or the intrinsic does not
3436 // perform cross-lane operations.
3437 switch (IID) {
3438 case Intrinsic::ctlz:
3439 case Intrinsic::cttz:
3440 case Intrinsic::ctpop:
3441 case Intrinsic::umin:
3442 case Intrinsic::umax:
3443 case Intrinsic::smin:
3444 case Intrinsic::smax:
3445 case Intrinsic::usub_sat:
3446 case Intrinsic::uadd_sat:
3447 case Intrinsic::ssub_sat:
3448 case Intrinsic::sadd_sat:
3449 for (Value *Op : II->args())
3450 if (auto *Sel = dyn_cast<SelectInst>(Op))
3451 if (Instruction *R = FoldOpIntoSelect(*II, Sel))
3452 return R;
3453 [[fallthrough]];
3454 default:
3455 break;
3456 }
3457
3459 return Shuf;
3460
3461 // Some intrinsics (like experimental_gc_statepoint) can be used in invoke
3462 // context, so it is handled in visitCallBase and we should trigger it.
3463 return visitCallBase(*II);
3464}
3465
3466// Fence instruction simplification
3468 auto *NFI = dyn_cast<FenceInst>(FI.getNextNonDebugInstruction());
3469 // This check is solely here to handle arbitrary target-dependent syncscopes.
3470 // TODO: Can remove if does not matter in practice.
3471 if (NFI && FI.isIdenticalTo(NFI))
3472 return eraseInstFromFunction(FI);
3473
3474 // Returns true if FI1 is identical or stronger fence than FI2.
3475 auto isIdenticalOrStrongerFence = [](FenceInst *FI1, FenceInst *FI2) {
3476 auto FI1SyncScope = FI1->getSyncScopeID();
3477 // Consider same scope, where scope is global or single-thread.
3478 if (FI1SyncScope != FI2->getSyncScopeID() ||
3479 (FI1SyncScope != SyncScope::System &&
3480 FI1SyncScope != SyncScope::SingleThread))
3481 return false;
3482
3483 return isAtLeastOrStrongerThan(FI1->getOrdering(), FI2->getOrdering());
3484 };
3485 if (NFI && isIdenticalOrStrongerFence(NFI, &FI))
3486 return eraseInstFromFunction(FI);
3487
3488 if (auto *PFI = dyn_cast_or_null<FenceInst>(FI.getPrevNonDebugInstruction()))
3489 if (isIdenticalOrStrongerFence(PFI, &FI))
3490 return eraseInstFromFunction(FI);
3491 return nullptr;
3492}
3493
3494// InvokeInst simplification
3496 return visitCallBase(II);
3497}
3498
3499// CallBrInst simplification
3501 return visitCallBase(CBI);
3502}
3503
3504Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) {
3505 if (!CI->getCalledFunction()) return nullptr;
3506
3507 // Skip optimizing notail and musttail calls so
3508 // LibCallSimplifier::optimizeCall doesn't have to preserve those invariants.
3509 // LibCallSimplifier::optimizeCall should try to preseve tail calls though.
3510 if (CI->isMustTailCall() || CI->isNoTailCall())
3511 return nullptr;
3512
3513 auto InstCombineRAUW = [this](Instruction *From, Value *With) {
3514 replaceInstUsesWith(*From, With);
3515 };
3516 auto InstCombineErase = [this](Instruction *I) {
3518 };
3519 LibCallSimplifier Simplifier(DL, &TLI, &AC, ORE, BFI, PSI, InstCombineRAUW,
3520 InstCombineErase);
3521 if (Value *With = Simplifier.optimizeCall(CI, Builder)) {
3522 ++NumSimplified;
3523 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
3524 }
3525
3526 return nullptr;
3527}
3528
3530 // Strip off at most one level of pointer casts, looking for an alloca. This
3531 // is good enough in practice and simpler than handling any number of casts.
3532 Value *Underlying = TrampMem->stripPointerCasts();
3533 if (Underlying != TrampMem &&
3534 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
3535 return nullptr;
3536 if (!isa<AllocaInst>(Underlying))
3537 return nullptr;
3538
3539 IntrinsicInst *InitTrampoline = nullptr;
3540 for (User *U : TrampMem->users()) {
3541 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3542 if (!II)
3543 return nullptr;
3544 if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
3545 if (InitTrampoline)
3546 // More than one init_trampoline writes to this value. Give up.
3547 return nullptr;
3548 InitTrampoline = II;
3549 continue;
3550 }
3551 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
3552 // Allow any number of calls to adjust.trampoline.
3553 continue;
3554 return nullptr;
3555 }
3556
3557 // No call to init.trampoline found.
3558 if (!InitTrampoline)
3559 return nullptr;
3560
3561 // Check that the alloca is being used in the expected way.
3562 if (InitTrampoline->getOperand(0) != TrampMem)
3563 return nullptr;
3564
3565 return InitTrampoline;
3566}
3567
3569 Value *TrampMem) {
3570 // Visit all the previous instructions in the basic block, and try to find a
3571 // init.trampoline which has a direct path to the adjust.trampoline.
3572 for (BasicBlock::iterator I = AdjustTramp->getIterator(),
3573 E = AdjustTramp->getParent()->begin();
3574 I != E;) {
3575 Instruction *Inst = &*--I;
3576 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
3577 if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
3578 II->getOperand(0) == TrampMem)
3579 return II;
3580 if (Inst->mayWriteToMemory())
3581 return nullptr;
3582 }
3583 return nullptr;
3584}
3585
3586// Given a call to llvm.adjust.trampoline, find and return the corresponding
3587// call to llvm.init.trampoline if the call to the trampoline can be optimized
3588// to a direct call to a function. Otherwise return NULL.
3590 Callee = Callee->stripPointerCasts();
3591 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
3592 if (!AdjustTramp ||
3593 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
3594 return nullptr;
3595
3596 Value *TrampMem = AdjustTramp->getOperand(0);
3597
3599 return IT;
3600 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
3601 return IT;
3602 return nullptr;
3603}
3604
3605bool InstCombinerImpl::annotateAnyAllocSite(CallBase &Call,
3606 const TargetLibraryInfo *TLI) {
3607 // Note: We only handle cases which can't be driven from generic attributes
3608 // here. So, for example, nonnull and noalias (which are common properties
3609 // of some allocation functions) are expected to be handled via annotation
3610 // of the respective allocator declaration with generic attributes.
3611 bool Changed = false;
3612
3613 if (!Call.getType()->isPointerTy())
3614 return Changed;
3615
3616 std::optional<APInt> Size = getAllocSize(&Call, TLI);
3617 if (Size && *Size != 0) {
3618 // TODO: We really should just emit deref_or_null here and then
3619 // let the generic inference code combine that with nonnull.
3620 if (Call.hasRetAttr(Attribute::NonNull)) {
3621 Changed = !Call.hasRetAttr(Attribute::Dereferenceable);
3623 Call.getContext(), Size->getLimitedValue()));
3624 } else {
3625 Changed = !Call.hasRetAttr(Attribute::DereferenceableOrNull);
3627 Call.getContext(), Size->getLimitedValue()));
3628 }
3629 }
3630
3631 // Add alignment attribute if alignment is a power of two constant.
3632 Value *Alignment = getAllocAlignment(&Call, TLI);
3633 if (!Alignment)
3634 return Changed;
3635
3636 ConstantInt *AlignOpC = dyn_cast<ConstantInt>(Alignment);
3637 if (AlignOpC && AlignOpC->getValue().ult(llvm::Value::MaximumAlignment)) {
3638 uint64_t AlignmentVal = AlignOpC->getZExtValue();
3639 if (llvm::isPowerOf2_64(AlignmentVal)) {
3640 Align ExistingAlign = Call.getRetAlign().valueOrOne();
3641 Align NewAlign = Align(AlignmentVal);
3642 if (NewAlign > ExistingAlign) {
3643 Call.addRetAttr(
3644 Attribute::getWithAlignment(Call.getContext(), NewAlign));
3645 Changed = true;
3646 }
3647 }
3648 }
3649 return Changed;
3650}
3651
3652/// Improvements for call, callbr and invoke instructions.
3653Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) {
3654 bool Changed = annotateAnyAllocSite(Call, &TLI);
3655
3656 // Mark any parameters that are known to be non-null with the nonnull
3657 // attribute. This is helpful for inlining calls to functions with null
3658 // checks on their arguments.
3660 unsigned ArgNo = 0;
3661
3662 for (Value *V : Call.args()) {
3663 if (V->getType()->isPointerTy() &&
3664 !Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
3665 isKnownNonZero(V, getSimplifyQuery().getWithInstruction(&Call)))
3666 ArgNos.push_back(ArgNo);
3667 ArgNo++;
3668 }
3669
3670 assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly.");
3671
3672 if (!ArgNos.empty()) {
3673 AttributeList AS = Call.getAttributes();
3674 LLVMContext &Ctx = Call.getContext();
3675 AS = AS.addParamAttribute(Ctx, ArgNos,
3676 Attribute::get(Ctx, Attribute::NonNull));
3677 Call.setAttributes(AS);
3678 Changed = true;
3679 }
3680
3681 // If the callee is a pointer to a function, attempt to move any casts to the
3682 // arguments of the call/callbr/invoke.
3683 Value *Callee = Call.getCalledOperand();
3684 Function *CalleeF = dyn_cast<Function>(Callee);
3685 if ((!CalleeF || CalleeF->getFunctionType() != Call.getFunctionType()) &&
3686 transformConstExprCastCall(Call))
3687 return nullptr;
3688
3689 if (CalleeF) {
3690 // Remove the convergent attr on calls when the callee is not convergent.
3691 if (Call.isConvergent() && !CalleeF->isConvergent() &&
3692 !CalleeF->isIntrinsic()) {
3693 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
3694 << "\n");
3695 Call.setNotConvergent();
3696 return &Call;
3697 }
3698
3699 // If the call and callee calling conventions don't match, and neither one
3700 // of the calling conventions is compatible with C calling convention
3701 // this call must be unreachable, as the call is undefined.
3702 if ((CalleeF->getCallingConv() != Call.getCallingConv() &&
3703 !(CalleeF->getCallingConv() == llvm::CallingConv::C &&
3705 !(Call.getCallingConv() == llvm::CallingConv::C &&
3707 // Only do this for calls to a function with a body. A prototype may
3708 // not actually end up matching the implementation's calling conv for a
3709 // variety of reasons (e.g. it may be written in assembly).
3710 !CalleeF->isDeclaration()) {
3711 Instruction *OldCall = &Call;
3713 // If OldCall does not return void then replaceInstUsesWith poison.
3714 // This allows ValueHandlers and custom metadata to adjust itself.
3715 if (!OldCall->getType()->isVoidTy())
3716 replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType()));
3717 if (isa<CallInst>(OldCall))
3718 return eraseInstFromFunction(*OldCall);
3719
3720 // We cannot remove an invoke or a callbr, because it would change thexi
3721 // CFG, just change the callee to a null pointer.
3722 cast<CallBase>(OldCall)->setCalledFunction(
3723 CalleeF->getFunctionType(),
3724 Constant::getNullValue(CalleeF->getType()));
3725 return nullptr;
3726 }
3727 }
3728
3729 // Calling a null function pointer is undefined if a null address isn't
3730 // dereferenceable.
3731 if ((isa<ConstantPointerNull>(Callee) &&
3732 !NullPointerIsDefined(Call.getFunction())) ||
3733 isa<UndefValue>(Callee)) {
3734 // If Call does not return void then replaceInstUsesWith poison.
3735 // This allows ValueHandlers and custom metadata to adjust itself.
3736 if (!Call.getType()->isVoidTy())
3737 replaceInstUsesWith(Call, PoisonValue::get(Call.getType()));
3738
3739 if (Call.isTerminator()) {
3740 // Can't remove an invoke or callbr because we cannot change the CFG.
3741 return nullptr;
3742 }
3743
3744 // This instruction is not reachable, just remove it.
3746 return eraseInstFromFunction(Call);
3747 }
3748
3749 if (IntrinsicInst *II = findInitTrampoline(Callee))
3750 return transformCallThroughTrampoline(Call, *II);
3751
3752 if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
3753 InlineAsm *IA = cast<InlineAsm>(Callee);
3754 if (!IA->canThrow()) {
3755 // Normal inline asm calls cannot throw - mark them
3756 // 'nounwind'.
3757 Call.setDoesNotThrow();
3758 Changed = true;
3759 }
3760 }
3761
3762 // Try to optimize the call if possible, we require DataLayout for most of
3763 // this. None of these calls are seen as possibly dead so go ahead and
3764 // delete the instruction now.
3765 if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
3766 Instruction *I = tryOptimizeCall(CI);
3767 // If we changed something return the result, etc. Otherwise let
3768 // the fallthrough check.
3769 if (I) return eraseInstFromFunction(*I);
3770 }
3771
3772 if (!Call.use_empty() && !Call.isMustTailCall())
3773 if (Value *ReturnedArg = Call.getReturnedArgOperand()) {
3774 Type *CallTy = Call.getType();
3775 Type *RetArgTy = ReturnedArg->getType();
3776 if (RetArgTy->canLosslesslyBitCastTo(CallTy))
3777 return replaceInstUsesWith(
3778 Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
3779 }
3780
3781 // Drop unnecessary kcfi operand bundles from calls that were converted
3782 // into direct calls.
3783 auto Bundle = Call.getOperandBundle(LLVMContext::OB_kcfi);
3784 if (Bundle && !Call.isIndirectCall()) {
3785 DEBUG_WITH_TYPE(DEBUG_TYPE "-kcfi", {
3786 if (CalleeF) {
3787 ConstantInt *FunctionType = nullptr;
3788 ConstantInt *ExpectedType = cast<ConstantInt>(Bundle->Inputs[0]);
3789
3790 if (MDNode *MD = CalleeF->getMetadata(LLVMContext::MD_kcfi_type))
3791 FunctionType = mdconst::extract<ConstantInt>(MD->getOperand(0));
3792
3793 if (FunctionType &&
3794 FunctionType->getZExtValue() != ExpectedType->getZExtValue())
3795 dbgs() << Call.getModule()->getName()
3796 << ": warning: kcfi: " << Call.getCaller()->getName()
3797 << ": call to " << CalleeF->getName()
3798 << " using a mismatching function pointer type\n";
3799 }
3800 });
3801
3803 }
3804
3805 if (isRemovableAlloc(&Call, &TLI))
3806 return visitAllocSite(Call);
3807
3808 // Handle intrinsics which can be used in both call and invoke context.
3809 switch (Call.getIntrinsicID()) {
3810 case Intrinsic::experimental_gc_statepoint: {
3811 GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call);
3812 SmallPtrSet<Value *, 32> LiveGcValues;
3813 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
3814 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
3815
3816 // Remove the relocation if unused.
3817 if (GCR.use_empty()) {
3819 continue;
3820 }
3821
3822 Value *DerivedPtr = GCR.getDerivedPtr();
3823 Value *BasePtr = GCR.getBasePtr();
3824
3825 // Undef is undef, even after relocation.
3826 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) {
3829 continue;
3830 }
3831
3832 if (auto *PT = dyn_cast<PointerType>(GCR.getType())) {
3833 // The relocation of null will be null for most any collector.
3834 // TODO: provide a hook for this in GCStrategy. There might be some
3835 // weird collector this property does not hold for.
3836 if (isa<ConstantPointerNull>(DerivedPtr)) {
3837 // Use null-pointer of gc_relocate's type to replace it.
3840 continue;
3841 }
3842
3843 // isKnownNonNull -> nonnull attribute
3844 if (!GCR.hasRetAttr(Attribute::NonNull) &&
3845 isKnownNonZero(DerivedPtr,
3846 getSimplifyQuery().getWithInstruction(&Call))) {
3847 GCR.addRetAttr(Attribute::NonNull);
3848 // We discovered new fact, re-check users.
3850 }
3851 }
3852
3853 // If we have two copies of the same pointer in the statepoint argument
3854 // list, canonicalize to one. This may let us common gc.relocates.
3855 if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
3856 GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
3857 auto *OpIntTy = GCR.getOperand(2)->getType();
3858 GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
3859 }
3860
3861 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
3862 // Canonicalize on the type from the uses to the defs
3863
3864 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
3865 LiveGcValues.insert(BasePtr);
3866 LiveGcValues.insert(DerivedPtr);
3867 }
3868 std::optional<OperandBundleUse> Bundle =
3870 unsigned NumOfGCLives = LiveGcValues.size();
3871 if (!Bundle || NumOfGCLives == Bundle->Inputs.size())
3872 break;
3873 // We can reduce the size of gc live bundle.
3875 std::vector<Value *> NewLiveGc;
3876 for (Value *V : Bundle->Inputs) {
3877 if (Val2Idx.count(V))
3878 continue;
3879 if (LiveGcValues.count(V)) {
3880 Val2Idx[V] = NewLiveGc.size();
3881 NewLiveGc.push_back(V);
3882 } else
3883 Val2Idx[V] = NumOfGCLives;
3884 }
3885 // Update all gc.relocates
3886 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
3887 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
3888 Value *BasePtr = GCR.getBasePtr();
3889 assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
3890 "Missed live gc for base pointer");
3891 auto *OpIntTy1 = GCR.getOperand(1)->getType();
3892 GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr]));
3893 Value *DerivedPtr = GCR.getDerivedPtr();
3894 assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
3895 "Missed live gc for derived pointer");
3896 auto *OpIntTy2 = GCR.getOperand(2)->getType();
3897 GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr]));
3898 }
3899 // Create new statepoint instruction.
3900 OperandBundleDef NewBundle("gc-live", NewLiveGc);
3901 return CallBase::Create(&Call, NewBundle);
3902 }
3903 default: { break; }
3904 }
3905
3906 return Changed ? &Call : nullptr;
3907}
3908
3909/// If the callee is a constexpr cast of a function, attempt to move the cast to
3910/// the arguments of the call/invoke.
3911/// CallBrInst is not supported.
3912bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) {
3913 auto *Callee =
3914 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3915 if (!Callee)
3916 return false;
3917
3918 assert(!isa<CallBrInst>(Call) &&
3919 "CallBr's don't have a single point after a def to insert at");
3920
3921 // If this is a call to a thunk function, don't remove the cast. Thunks are
3922 // used to transparently forward all incoming parameters and outgoing return
3923 // values, so it's important to leave the cast in place.
3924 if (Callee->hasFnAttribute("thunk"))
3925 return false;
3926
3927 // If this is a call to a naked function, the assembly might be
3928 // using an argument, or otherwise rely on the frame layout,
3929 // the function prototype will mismatch.
3930 if (Callee->hasFnAttribute(Attribute::Naked))
3931 return false;
3932
3933 // If this is a musttail call, the callee's prototype must match the caller's
3934 // prototype with the exception of pointee types. The code below doesn't
3935 // implement that, so we can't do this transform.
3936 // TODO: Do the transform if it only requires adding pointer casts.
3937 if (Call.isMustTailCall())
3938 return false;
3939
3941 const AttributeList &CallerPAL = Call.getAttributes();
3942
3943 // Okay, this is a cast from a function to a different type. Unless doing so
3944 // would cause a type conversion of one of our arguments, change this call to
3945 // be a direct call with arguments casted to the appropriate types.
3946 FunctionType *FT = Callee->getFunctionType();
3947 Type *OldRetTy = Caller->getType();
3948 Type *NewRetTy = FT->getReturnType();
3949
3950 // Check to see if we are changing the return type...
3951 if (OldRetTy != NewRetTy) {
3952
3953 if (NewRetTy->isStructTy())
3954 return false; // TODO: Handle multiple return values.
3955
3956 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
3957 if (Callee->isDeclaration())
3958 return false; // Cannot transform this return value.
3959
3960 if (!Caller->use_empty() &&
3961 // void -> non-void is handled specially
3962 !NewRetTy->isVoidTy())
3963 return false; // Cannot transform this return value.
3964 }
3965
3966 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
3967 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
3968 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
3969 return false; // Attribute not compatible with transformed value.
3970 }
3971
3972 // If the callbase is an invoke instruction, and the return value is
3973 // used by a PHI node in a successor, we cannot change the return type of
3974 // the call because there is no place to put the cast instruction (without
3975 // breaking the critical edge). Bail out in this case.
3976 if (!Caller->use_empty()) {
3977 BasicBlock *PhisNotSupportedBlock = nullptr;
3978 if (auto *II = dyn_cast<InvokeInst>(Caller))
3979 PhisNotSupportedBlock = II->getNormalDest();
3980 if (PhisNotSupportedBlock)
3981 for (User *U : Caller->users())
3982 if (PHINode *PN = dyn_cast<PHINode>(U))
3983 if (PN->getParent() == PhisNotSupportedBlock)
3984 return false;
3985 }
3986 }
3987
3988 unsigned NumActualArgs = Call.arg_size();
3989 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
3990
3991 // Prevent us turning:
3992 // declare void @takes_i32_inalloca(i32* inalloca)
3993 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
3994 //
3995 // into:
3996 // call void @takes_i32_inalloca(i32* null)
3997 //
3998 // Similarly, avoid folding away bitcasts of byval calls.
3999 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
4000 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated))
4001 return false;
4002
4003 auto AI = Call.arg_begin();
4004 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
4005 Type *ParamTy = FT->getParamType(i);
4006 Type *ActTy = (*AI)->getType();
4007
4008 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
4009 return false; // Cannot transform this parameter value.
4010
4011 // Check if there are any incompatible attributes we cannot drop safely.
4012 if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i))
4015 return false; // Attribute not compatible with transformed value.
4016
4017 if (Call.isInAllocaArgument(i) ||
4018 CallerPAL.hasParamAttr(i, Attribute::Preallocated))
4019 return false; // Cannot transform to and from inalloca/preallocated.
4020
4021 if (CallerPAL.hasParamAttr(i, Attribute::SwiftError))
4022 return false;
4023
4024 if (CallerPAL.hasParamAttr(i, Attribute::ByVal) !=
4025 Callee->getAttributes().hasParamAttr(i, Attribute::ByVal))
4026 return false; // Cannot transform to or from byval.
4027 }
4028
4029 if (Callee->isDeclaration()) {
4030 // Do not delete arguments unless we have a function body.
4031 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
4032 return false;
4033
4034 // If the callee is just a declaration, don't change the varargsness of the
4035 // call. We don't want to introduce a varargs call where one doesn't
4036 // already exist.
4037 if (FT->isVarArg() != Call.getFunctionType()->isVarArg())
4038 return false;
4039
4040 // If both the callee and the cast type are varargs, we still have to make
4041 // sure the number of fixed parameters are the same or we have the same
4042 // ABI issues as if we introduce a varargs call.
4043 if (FT->isVarArg() && Call.getFunctionType()->isVarArg() &&
4044 FT->getNumParams() != Call.getFunctionType()->getNumParams())
4045 return false;
4046 }
4047
4048 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
4049 !CallerPAL.isEmpty()) {
4050 // In this case we have more arguments than the new function type, but we
4051 // won't be dropping them. Check that these extra arguments have attributes
4052 // that are compatible with being a vararg call argument.
4053 unsigned SRetIdx;
4054 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
4055 SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams())
4056 return false;
4057 }
4058
4059 // Okay, we decided that this is a safe thing to do: go ahead and start
4060 // inserting cast instructions as necessary.
4063 Args.reserve(NumActualArgs);
4064 ArgAttrs.reserve(NumActualArgs);
4065
4066 // Get any return attributes.
4067 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
4068
4069 // If the return value is not being used, the type may not be compatible
4070 // with the existing attributes. Wipe out any problematic attributes.
4071 RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
4072
4073 LLVMContext &Ctx = Call.getContext();
4074 AI = Call.arg_begin();
4075 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
4076 Type *ParamTy = FT->getParamType(i);
4077
4078 Value *NewArg = *AI;
4079 if ((*AI)->getType() != ParamTy)
4080 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
4081 Args.push_back(NewArg);
4082
4083 // Add any parameter attributes except the ones incompatible with the new
4084 // type. Note that we made sure all incompatible ones are safe to drop.
4087 ArgAttrs.push_back(
4088 CallerPAL.getParamAttrs(i).removeAttributes(Ctx, IncompatibleAttrs));
4089 }
4090
4091 // If the function takes more arguments than the call was taking, add them
4092 // now.
4093 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
4094 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
4095 ArgAttrs.push_back(AttributeSet());
4096 }
4097
4098 // If we are removing arguments to the function, emit an obnoxious warning.
4099 if (FT->getNumParams() < NumActualArgs) {
4100 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
4101 if (FT->isVarArg()) {
4102 // Add all of the arguments in their promoted form to the arg list.
4103 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
4104 Type *PTy = getPromotedType((*AI)->getType());
4105 Value *NewArg = *AI;
4106 if (PTy != (*AI)->getType()) {
4107 // Must promote to pass through va_arg area!
4108 Instruction::CastOps opcode =
4109 CastInst::getCastOpcode(*AI, false, PTy, false);
4110 NewArg = Builder.CreateCast(opcode, *AI, PTy);
4111 }
4112 Args.push_back(NewArg);
4113
4114 // Add any parameter attributes.
4115 ArgAttrs.push_back(CallerPAL.getParamAttrs(i));
4116 }
4117 }
4118 }
4119
4120 AttributeSet FnAttrs = CallerPAL.getFnAttrs();
4121
4122 if (NewRetTy->isVoidTy())
4123 Caller->setName(""); // Void type should not have a name.
4124
4125 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
4126 "missing argument attributes");
4127 AttributeList NewCallerPAL = AttributeList::get(
4128 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
4129
4131 Call.getOperandBundlesAsDefs(OpBundles);
4132
4133 CallBase *NewCall;
4134 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4135 NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
4136 II->getUnwindDest(), Args, OpBundles);
4137 } else {
4138 NewCall = Builder.CreateCall(Callee, Args, OpBundles);
4139 cast<CallInst>(NewCall)->setTailCallKind(
4140 cast<CallInst>(Caller)->getTailCallKind());
4141 }
4142 NewCall->takeName(Caller);
4143 NewCall->setCallingConv(Call.getCallingConv());
4144 NewCall->setAttributes(NewCallerPAL);
4145
4146 // Preserve prof metadata if any.
4147 NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof});
4148
4149 // Insert a cast of the return type as necessary.
4150 Instruction *NC = NewCall;
4151 Value *NV = NC;
4152 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
4153 if (!NV->getType()->isVoidTy()) {
4155 NC->setDebugLoc(Caller->getDebugLoc());
4156
4157 auto OptInsertPt = NewCall->getInsertionPointAfterDef();
4158 assert(OptInsertPt && "No place to insert cast");
4159 InsertNewInstBefore(NC, *OptInsertPt);
4161 } else {
4162 NV = PoisonValue::get(Caller->getType());
4163 }
4164 }
4165
4166 if (!Caller->use_empty())
4167 replaceInstUsesWith(*Caller, NV);
4168 else if (Caller->hasValueHandle()) {
4169 if (OldRetTy == NV->getType())
4171 else
4172 // We cannot call ValueIsRAUWd with a different type, and the
4173 // actual tracked value will disappear.
4175 }
4176
4177 eraseInstFromFunction(*Caller);
4178 return true;
4179}
4180
4181/// Turn a call to a function created by init_trampoline / adjust_trampoline
4182/// intrinsic pair into a direct call to the underlying function.
4184InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call,
4185 IntrinsicInst &Tramp) {
4186 FunctionType *FTy = Call.getFunctionType();
4187 AttributeList Attrs = Call.getAttributes();
4188
4189 // If the call already has the 'nest' attribute somewhere then give up -
4190 // otherwise 'nest' would occur twice after splicing in the chain.
4191 if (Attrs.hasAttrSomewhere(Attribute::Nest))
4192 return nullptr;
4193
4194 Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts());
4195 FunctionType *NestFTy = NestF->getFunctionType();
4196
4197 AttributeList NestAttrs = NestF->getAttributes();
4198 if (!NestAttrs.isEmpty()) {
4199 unsigned NestArgNo = 0;
4200 Type *NestTy = nullptr;
4201 AttributeSet NestAttr;
4202
4203 // Look for a parameter marked with the 'nest' attribute.
4204 for (FunctionType::param_iterator I = NestFTy->param_begin(),
4205 E = NestFTy->param_end();
4206 I != E; ++NestArgNo, ++I) {
4207 AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo);
4208 if (AS.hasAttribute(Attribute::Nest)) {
4209 // Record the parameter type and any other attributes.
4210 NestTy = *I;
4211 NestAttr = AS;
4212 break;
4213 }
4214 }
4215
4216 if (NestTy) {
4217 std::vector<Value*> NewArgs;
4218 std::vector<AttributeSet> NewArgAttrs;
4219 NewArgs.reserve(Call.arg_size() + 1);
4220 NewArgAttrs.reserve(Call.arg_size());
4221
4222 // Insert the nest argument into the call argument list, which may
4223 // mean appending it. Likewise for attributes.
4224
4225 {
4226 unsigned ArgNo = 0;
4227 auto I = Call.arg_begin(), E = Call.arg_end();
4228 do {
4229 if (ArgNo == NestArgNo) {
4230 // Add the chain argument and attributes.
4231 Value *NestVal = Tramp.getArgOperand(2);
4232 if (NestVal->getType() != NestTy)
4233 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
4234 NewArgs.push_back(NestVal);
4235 NewArgAttrs.push_back(NestAttr);
4236 }
4237
4238 if (I == E)
4239 break;
4240
4241 // Add the original argument and attributes.
4242 NewArgs.push_back(*I);
4243 NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
4244
4245 ++ArgNo;
4246 ++I;
4247 } while (true);
4248 }
4249
4250 // The trampoline may have been bitcast to a bogus type (FTy).
4251 // Handle this by synthesizing a new function type, equal to FTy
4252 // with the chain parameter inserted.
4253
4254 std::vector<Type*> NewTypes;
4255 NewTypes.reserve(FTy->getNumParams()+1);
4256
4257 // Insert the chain's type into the list of parameter types, which may
4258 // mean appending it.
4259 {
4260 unsigned ArgNo = 0;
4261 FunctionType::param_iterator I = FTy->param_begin(),
4262 E = FTy->param_end();
4263
4264 do {
4265 if (ArgNo == NestArgNo)
4266 // Add the chain's type.
4267 NewTypes.push_back(NestTy);
4268
4269 if (I == E)
4270 break;
4271
4272 // Add the original type.
4273 NewTypes.push_back(*I);
4274
4275 ++ArgNo;
4276 ++I;
4277 } while (true);
4278 }
4279
4280 // Replace the trampoline call with a direct call. Let the generic
4281 // code sort out any function type mismatches.
4282 FunctionType *NewFTy =
4283 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
4284 AttributeList NewPAL =
4285 AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(),
4286 Attrs.getRetAttrs(), NewArgAttrs);
4287
4289 Call.getOperandBundlesAsDefs(OpBundles);
4290
4291 Instruction *NewCaller;
4292 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
4293 NewCaller = InvokeInst::Create(NewFTy, NestF, II->getNormalDest(),
4294 II->getUnwindDest(), NewArgs, OpBundles);
4295 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
4296 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
4297 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
4298 NewCaller =
4299 CallBrInst::Create(NewFTy, NestF, CBI->getDefaultDest(),
4300 CBI->getIndirectDests(), NewArgs, OpBundles);
4301 cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
4302 cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
4303 } else {
4304 NewCaller = CallInst::Create(NewFTy, NestF, NewArgs, OpBundles);
4305 cast<CallInst>(NewCaller)->setTailCallKind(
4306 cast<CallInst>(Call).getTailCallKind());
4307 cast<CallInst>(NewCaller)->setCallingConv(
4308 cast<CallInst>(Call).getCallingConv());
4309 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
4310 }
4311 NewCaller->setDebugLoc(Call.getDebugLoc());
4312
4313 return NewCaller;
4314 }
4315 }
4316
4317 // Replace the trampoline call with a direct call. Since there is no 'nest'
4318 // parameter, there is no need to adjust the argument list. Let the generic
4319 // code sort out any function type mismatches.
4320 Call.setCalledFunction(FTy, NestF);
4321 return &Call;
4322}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
unsigned Intr
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static SDValue foldBitOrderCrossLogicOp(SDNode *N, SelectionDAG &DAG)
return RetTy
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
#define DEBUG_WITH_TYPE(TYPE, X)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition: Debug.h:64
uint64_t Size
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
#define DEBUG_TYPE
IRTranslator LLVM IR MI
static Type * getPromotedType(Type *Ty)
Return the specified type promoted as it would be to pass though a va_arg area.
static Instruction * createOverflowTuple(IntrinsicInst *II, Value *Result, Constant *Overflow)
Creates a result tuple for an overflow intrinsic II with a given Result and a constant Overflow value...
static IntrinsicInst * findInitTrampolineFromAlloca(Value *TrampMem)
static bool removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC, std::function< bool(const IntrinsicInst &)> IsStart)
static bool inputDenormalIsDAZ(const Function &F, const Type *Ty)
static Instruction * reassociateMinMaxWithConstantInOperand(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
If this min/max has a matching min/max operand with a constant, try to push the constant operand into...
static bool signBitMustBeTheSame(Value *Op0, Value *Op1, Instruction *CxtI, const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT)
Return true if two values Op0 and Op1 are known to have the same sign.
static Instruction * moveAddAfterMinMax(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0.
static Instruction * simplifyInvariantGroupIntrinsic(IntrinsicInst &II, InstCombinerImpl &IC)
This function transforms launder.invariant.group and strip.invariant.group like: launder(launder(x)) ...
static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, unsigned NumOperands)
static cl::opt< unsigned > GuardWideningWindow("instcombine-guard-widening-window", cl::init(3), cl::desc("How wide an instruction window to bypass looking for " "another guard"))
static bool hasUndefSource(AnyMemTransferInst *MI)
Recognize a memcpy/memmove from a trivially otherwise unused alloca.
static Instruction * foldShuffledIntrinsicOperands(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
If all arguments of the intrinsic are unary shuffles with the same mask, try to shuffle after the int...
static Instruction * factorizeMinMaxTree(IntrinsicInst *II)
Reduce a sequence of min/max intrinsics with a common operand.
static Value * simplifyNeonTbl1(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder)
Convert a table lookup to shufflevector if the mask is constant.
static Instruction * foldClampRangeOfTwo(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
If we have a clamp pattern like max (min X, 42), 41 – where the output can only be one of two possibl...
static IntrinsicInst * findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, Value *TrampMem)
static std::optional< bool > getKnownSignOrZero(Value *Op, Instruction *CxtI, const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT)
static Instruction * foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC)
static Instruction * foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC)
static IntrinsicInst * findInitTrampoline(Value *Callee)
static FCmpInst::Predicate fpclassTestIsFCmp0(FPClassTest Mask, const Function &F, Type *Ty)
static Value * reassociateMinMaxWithConstants(IntrinsicInst *II, IRBuilderBase &Builder, const SimplifyQuery &SQ)
If this min/max has a constant operand and an operand that is a matching min/max with a constant oper...
static std::optional< bool > getKnownSign(Value *Op, Instruction *CxtI, const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT)
static CallInst * canonicalizeConstantArg0ToArg1(CallInst &Call)
This file provides internal interfaces used to implement the InstCombine.
This file provides the interface for the instcombine pass implementation.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
This file contains the declarations for metadata subclasses.
Metadata * LowAndHigh[]
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements the SmallBitVector class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
@ Struct
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition: VPlanSLP.cpp:191
static bool inputDenormalIsIEEE(const Function &F, const Type *Ty)
Return true if it's possible to assume IEEE treatment of input denormals in F for Val.
Value * RHS
Value * LHS
ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, bool IgnoreLocals=false)
Returns a bitmask that should be unconditionally applied to the ModRef info of a memory location.
bool isNegative() const
Definition: APFloat.h:1295
void clearSign()
Definition: APFloat.h:1159
Class for arbitrary precision integers.
Definition: APInt.h:76
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition: APInt.h:212
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition: APInt.h:207
APInt usub_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1918
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition: APInt.h:358
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1439
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.h:1089
APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1898
APInt uadd_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1905
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition: APInt.h:197
APInt uadd_sat(const APInt &RHS) const
Definition: APInt.cpp:2006
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition: APInt.h:312
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition: APInt.h:284
APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1911
static APSInt getMinValue(uint32_t numBits, bool Unsigned)
Return the APSInt representing the minimum integer value with the given bit width and signedness.
Definition: APSInt.h:311
static APSInt getMaxValue(uint32_t numBits, bool Unsigned)
Return the APSInt representing the maximum integer value with the given bit width and signedness.
Definition: APSInt.h:303
This class represents any memset intrinsic.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
A cache of @llvm.assume calls within a function.
void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
void updateAffectedValues(AssumeInst *CI)
Update the cache of values being affected by this assumption (i.e.
bool overlaps(const AttributeMask &AM) const
Return true if the builder has any attribute that's in the specified builder.
AttributeSet getFnAttrs() const
The function attributes are returned.
static AttributeList get(LLVMContext &C, ArrayRef< std::pair< unsigned, Attribute > > Attrs)
Create an AttributeList with the specified parameters in it.
bool isEmpty() const
Return true if there are no attributes.
Definition: Attributes.h:972
AttributeSet getRetAttrs() const
The attributes for the ret value are returned.
bool hasFnAttr(Attribute::AttrKind Kind) const
Return true if the attribute exists for the function.
bool hasAttrSomewhere(Attribute::AttrKind Kind, unsigned *Index=nullptr) const
Return true if the specified attribute is set for at least one parameter or for the return value.
bool hasParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Return true if the attribute exists for the given argument.
Definition: Attributes.h:783
AttributeSet getParamAttrs(unsigned ArgNo) const
The attributes for the argument or parameter at the given index are returned.
AttributeList addParamAttribute(LLVMContext &C, unsigned ArgNo, Attribute::AttrKind Kind) const
Add an argument attribute to the list.
Definition: Attributes.h:589
bool hasAttribute(Attribute::AttrKind Kind) const
Return true if the attribute exists in this set.
Definition: Attributes.cpp:841
AttributeSet removeAttributes(LLVMContext &C, const AttributeMask &AttrsToRemove) const
Remove the specified attributes from this set.
Definition: Attributes.cpp:826
static AttributeSet get(LLVMContext &C, const AttrBuilder &B)
Definition: Attributes.cpp:774
static Attribute get(LLVMContext &Context, AttrKind Kind, uint64_t Val=0)
Return a uniquified Attribute object.
Definition: Attributes.cpp:93
static Attribute getWithDereferenceableBytes(LLVMContext &Context, uint64_t Bytes)
Definition: Attributes.cpp:204
static Attribute getWithDereferenceableOrNullBytes(LLVMContext &Context, uint64_t Bytes)
Definition: Attributes.cpp:210
static Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
Definition: Attributes.cpp:194
LLVM Basic Block Representation.
Definition: BasicBlock.h:60
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:430
InstListType::reverse_iterator reverse_iterator
Definition: BasicBlock.h:167
reverse_iterator rend()
Definition: BasicBlock.h:448
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:165
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:221
Value * getRHS() const
bool isSigned() const
Whether the intrinsic is signed or unsigned.
Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
Value * getLHS() const
static BinaryOperator * CreateFDivFMF(Value *V1, Value *V2, Instruction *FMFSource, const Twine &Name="")
Definition: InstrTypes.h:329
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNSWNeg(Value *Op, const Twine &Name, BasicBlock::iterator InsertBefore)
static BinaryOperator * CreateNSW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Definition: InstrTypes.h:340
static BinaryOperator * CreateNeg(Value *Op, const Twine &Name, BasicBlock::iterator InsertBefore)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
static BinaryOperator * CreateFMulFMF(Value *V1, Value *V2, Instruction *FMFSource, const Twine &Name="")
Definition: InstrTypes.h:324
static BinaryOperator * CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Definition: InstrTypes.h:365
static BinaryOperator * CreateNot(Value *Op, const Twine &Name, BasicBlock::iterator InsertBefore)
static BinaryOperator * CreateWithCopiedFlags(BinaryOps Opc, Value *V1, Value *V2, Value *CopyO, const Twine &Name, BasicBlock::iterator InsertBefore)
Definition: InstrTypes.h:298
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1467
void setCallingConv(CallingConv::ID CC)
Definition: InstrTypes.h:1777
bundle_op_iterator bundle_op_info_begin()
Return the start of the list of BundleOpInfo instances associated with this OperandBundleUser.
Definition: InstrTypes.h:2534
void setDoesNotThrow()
Definition: InstrTypes.h:2246
MaybeAlign getRetAlign() const
Extract the alignment of the return value.
Definition: InstrTypes.h:2068
void getOperandBundlesAsDefs(SmallVectorImpl< OperandBundleDef > &Defs) const
Return the list of operand bundles attached to this instruction as a vector of OperandBundleDefs.
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
Definition: InstrTypes.h:2342
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Definition: InstrTypes.h:2373
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1715
bool hasRetAttr(Attribute::AttrKind Kind) const
Determine whether the return value has the given attribute.
Definition: InstrTypes.h:1918
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
Definition: InstrTypes.h:2286
CallingConv::ID getCallingConv() const
Definition: InstrTypes.h:1773
static CallBase * Create(CallBase *CB, ArrayRef< OperandBundleDef > Bundles, BasicBlock::iterator InsertPt)
Create a clone of CB with a different set of operand bundles and insert it before InsertPt.
static CallBase * removeOperandBundle(CallBase *CB, uint32_t ID, Instruction *InsertPt=nullptr)
Create a clone of CB with operand bundle ID removed.
Value * getCalledOperand() const
Definition: InstrTypes.h:1708
void setAttributes(AttributeList A)
Set the parameter attributes for this call.
Definition: InstrTypes.h:1796
bool doesNotThrow() const
Determine if the call cannot unwind.
Definition: InstrTypes.h:2245
void addRetAttr(Attribute::AttrKind Kind)
Adds the attribute to the return value.
Definition: InstrTypes.h:1834
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1660
void setArgOperand(unsigned i, Value *v)
Definition: InstrTypes.h:1665
FunctionType * getFunctionType() const
Definition: InstrTypes.h:1573
Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
Definition: InstrTypes.h:1651
unsigned arg_size() const
Definition: InstrTypes.h:1658
bool hasOperandBundles() const
Return true if this User has any operand bundles.
Definition: InstrTypes.h:2291
void setCalledFunction(Function *Fn)
Sets the function called, including updating the function type.
Definition: InstrTypes.h:1754
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, const Twine &NameStr, BasicBlock::iterator InsertBefore)
This class represents a function call, abstracting a target machine's calling convention.
bool isNoTailCall() const
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr, BasicBlock::iterator InsertBefore)
void setTailCallKind(TailCallKind TCK)
bool isMustTailCall() const
static Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name, BasicBlock::iterator InsertBefore)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
static bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name, BasicBlock::iterator InsertBefore)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
static CastInst * CreateIntegerCast(Value *S, Type *Ty, bool isSigned, const Twine &Name, BasicBlock::iterator InsertBefore)
Create a ZExt, BitCast, or Trunc for int -> int casts.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:966
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:969
@ ICMP_SLT
signed less than
Definition: InstrTypes.h:995
@ ICMP_SLE
signed less or equal
Definition: InstrTypes.h:996
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:972
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:970
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:971
@ ICMP_UGT
unsigned greater than
Definition: InstrTypes.h:989
@ ICMP_SGT
signed greater than
Definition: InstrTypes.h:993
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:974
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:977
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:991
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:973
@ ICMP_EQ
equal
Definition: InstrTypes.h:987
@ ICMP_NE
not equal
Definition: InstrTypes.h:988
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:982
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition: InstrTypes.h:1140
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
Definition: InstrTypes.h:1184
Predicate getUnorderedPredicate() const
Definition: InstrTypes.h:1124
static ConstantAggregateZero * get(Type *Ty)
Definition: Constants.cpp:1663
static ConstantAsMetadata * get(Constant *C)
Definition: Metadata.h:528
static Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2542
static Constant * getICmp(unsigned short pred, Constant *LHS, Constant *RHS, bool OnlyIfReduced=false)
get* - Return some common constants without having to specify the full Instruction::OPCODE identifier...
Definition: Constants.cpp:2402
static Constant * getNeg(Constant *C, bool HasNSW=false)
Definition: Constants.cpp:2523
static Constant * getInfinity(Type *Ty, bool Negative=false)
Definition: Constants.cpp:1083
static Constant * getZero(Type *Ty, bool Negative=false)
Definition: Constants.cpp:1037
This is the shared class of boolean and integer constants.
Definition: Constants.h:80
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
getLimitedValue - If the value is smaller than the specified limit, return it, otherwise return the l...
Definition: Constants.h:255
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:849
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:154
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:145
static ConstantInt * getBool(LLVMContext &Context, bool V)
Definition: Constants.cpp:863
static ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
Definition: Constants.cpp:1775
This class represents a range of values.
Definition: ConstantRange.h:47
bool isFullSet() const
Return true if this set contains all of the elements possible for this data-type.
bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other? NOTE: false does not mean that inverse pr...
static Constant * get(StructType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:1356
This is an important base class in LLVM.
Definition: Constant.h:41
static Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
Definition: Constants.cpp:400
static Constant * getAllOnesValue(Type *Ty)
Definition: Constants.cpp:417
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:370
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
unsigned getPointerTypeSizeInBits(Type *) const
Layout pointer size, in bits, based on the type.
Definition: DataLayout.cpp:763
unsigned size() const
Definition: DenseMap.h:99
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:151
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
This class represents an extension of floating point types.
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:20
bool noSignedZeros() const
Definition: FMF.h:68
bool allowReassoc() const
Flag queries.
Definition: FMF.h:65
An instruction for ordering other memory operations.
Definition: Instructions.h:460
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this fence instruction.
Definition: Instructions.h:498
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
Definition: Instructions.h:487
Class to represent function types.
Definition: DerivedTypes.h:103
Type::subtype_iterator param_iterator
Definition: DerivedTypes.h:126
static FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
bool isConvergent() const
Determine if the call is convergent.
Definition: Function.h:588
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:201
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition: Function.h:263
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:339
bool doesNotThrow() const
Determine if the function cannot unwind.
Definition: Function.h:572
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
Definition: Function.h:236
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.cpp:683
Represents calls to the gc.relocate intrinsic.
Value * getBasePtr() const
unsigned getBasePtrIndex() const
The index into the associate statepoint's argument list which contains the base pointer of the pointe...
Value * getDerivedPtr() const
unsigned getDerivedPtrIndex() const
The index into the associate statepoint's argument list which contains the pointer whose relocation t...
Represents a gc.statepoint intrinsic call.
Definition: Statepoint.h:61
std::vector< const GCRelocateInst * > getGCRelocates() const
Get list of all gc reloactes linked to this statepoint May contain several relocations for the same b...
Definition: Statepoint.h:206
MDNode * getMetadata(unsigned KindID) const
Get the current metadata attachments for the given kind, if any.
Definition: Value.h:565
bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition: Globals.cpp:281
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:294
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:94
Value * CreateFCmpONE(Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2306
CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Definition: IRBuilder.cpp:913
Value * CreateLaunderInvariantGroup(Value *Ptr)
Create a launder.invariant.group intrinsic call.
Definition: IRBuilder.cpp:1137
Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
Definition: IRBuilder.cpp:921
Value * CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2361
IntegerType * getInt1Ty()
Fetch the type representing a single bit.
Definition: IRBuilder.h:511
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2460
IntegerType * getIntNTy(unsigned N)
Fetch the type representing an N-bit integer.
Definition: IRBuilder.h:539
LoadInst * CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align, const char *Name)
Definition: IRBuilder.h:1807
Value * CreateFCmpORD(Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2311
Value * CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a ZExt or Trunc from the integer value V to DestTy.
Definition: IRBuilder.h:2039
Value * CreateFAdd(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1533
CallInst * CreateAndReduce(Value *Src)
Create a vector int AND reduction intrinsic of the source vector.
Definition: IRBuilder.cpp:441
Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Definition: IRBuilder.cpp:1214
ConstantInt * getTrue()
Get the constant value for i1 true.
Definition: IRBuilder.h:466
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Definition: IRBuilder.cpp:932
Value * CreateFNegFMF(Value *V, Instruction *FMFSource, const Twine &Name="")
Copy fast-math-flags from an instruction rather than using the builder's default FMF.
Definition: IRBuilder.h:1740
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition: IRBuilder.cpp:1110
InvokeInst * CreateInvoke(FunctionType *Ty, Value *Callee, BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef< Value * > Args, ArrayRef< OperandBundleDef > OpBundles, const Twine &Name="")
Create an invoke instruction.
Definition: IRBuilder.h:1158
Value * CreateFCmpUNE(Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2346
CallInst * CreateAddReduce(Value *Src)
Create a vector int add reduction intrinsic of the source vector.
Definition: IRBuilder.cpp:433
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1437
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition: IRBuilder.h:526
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition: IRBuilder.h:311
Value * CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1370
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2245
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNSW=false)
Definition: IRBuilder.h:1721
CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
Definition: IRBuilder.cpp:445
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:486
Value * CreateBitOrPointerCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2205
Value * CreateNot(Value *V, const Twine &Name="")
Definition: IRBuilder.h:1749
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2241
Value * CreateFCmpUEQ(Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2321
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1344
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2127
LoadInst * CreateLoad(Type *Ty, Value *Ptr, const char *Name)
Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of converting the string to 'bool...
Definition: IRBuilder.h:1790
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Definition: IRBuilder.h:2021
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
Definition: IRBuilder.h:2494
Value * CreateFCmpOEQ(Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2281
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1475
StoreInst * CreateStore(Value *Val, Value *Ptr, bool isVolatile=false)
Definition: IRBuilder.h:1803
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1327
ConstantInt * getFalse()
Get the constant value for i1 false.
Definition: IRBuilder.h:471
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg != 0.
Definition: IRBuilder.h:2549
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Definition: IRBuilder.h:2007
Value * CreateElementCount(Type *DstType, ElementCount EC)
Create an expression which evaluates to the number of elements in EC at runtime.
Definition: IRBuilder.cpp:99
Value * CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2161
Value * CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name="")
Definition: IRBuilder.h:2196
Value * CreateFCmpUNO(Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2316
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args=std::nullopt, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2412
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2351
Value * CreateFMul(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1587
Value * CreateFNeg(Value *V, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1730
Value * CreateAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2132
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1361
Value * CreateStripInvariantGroup(Value *Ptr)
Create a strip.invariant.group intrinsic call.
Definition: IRBuilder.cpp:1153
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr, BasicBlock::iterator InsertBefore)
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
KnownFPClass computeKnownFPClass(Value *Val, FastMathFlags FMF, FPClassTest Interested=fcAllFlags, const Instruction *CtxI=nullptr, unsigned Depth=0) const
bool SimplifyDemandedBits(Instruction *I, unsigned Op, const APInt &DemandedMask, KnownBits &Known, unsigned Depth=0) override
This form of SimplifyDemandedBits simplifies the specified instruction operand if possible,...
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * SimplifyAnyMemSet(AnyMemSetInst *MI)
Constant * getLosslessUnsignedTrunc(Constant *C, Type *TruncTy)
Instruction * visitFree(CallInst &FI, Value *FreedOp)
Instruction * visitCallBrInst(CallBrInst &CBI)
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * visitFenceInst(FenceInst &FI)
Instruction * visitInvokeInst(InvokeInst &II)
Constant * getLosslessSignedTrunc(Constant *C, Type *TruncTy)
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Instruction * visitVAEndInst(VAEndInst &I)
Instruction * matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps, bool MatchBitReversals)
Given an initial instruction, check to see if it is the root of a bswap/bitreverse idiom.
Instruction * visitAllocSite(Instruction &FI)
Instruction * SimplifyAnyMemTransfer(AnyMemTransferInst *MI)
OverflowResult computeOverflow(Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, Instruction *CxtI) const
Instruction * visitCallInst(CallInst &CI)
CallInst simplification.
SimplifyQuery SQ
Definition: InstCombiner.h:76
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
Definition: InstCombiner.h:231
DominatorTree & getDominatorTree() const
Definition: InstCombiner.h:339
BlockFrequencyInfo * BFI
Definition: InstCombiner.h:78
TargetLibraryInfo & TLI
Definition: InstCombiner.h:73
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, unsigned Depth=0, const Instruction *CxtI=nullptr)
Definition: InstCombiner.h:440
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Definition: InstCombiner.h:365
AAResults * AA
Definition: InstCombiner.h:69
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
Definition: InstCombiner.h:385
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
Definition: InstCombiner.h:417
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Definition: InstCombiner.h:64
const DataLayout & DL
Definition: InstCombiner.h:75
std::optional< Instruction * > targetInstCombineIntrinsic(IntrinsicInst &II)
AssumptionCache & AC
Definition: InstCombiner.h:72
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
Definition: InstCombiner.h:409
DominatorTree & DT
Definition: InstCombiner.h:74
ProfileSummaryInfo * PSI
Definition: InstCombiner.h:79
void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, const Instruction *CxtI) const
Definition: InstCombiner.h:430
BuilderTy & Builder
Definition: InstCombiner.h:60
AssumptionCache & getAssumptionCache() const
Definition: InstCombiner.h:337
bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth=0, const Instruction *CxtI=nullptr) const
Definition: InstCombiner.h:446
OptimizationRemarkEmitter & ORE
Definition: InstCombiner.h:77
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
Definition: InstCombiner.h:212
const SimplifyQuery & getSimplifyQuery() const
Definition: InstCombiner.h:341
unsigned ComputeMaxSignificantBits(const Value *Op, unsigned Depth=0, const Instruction *CxtI=nullptr) const
Definition: InstCombiner.h:456
void pushUsersToWorkList(Instruction &I)
When an instruction is simplified, add all users of the instruction to the work lists because they mi...
void add(Instruction *I)
Add instruction to the worklist.
void copyFastMathFlags(FastMathFlags FMF)
Convenience function for transferring all fast-math flag values to this instruction,...
bool mayWriteToMemory() const LLVM_READONLY
Return true if this instruction may modify memory.
void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:80
void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
Definition: Metadata.cpp:1721
void andIRFlags(const Value *V)
Logical 'and' of any supported wrapping, exact, and fast-math flags of V and this instruction.
const Instruction * getPrevNonDebugInstruction(bool SkipPseudoOp=false) const
Return a pointer to the previous non-debug instruction in the same basic block as 'this',...
void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
const BasicBlock * getParent() const
Definition: Instruction.h:152
bool isFast() const LLVM_READONLY
Determine whether all fast-math-flags are set.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
Definition: Instruction.h:149
const Function * getFunction() const
Return the function this instruction belongs to.
Definition: Instruction.cpp:84
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:359
bool mayHaveSideEffects() const LLVM_READONLY
Return true if the instruction may have side effects.
const Instruction * getNextNonDebugInstruction(bool SkipPseudoOp=false) const
Return a pointer to the next non-debug instruction in the same basic block as 'this',...
void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
Definition: Metadata.cpp:1636
FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:252
std::optional< InstListType::iterator > getInsertionPointAfterDef()
Get the first insertion point at which the result of this instruction is defined.
bool isIdenticalTo(const Instruction *I) const LLVM_READONLY
Return true if the specified instruction is exactly identical to the current one.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:451
void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
bool hasAllowReassoc() const LLVM_READONLY
Determine whether the allow-reassociation flag is set.
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
Class to represent integer types.
Definition: DerivedTypes.h:40
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:278
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:47
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Definition: IntrinsicInst.h:54
bool isCommutative() const
Return true if swapping the first two arguments to the intrinsic produces the same result.
Definition: IntrinsicInst.h:72
Invoke instruction.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, BasicBlock::iterator InsertBefore)
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
LibCallSimplifier - This class implements a collection of optimizations that replace well formed call...
An instruction for reading from memory.
Definition: Instructions.h:184
Metadata node.
Definition: Metadata.h:1067
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1541
Root of the metadata hierarchy.
Definition: Metadata.h:62
ICmpInst::Predicate getPredicate() const
Returns the comparison predicate underlying the intrinsic.
bool isSigned() const
Whether the intrinsic is signed or unsigned.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
const DataLayout & getDataLayout() const
Get the data layout for the module's target platform.
Definition: Module.h:293
A container for an operand bundle being viewed as a set of values rather than a set of uses.
Definition: InstrTypes.h:1420
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1827
Represents a saturating add/sub intrinsic.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr, BasicBlock::iterator InsertBefore, Instruction *MDFrom=nullptr)
This instruction constructs a fixed permutation of two input vectors.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
SmallBitVector & set()
bool test(unsigned Idx) const
bool all() const
Returns true if all bits are set.
size_type size() const
Definition: SmallPtrSet.h:94
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:360
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:342
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:427
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
void reserve(size_type N)
Definition: SmallVector.h:676
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
An instruction for storing to memory.
Definition: Instructions.h:317
void setVolatile(bool V)
Specify whether this is a volatile store or not.
Definition: Instructions.h:364
void setAlignment(Align Align)
Definition: Instructions.h:373
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this store instruction.
Definition: Instructions.h:384
Class to represent struct types.
Definition: DerivedTypes.h:216
static bool isCallingConvCCompatible(CallBase *CI)
Returns true if call site / callee has cdecl-compatible calling conventions.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
unsigned getIntegerBitWidth() const
const fltSemantics & getFltSemantics() const
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:234
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:255
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:249
Type * getWithNewBitWidth(unsigned NewBitWidth) const
Given an integer or vector type, change the lane bitwidth to NewBitwidth, whilst keeping the old numb...
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:129
bool canLosslesslyBitCastTo(Type *Ty) const
Return true if this type could be converted with a lossless BitCast to type 'Ty'.
static IntegerType * getInt32Ty(LLVMContext &C)
static IntegerType * getInt64Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:228
bool isVoidTy() const
Return true if this is 'void'.
Definition: Type.h:140
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition: Type.h:348
static UnaryOperator * CreateWithCopiedFlags(UnaryOps Opc, Value *V, Instruction *CopyO, const Twine &Name, BasicBlock::iterator InsertBefore)
Definition: InstrTypes.h:174
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Definition: Constants.cpp:1808
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
void set(Value *Val)
Definition: Value.h:882
op_iterator op_begin()
Definition: User.h:234
const Use & getOperandUse(unsigned i) const
Definition: User.h:182
void setOperand(unsigned i, Value *Val)
Definition: User.h:174
Value * getOperand(unsigned i) const
Definition: User.h:169
This represents the llvm.va_end intrinsic.
static void ValueIsDeleted(Value *V)
Definition: Value.cpp:1201
static void ValueIsRAUWd(Value *Old, Value *New)
Definition: Value.cpp:1254
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
static constexpr uint64_t MaximumAlignment
Definition: Value.h:807
void setMetadata(unsigned KindID, MDNode *Node)
Set a particular kind of metadata attachment.
Definition: Metadata.cpp:1488
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
iterator_range< user_iterator > users()
Definition: Value.h:421
static void dropDroppableUse(Use &U)
Remove the droppable use U.
Definition: Value.cpp:217
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition: Value.cpp:693
bool use_empty() const
Definition: Value.h:344
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1074
static constexpr unsigned MaxAlignmentExponent
The maximum alignment for instructions.
Definition: Value.h:806
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:383
Base class of all SIMD vector types.
Definition: DerivedTypes.h:403
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
Definition: DerivedTypes.h:641
Represents an op.with.overflow intrinsic.
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition: TypeSize.h:203
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition: TypeSize.h:210
self_iterator getIterator()
Definition: ilist_node.h:109
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
AttributeMask typeIncompatible(Type *Ty, AttributeSafetyKind ASK=ASK_ALL)
Which attributes cannot be applied to a type.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:121
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=std::nullopt)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1469
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
Definition: PatternMatch.h:477
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
Definition: PatternMatch.h:100
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
apint_match m_APIntAllowUndef(const APInt *&Res)
Match APInt while allowing undefs in splat vector constants.
Definition: PatternMatch.h:300
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:160
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
Definition: PatternMatch.h:918
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
Definition: PatternMatch.h:765
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:821
OverflowingBinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWNeg(const ValTy &V)
Matches a 'Neg' as 'sub nsw 0, V'.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:163
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
Definition: PatternMatch.h:541
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
cstfp_pred_ty< is_neg_zero_fp > m_NegZeroFP()
Match a floating-point negative zero.
Definition: PatternMatch.h:731
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
Definition: PatternMatch.h:240
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
CastOperator_match< OpTy, Instruction::Trunc > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
Definition: PatternMatch.h:839
cst_pred_ty< is_zero_int > m_ZeroInt()
Match an integer 0 or a vector with all elements equal to 0.
Definition: PatternMatch.h:548
CmpClass_match< LHS, RHS, ICmpInst, ICmpInst::Predicate > m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R)
match_combine_or< match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > >, OpTy > m_ZExtOrSExtOrSelf(const OpTy &Op)
OneUse_match< T > m_OneUse(const T &SubPattern)
Definition: PatternMatch.h:67
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a 'Neg' as 'sub 0, V'.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
match_combine_and< class_match< Constant >, match_unless< constantexpr_match > > m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
Definition: PatternMatch.h:800
CastInst_match< OpTy, FPExtInst > m_FPExt(const OpTy &Op)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
Definition: PatternMatch.h:105
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
Definition: PatternMatch.h:576
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
class_match< UnaryOperator > m_UnOp()
Match an arbitrary unary operation and ignore it.
Definition: PatternMatch.h:95
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
Definition: PatternMatch.h:294
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Exact_match< T > m_Exact(const T &SubPattern)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
Definition: PatternMatch.h:722
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
apfloat_match m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
Definition: PatternMatch.h:311
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
Definition: PatternMatch.h:152
BinaryOp_match< cst_pred_ty< is_all_ones >, ValTy, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition: PatternMatch.h:561
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
BinOpPred_match< LHS, RHS, is_bitwiselogic_op > m_BitwiseLogic(const LHS &L, const RHS &R)
Matches bitwise logic operations.
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1)
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
Definition: PatternMatch.h:234
@ SingleThread
Synchronized with respect to signal handlers executing in the same thread.
Definition: LLVMContext.h:54
@ System
Synchronized with respect to all concurrently executing threads.
Definition: LLVMContext.h:57
AssignmentMarkerRange getAssignmentMarkers(DIAssignID *ID)
Return a range of dbg.assign intrinsics which use \ID as an operand.
Definition: DebugInfo.cpp:1898
SmallVector< DbgVariableRecord * > getDVRAssignmentMarkers(const Instruction *Inst)
Definition: DebugInfo.h:238
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:450
constexpr double e
Definition: MathExtras.h:31
DiagnosticInfoOptimizationBase::Argument NV
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
cl::opt< bool > EnableKnowledgeRetention
Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition: MathExtras.h:326
@ Offset
Definition: DWP.cpp:456
OverflowResult
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
UnaryFunction for_each(R &&Range, UnaryFunction F)
Provide wrappers to std::for_each which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1715
Value * simplifyFMulInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FMul, fold the result or return null.
bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false)
Return true if the two given values are negation.
APInt possiblyDemandedEltsInMask(Value *Mask)
Given a mask vector of the form <Y x i1>, return an APInt (of bitwidth Y) for each lane which may be ...
RetainedKnowledge simplifyRetainedKnowledge(AssumeInst *Assume, RetainedKnowledge RK, AssumptionCache *AC, DominatorTree *DT)
canonicalize the RetainedKnowledge RK.
bool isRemovableAlloc(const CallBase *V, const TargetLibraryInfo *TLI)
Return true if this is a call to an allocation function that does not have side effects that we are r...
Value * lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed)
Try to turn a call to @llvm.objectsize into an integer value of the given Type.
Value * getAllocAlignment(const CallBase *V, const TargetLibraryInfo *TLI)
Gets the alignment argument for an aligned_alloc-like function, using either built-in knowledge based...
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition: APFloat.h:1436
const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=6)
This method strips off any GEP address adjustments and pointer casts from the specified value,...
Value * simplifyCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
Given a callsite, callee, and arguments, fold the result or return null.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition: MathExtras.h:269
bool isAssumeWithEmptyBundle(const AssumeInst &Assume)
Return true iff the operand bundles of the provided llvm.assume doesn't contain any valuable informat...
Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
RetainedKnowledge getKnowledgeFromBundle(AssumeInst &Assume, const CallBase::BundleOpInfo &BOI)
This extracts the Knowledge from an element of an operand bundle.
Align getKnownAlignment(Value *V, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to infer an alignment for the specified pointer.
Definition: Local.h:241
bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2019 maximumNumber semantics.
Definition: APFloat.h:1410
FPClassTest fneg(FPClassTest Mask)
Return the test mask which returns true if the value's sign bit is flipped.
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:264
bool isModSet(const ModRefInfo MRI)
Definition: ModRef.h:48
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
Definition: Function.cpp:2032
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1736
bool isAtLeastOrStrongerThan(AtomicOrdering AO, AtomicOrdering Other)
AssumeInst * buildAssumeFromKnowledge(ArrayRef< RetainedKnowledge > Knowledge, Instruction *CtxI, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr)
Build and return a new assume created from the provided knowledge if the knowledge in the assume is f...
FPClassTest inverse_fabs(FPClassTest Mask)
Return the test mask which returns true after fabs is applied to the value.
bool maskIsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
@ Mod
The access may modify the value stored in memory.
Value * simplifyFMAFMul(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for the multiplication of a FMA, fold the result or return null.
@ Other
Any other memory.
Value * simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q)
Given a constrained FP intrinsic call, tries to compute its simplified version.
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2019 minimumNumber semantics.
Definition: APFloat.h:1396
@ Mul
Product of integers.
@ None
Not a recurrence.
@ Add
Sum of integers.
@ FAdd
Sum of floats.
ConstantRange computeConstantRangeIncludingKnownBits(const WithCache< const Value * > &V, bool ForSigned, const SimplifyQuery &SQ)
Combine constant ranges from computeConstantRange() and computeKnownBits().
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
constexpr uint64_t MinAlign(uint64_t A, uint64_t B)
A and B are either alignments or offsets.
Definition: MathExtras.h:338
Value * getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI)
If this if a call to a free function, return the freed operand.
bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if the instruction does not have any effects besides calculating the result and does not ...
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:191
bool isDereferenceablePointer(const Value *V, Type *Ty, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if this is always a dereferenceable pointer.
Definition: Loads.cpp:221
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1879
std::optional< APInt > getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI, function_ref< const Value *(const Value *)> Mapper=[](const Value *V) { return V;})
Return the size of the requested allocation.
std::optional< bool > computeKnownFPSignBit(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return false if we can prove that the specified FP value's sign bit is 0.
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition: Alignment.h:208
bool maskContainsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if any of the elements of this predicate mask are known to be ...
uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew=0)
Returns the largest uint64_t less than or equal to Value and is Skew mod Align.
Definition: MathExtras.h:428
std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition: APFloat.h:1423
bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
#define NC
Definition: regutils.h:42
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition: Metadata.h:760
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
@ IEEE
IEEE-754 denormal numbers preserved.
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition: KnownBits.h:104
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition: KnownBits.h:238
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
Definition: KnownBits.h:270
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
Definition: KnownBits.h:285
unsigned getBitWidth() const
Get the bit width of this value.
Definition: KnownBits.h:40
bool isNonZero() const
Returns true if this value is known to be non-zero.
Definition: KnownBits.h:107
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition: KnownBits.h:244
bool isNegative() const
Returns true if this value is known to be negative.
Definition: KnownBits.h:101
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
Definition: KnownBits.h:276
unsigned countMinPopulation() const
Returns the number of bits known to be one.
Definition: KnownBits.h:282
bool isAllOnes() const
Returns true if value is all one bits.
Definition: KnownBits.h:83
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition: Alignment.h:117
Align valueOrOne() const
For convenience, returns a valid alignment or 1 if undefined.
Definition: Alignment.h:141
A lightweight accessor for an operand bundle meant to be passed around by value.
Definition: InstrTypes.h:1362
StringRef getTagName() const
Return the tag of this operand bundle as a string.
Definition: InstrTypes.h:1381
ArrayRef< Use > Inputs
Definition: InstrTypes.h:1363
Represent one information held inside an operand bundle of an llvm.assume.
Attribute::AttrKind AttrKind
SelectPatternFlavor Flavor
SimplifyQuery getWithInstruction(const Instruction *I) const
Definition: SimplifyQuery.h:96