LLVM 19.0.0git
TargetRegisterInfo.h
Go to the documentation of this file.
1//==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes an abstract interface used to get information about a
10// target machines register file. This information is used for a variety of
11// purposed, especially register allocation.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H
16#define LLVM_CODEGEN_TARGETREGISTERINFO_H
17
18#include "llvm/ADT/ArrayRef.h"
20#include "llvm/ADT/StringRef.h"
24#include "llvm/IR/CallingConv.h"
25#include "llvm/MC/LaneBitmask.h"
30#include <cassert>
31#include <cstdint>
32
33namespace llvm {
34
35class BitVector;
36class DIExpression;
37class LiveRegMatrix;
38class MachineFunction;
39class MachineInstr;
40class RegScavenger;
41class VirtRegMap;
42class LiveIntervals;
43class LiveInterval;
44
46public:
47 using iterator = const MCPhysReg *;
48 using const_iterator = const MCPhysReg *;
49 using sc_iterator = const TargetRegisterClass* const *;
50
51 // Instance variables filled by tablegen, do not use!
56 /// Classes with a higher priority value are assigned first by register
57 /// allocators using a greedy heuristic. The value is in the range [0,31].
58 const uint8_t AllocationPriority;
59
60 // Change allocation priority heuristic used by greedy.
61 const bool GlobalPriority;
62
63 /// Configurable target specific flags.
64 const uint8_t TSFlags;
65 /// Whether the class supports two (or more) disjunct subregister indices.
67 /// Whether a combination of subregisters can cover every register in the
68 /// class. See also the CoveredBySubRegs description in Target.td.
69 const bool CoveredBySubRegs;
72
73 /// Return the register class ID number.
74 unsigned getID() const { return MC->getID(); }
75
76 /// begin/end - Return all of the registers in this class.
77 ///
78 iterator begin() const { return MC->begin(); }
79 iterator end() const { return MC->end(); }
80
81 /// Return the number of registers in this class.
82 unsigned getNumRegs() const { return MC->getNumRegs(); }
83
85 return ArrayRef(begin(), getNumRegs());
86 }
87
88 /// Return the specified register in the class.
89 MCRegister getRegister(unsigned i) const {
90 return MC->getRegister(i);
91 }
92
93 /// Return true if the specified register is included in this register class.
94 /// This does not include virtual registers.
95 bool contains(Register Reg) const {
96 /// FIXME: Historically this function has returned false when given vregs
97 /// but it should probably only receive physical registers
98 if (!Reg.isPhysical())
99 return false;
100 return MC->contains(Reg.asMCReg());
101 }
102
103 /// Return true if both registers are in this class.
104 bool contains(Register Reg1, Register Reg2) const {
105 /// FIXME: Historically this function has returned false when given a vregs
106 /// but it should probably only receive physical registers
107 if (!Reg1.isPhysical() || !Reg2.isPhysical())
108 return false;
109 return MC->contains(Reg1.asMCReg(), Reg2.asMCReg());
110 }
111
112 /// Return the cost of copying a value between two registers in this class.
113 /// A negative number means the register class is very expensive
114 /// to copy e.g. status flag register classes.
115 int getCopyCost() const { return MC->getCopyCost(); }
116
117 /// Return true if this register class may be used to create virtual
118 /// registers.
119 bool isAllocatable() const { return MC->isAllocatable(); }
120
121 /// Return true if this register class has a defined BaseClassOrder.
122 bool isBaseClass() const { return MC->isBaseClass(); }
123
124 /// Return true if the specified TargetRegisterClass
125 /// is a proper sub-class of this TargetRegisterClass.
126 bool hasSubClass(const TargetRegisterClass *RC) const {
127 return RC != this && hasSubClassEq(RC);
128 }
129
130 /// Returns true if RC is a sub-class of or equal to this class.
131 bool hasSubClassEq(const TargetRegisterClass *RC) const {
132 unsigned ID = RC->getID();
133 return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
134 }
135
136 /// Return true if the specified TargetRegisterClass is a
137 /// proper super-class of this TargetRegisterClass.
138 bool hasSuperClass(const TargetRegisterClass *RC) const {
139 return RC->hasSubClass(this);
140 }
141
142 /// Returns true if RC is a super-class of or equal to this class.
143 bool hasSuperClassEq(const TargetRegisterClass *RC) const {
144 return RC->hasSubClassEq(this);
145 }
146
147 /// Returns a bit vector of subclasses, including this one.
148 /// The vector is indexed by class IDs.
149 ///
150 /// To use it, consider the returned array as a chunk of memory that
151 /// contains an array of bits of size NumRegClasses. Each 32-bit chunk
152 /// contains a bitset of the ID of the subclasses in big-endian style.
153
154 /// I.e., the representation of the memory from left to right at the
155 /// bit level looks like:
156 /// [31 30 ... 1 0] [ 63 62 ... 33 32] ...
157 /// [ XXX NumRegClasses NumRegClasses - 1 ... ]
158 /// Where the number represents the class ID and XXX bits that
159 /// should be ignored.
160 ///
161 /// See the implementation of hasSubClassEq for an example of how it
162 /// can be used.
163 const uint32_t *getSubClassMask() const {
164 return SubClassMask;
165 }
166
167 /// Returns a 0-terminated list of sub-register indices that project some
168 /// super-register class into this register class. The list has an entry for
169 /// each Idx such that:
170 ///
171 /// There exists SuperRC where:
172 /// For all Reg in SuperRC:
173 /// this->contains(Reg:Idx)
175 return SuperRegIndices;
176 }
177
178 /// Returns a NULL-terminated list of super-classes. The
179 /// classes are ordered by ID which is also a topological ordering from large
180 /// to small classes. The list does NOT include the current class.
182 return SuperClasses;
183 }
184
185 /// Return true if this TargetRegisterClass is a subset
186 /// class of at least one other TargetRegisterClass.
187 bool isASubClass() const {
188 return SuperClasses[0] != nullptr;
189 }
190
191 /// Returns the preferred order for allocating registers from this register
192 /// class in MF. The raw order comes directly from the .td file and may
193 /// include reserved registers that are not allocatable.
194 /// Register allocators should also make sure to allocate
195 /// callee-saved registers only after all the volatiles are used. The
196 /// RegisterClassInfo class provides filtered allocation orders with
197 /// callee-saved registers moved to the end.
198 ///
199 /// The MachineFunction argument can be used to tune the allocatable
200 /// registers based on the characteristics of the function, subtarget, or
201 /// other criteria.
202 ///
203 /// By default, this method returns all registers in the class.
205 return OrderFunc ? OrderFunc(MF) : getRegisters();
206 }
207
208 /// Returns the combination of all lane masks of register in this class.
209 /// The lane masks of the registers are the combination of all lane masks
210 /// of their subregisters. Returns 1 if there are no subregisters.
212 return LaneMask;
213 }
214};
215
216/// Extra information, not in MCRegisterDesc, about registers.
217/// These are used by codegen, not by MC.
219 const uint8_t *CostPerUse; // Extra cost of instructions using register.
220 unsigned NumCosts; // Number of cost values associated with each register.
221 const bool
222 *InAllocatableClass; // Register belongs to an allocatable regclass.
223};
224
225/// Each TargetRegisterClass has a per register weight, and weight
226/// limit which must be less than the limits of its pressure sets.
228 unsigned RegWeight;
229 unsigned WeightLimit;
230};
231
232/// TargetRegisterInfo base class - We assume that the target defines a static
233/// array of TargetRegisterDesc objects that represent all of the machine
234/// registers that the target has. As such, we simply have to track a pointer
235/// to this array so that we can turn register number into a register
236/// descriptor.
237///
239public:
240 using regclass_iterator = const TargetRegisterClass * const *;
244 unsigned VTListOffset;
245 };
246
247 /// SubRegCoveredBits - Emitted by tablegen: bit range covered by a subreg
248 /// index, -1 in any being invalid.
252 };
253
254private:
255 const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen
256 const char *const *SubRegIndexNames; // Names of subreg indexes.
257 const SubRegCoveredBits *SubRegIdxRanges; // Pointer to the subreg covered
258 // bit ranges array.
259
260 // Pointer to array of lane masks, one per sub-reg index.
261 const LaneBitmask *SubRegIndexLaneMasks;
262
263 regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses
264 LaneBitmask CoveringLanes;
265 const RegClassInfo *const RCInfos;
266 const MVT::SimpleValueType *const RCVTLists;
267 unsigned HwMode;
268
269protected:
271 regclass_iterator RCE, const char *const *SRINames,
272 const SubRegCoveredBits *SubIdxRanges,
273 const LaneBitmask *SRILaneMasks, LaneBitmask CoveringLanes,
274 const RegClassInfo *const RCIs,
275 const MVT::SimpleValueType *const RCVTLists,
276 unsigned Mode = 0);
278
279public:
280 /// Return the number of registers for the function. (may overestimate)
281 virtual unsigned getNumSupportedRegs(const MachineFunction &) const {
282 return getNumRegs();
283 }
284
285 // Register numbers can represent physical registers, virtual registers, and
286 // sometimes stack slots. The unsigned values are divided into these ranges:
287 //
288 // 0 Not a register, can be used as a sentinel.
289 // [1;2^30) Physical registers assigned by TableGen.
290 // [2^30;2^31) Stack slots. (Rarely used.)
291 // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
292 //
293 // Further sentinels can be allocated from the small negative integers.
294 // DenseMapInfo<unsigned> uses -1u and -2u.
295
296 /// Return the size in bits of a register from class RC.
299 }
300
301 /// Return the size in bytes of the stack slot allocated to hold a spilled
302 /// copy of a register from class RC.
303 unsigned getSpillSize(const TargetRegisterClass &RC) const {
304 return getRegClassInfo(RC).SpillSize / 8;
305 }
306
307 /// Return the minimum required alignment in bytes for a spill slot for
308 /// a register of this class.
310 return Align(getRegClassInfo(RC).SpillAlignment / 8);
311 }
312
313 /// Return true if the given TargetRegisterClass has the ValueType T.
315 for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I)
316 if (MVT(*I) == T)
317 return true;
318 return false;
319 }
320
321 /// Return true if the given TargetRegisterClass is compatible with LLT T.
323 for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I) {
324 MVT VT(*I);
325 if (VT == MVT::Untyped)
326 return true;
327
328 if (LLT(VT) == T)
329 return true;
330 }
331 return false;
332 }
333
334 /// Loop over all of the value types that can be represented by values
335 /// in the given register class.
337 return &RCVTLists[getRegClassInfo(RC).VTListOffset];
338 }
339
342 while (*I != MVT::Other)
343 ++I;
344 return I;
345 }
346
347 /// Returns the Register Class of a physical register of the given type,
348 /// picking the most sub register class of the right type that contains this
349 /// physreg.
351 MVT VT = MVT::Other) const;
352
353 /// Returns the Register Class of a physical register of the given type,
354 /// picking the most sub register class of the right type that contains this
355 /// physreg. If there is no register class compatible with the given type,
356 /// returns nullptr.
358 LLT Ty = LLT()) const;
359
360 /// Return the maximal subclass of the given register class that is
361 /// allocatable or NULL.
362 const TargetRegisterClass *
364
365 /// Returns a bitset indexed by register number indicating if a register is
366 /// allocatable or not. If a register class is specified, returns the subset
367 /// for the class.
369 const TargetRegisterClass *RC = nullptr) const;
370
371 /// Get a list of cost values for all registers that correspond to the index
372 /// returned by RegisterCostTableIndex.
374 unsigned Idx = getRegisterCostTableIndex(MF);
375 unsigned NumRegs = getNumRegs();
376 assert(Idx < InfoDesc->NumCosts && "CostPerUse index out of bounds");
377
378 return ArrayRef(&InfoDesc->CostPerUse[Idx * NumRegs], NumRegs);
379 }
380
381 /// Return true if the register is in the allocation of any register class.
383 return InfoDesc->InAllocatableClass[RegNo];
384 }
385
386 /// Return the human-readable symbolic target-specific
387 /// name for the specified SubRegIndex.
388 const char *getSubRegIndexName(unsigned SubIdx) const {
389 assert(SubIdx && SubIdx < getNumSubRegIndices() &&
390 "This is not a subregister index");
391 return SubRegIndexNames[SubIdx-1];
392 }
393
394 /// Get the size of the bit range covered by a sub-register index.
395 /// If the index isn't continuous, return the sum of the sizes of its parts.
396 /// If the index is used to access subregisters of different sizes, return -1.
397 unsigned getSubRegIdxSize(unsigned Idx) const;
398
399 /// Get the offset of the bit range covered by a sub-register index.
400 /// If an Offset doesn't make sense (the index isn't continuous, or is used to
401 /// access sub-registers at different offsets), return -1.
402 unsigned getSubRegIdxOffset(unsigned Idx) const;
403
404 /// Return a bitmask representing the parts of a register that are covered by
405 /// SubIdx \see LaneBitmask.
406 ///
407 /// SubIdx == 0 is allowed, it has the lane mask ~0u.
408 LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
409 assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
410 return SubRegIndexLaneMasks[SubIdx];
411 }
412
413 /// Try to find one or more subregister indexes to cover \p LaneMask.
414 ///
415 /// If this is possible, returns true and appends the best matching set of
416 /// indexes to \p Indexes. If this is not possible, returns false.
418 const TargetRegisterClass *RC,
419 LaneBitmask LaneMask,
420 SmallVectorImpl<unsigned> &Indexes) const;
421
422 /// The lane masks returned by getSubRegIndexLaneMask() above can only be
423 /// used to determine if sub-registers overlap - they can't be used to
424 /// determine if a set of sub-registers completely cover another
425 /// sub-register.
426 ///
427 /// The X86 general purpose registers have two lanes corresponding to the
428 /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
429 /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
430 /// sub_32bit sub-register.
431 ///
432 /// On the other hand, the ARM NEON lanes fully cover their registers: The
433 /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
434 /// This is related to the CoveredBySubRegs property on register definitions.
435 ///
436 /// This function returns a bit mask of lanes that completely cover their
437 /// sub-registers. More precisely, given:
438 ///
439 /// Covering = getCoveringLanes();
440 /// MaskA = getSubRegIndexLaneMask(SubA);
441 /// MaskB = getSubRegIndexLaneMask(SubB);
442 ///
443 /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
444 /// SubB.
445 LaneBitmask getCoveringLanes() const { return CoveringLanes; }
446
447 /// Returns true if the two registers are equal or alias each other.
448 /// The registers may be virtual registers.
449 bool regsOverlap(Register RegA, Register RegB) const {
450 if (RegA == RegB)
451 return true;
452 if (RegA.isPhysical() && RegB.isPhysical())
453 return MCRegisterInfo::regsOverlap(RegA.asMCReg(), RegB.asMCReg());
454 return false;
455 }
456
457 /// Returns true if Reg contains RegUnit.
458 bool hasRegUnit(MCRegister Reg, Register RegUnit) const {
459 for (MCRegUnit Unit : regunits(Reg))
460 if (Register(Unit) == RegUnit)
461 return true;
462 return false;
463 }
464
465 /// Returns the original SrcReg unless it is the target of a copy-like
466 /// operation, in which case we chain backwards through all such operations
467 /// to the ultimate source register. If a physical register is encountered,
468 /// we stop the search.
469 virtual Register lookThruCopyLike(Register SrcReg,
470 const MachineRegisterInfo *MRI) const;
471
472 /// Find the original SrcReg unless it is the target of a copy-like operation,
473 /// in which case we chain backwards through all such operations to the
474 /// ultimate source register. If a physical register is encountered, we stop
475 /// the search.
476 /// Return the original SrcReg if all the definitions in the chain only have
477 /// one user and not a physical register.
478 virtual Register
480 const MachineRegisterInfo *MRI) const;
481
482 /// Return a null-terminated list of all of the callee-saved registers on
483 /// this target. The register should be in the order of desired callee-save
484 /// stack frame offset. The first register is closest to the incoming stack
485 /// pointer if stack grows down, and vice versa.
486 /// Notice: This function does not take into account disabled CSRs.
487 /// In most cases you will want to use instead the function
488 /// getCalleeSavedRegs that is implemented in MachineRegisterInfo.
489 virtual const MCPhysReg*
491
492 /// Return a mask of call-preserved registers for the given calling convention
493 /// on the current function. The mask should include all call-preserved
494 /// aliases. This is used by the register allocator to determine which
495 /// registers can be live across a call.
496 ///
497 /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
498 /// A set bit indicates that all bits of the corresponding register are
499 /// preserved across the function call. The bit mask is expected to be
500 /// sub-register complete, i.e. if A is preserved, so are all its
501 /// sub-registers.
502 ///
503 /// Bits are numbered from the LSB, so the bit for physical register Reg can
504 /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
505 ///
506 /// A NULL pointer means that no register mask will be used, and call
507 /// instructions should use implicit-def operands to indicate call clobbered
508 /// registers.
509 ///
511 CallingConv::ID) const {
512 // The default mask clobbers everything. All targets should override.
513 return nullptr;
514 }
515
516 /// Return a register mask for the registers preserved by the unwinder,
517 /// or nullptr if no custom mask is needed.
518 virtual const uint32_t *
520 return nullptr;
521 }
522
523 /// Return a register mask that clobbers everything.
524 virtual const uint32_t *getNoPreservedMask() const {
525 llvm_unreachable("target does not provide no preserved mask");
526 }
527
528 /// Return a list of all of the registers which are clobbered "inside" a call
529 /// to the given function. For example, these might be needed for PLT
530 /// sequences of long-branch veneers.
531 virtual ArrayRef<MCPhysReg>
533 return {};
534 }
535
536 /// Return true if all bits that are set in mask \p mask0 are also set in
537 /// \p mask1.
538 bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const;
539
540 /// Return all the call-preserved register masks defined for this target.
543
544 /// Returns a bitset indexed by physical register number indicating if a
545 /// register is a special register that has particular uses and should be
546 /// considered unavailable at all times, e.g. stack pointer, return address.
547 /// A reserved register:
548 /// - is not allocatable
549 /// - is considered always live
550 /// - is ignored by liveness tracking
551 /// It is often necessary to reserve the super registers of a reserved
552 /// register as well, to avoid them getting allocated indirectly. You may use
553 /// markSuperRegs() and checkAllSuperRegsMarked() in this case.
554 virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
555
556 /// Returns either a string explaining why the given register is reserved for
557 /// this function, or an empty optional if no explanation has been written.
558 /// The absence of an explanation does not mean that the register is not
559 /// reserved (meaning, you should check that PhysReg is in fact reserved
560 /// before calling this).
561 virtual std::optional<std::string>
563 return {};
564 }
565
566 /// Returns false if we can't guarantee that Physreg, specified as an IR asm
567 /// clobber constraint, will be preserved across the statement.
568 virtual bool isAsmClobberable(const MachineFunction &MF,
569 MCRegister PhysReg) const {
570 return true;
571 }
572
573 /// Returns true if PhysReg cannot be written to in inline asm statements.
575 unsigned PhysReg) const {
576 return false;
577 }
578
579 /// Returns true if PhysReg is unallocatable and constant throughout the
580 /// function. Used by MachineRegisterInfo::isConstantPhysReg().
581 virtual bool isConstantPhysReg(MCRegister PhysReg) const { return false; }
582
583 /// Returns true if the register class is considered divergent.
584 virtual bool isDivergentRegClass(const TargetRegisterClass *RC) const {
585 return false;
586 }
587
588 /// Returns true if the register is considered uniform.
590 const RegisterBankInfo &RBI, Register Reg) const {
591 return false;
592 }
593
594 /// Returns true if MachineLoopInfo should analyze the given physreg
595 /// for loop invariance.
597 return false;
598 }
599
600 /// Physical registers that may be modified within a function but are
601 /// guaranteed to be restored before any uses. This is useful for targets that
602 /// have call sequences where a GOT register may be updated by the caller
603 /// prior to a call and is guaranteed to be restored (also by the caller)
604 /// after the call.
606 const MachineFunction &MF) const {
607 return false;
608 }
609
610 /// This is a wrapper around getCallPreservedMask().
611 /// Return true if the register is preserved after the call.
612 virtual bool isCalleeSavedPhysReg(MCRegister PhysReg,
613 const MachineFunction &MF) const;
614
615 /// Returns true if PhysReg can be used as an argument to a function.
616 virtual bool isArgumentRegister(const MachineFunction &MF,
617 MCRegister PhysReg) const {
618 return false;
619 }
620
621 /// Returns true if PhysReg is a fixed register.
622 virtual bool isFixedRegister(const MachineFunction &MF,
623 MCRegister PhysReg) const {
624 return false;
625 }
626
627 /// Returns true if PhysReg is a general purpose register.
629 MCRegister PhysReg) const {
630 return false;
631 }
632
633 /// Prior to adding the live-out mask to a stackmap or patchpoint
634 /// instruction, provide the target the opportunity to adjust it (mainly to
635 /// remove pseudo-registers that should be ignored).
636 virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {}
637
638 /// Return a super-register of the specified register
639 /// Reg so its sub-register of index SubIdx is Reg.
641 const TargetRegisterClass *RC) const {
642 return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
643 }
644
645 /// Return a subclass of the specified register
646 /// class A so that each register in it has a sub-register of the
647 /// specified sub-register index which is in the specified register class B.
648 ///
649 /// TableGen will synthesize missing A sub-classes.
650 virtual const TargetRegisterClass *
652 const TargetRegisterClass *B, unsigned Idx) const;
653
654 // For a copy-like instruction that defines a register of class DefRC with
655 // subreg index DefSubReg, reading from another source with class SrcRC and
656 // subregister SrcSubReg return true if this is a preferable copy
657 // instruction or an earlier use should be used.
658 virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
659 unsigned DefSubReg,
660 const TargetRegisterClass *SrcRC,
661 unsigned SrcSubReg) const;
662
663 /// Returns the largest legal sub-class of RC that
664 /// supports the sub-register index Idx.
665 /// If no such sub-class exists, return NULL.
666 /// If all registers in RC already have an Idx sub-register, return RC.
667 ///
668 /// TableGen generates a version of this function that is good enough in most
669 /// cases. Targets can override if they have constraints that TableGen
670 /// doesn't understand. For example, the x86 sub_8bit sub-register index is
671 /// supported by the full GR32 register class in 64-bit mode, but only by the
672 /// GR32_ABCD regiister class in 32-bit mode.
673 ///
674 /// TableGen will synthesize missing RC sub-classes.
675 virtual const TargetRegisterClass *
676 getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
677 assert(Idx == 0 && "Target has no sub-registers");
678 return RC;
679 }
680
681 /// Return a register class that can be used for a subregister copy from/into
682 /// \p SuperRC at \p SubRegIdx.
683 virtual const TargetRegisterClass *
685 unsigned SubRegIdx) const {
686 return nullptr;
687 }
688
689 /// Return the subregister index you get from composing
690 /// two subregister indices.
691 ///
692 /// The special null sub-register index composes as the identity.
693 ///
694 /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
695 /// returns c. Note that composeSubRegIndices does not tell you about illegal
696 /// compositions. If R does not have a subreg a, or R:a does not have a subreg
697 /// b, composeSubRegIndices doesn't tell you.
698 ///
699 /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
700 /// ssub_0:S0 - ssub_3:S3 subregs.
701 /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
702 unsigned composeSubRegIndices(unsigned a, unsigned b) const {
703 if (!a) return b;
704 if (!b) return a;
705 return composeSubRegIndicesImpl(a, b);
706 }
707
708 /// Transforms a LaneMask computed for one subregister to the lanemask that
709 /// would have been computed when composing the subsubregisters with IdxA
710 /// first. @sa composeSubRegIndices()
712 LaneBitmask Mask) const {
713 if (!IdxA)
714 return Mask;
715 return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
716 }
717
718 /// Transform a lanemask given for a virtual register to the corresponding
719 /// lanemask before using subregister with index \p IdxA.
720 /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a
721 /// valie lane mask (no invalid bits set) the following holds:
722 /// X0 = composeSubRegIndexLaneMask(Idx, Mask)
723 /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0)
724 /// => X1 == Mask
726 LaneBitmask LaneMask) const {
727 if (!IdxA)
728 return LaneMask;
729 return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask);
730 }
731
732 /// Debugging helper: dump register in human readable form to dbgs() stream.
733 static void dumpReg(Register Reg, unsigned SubRegIndex = 0,
734 const TargetRegisterInfo *TRI = nullptr);
735
736 /// Return target defined base register class for a physical register.
737 /// This is the register class with the lowest BaseClassOrder containing the
738 /// register.
739 /// Will be nullptr if the register is not in any base register class.
741 return nullptr;
742 }
743
744protected:
745 /// Overridden by TableGen in targets that have sub-registers.
746 virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
747 llvm_unreachable("Target has no sub-registers");
748 }
749
750 /// Overridden by TableGen in targets that have sub-registers.
751 virtual LaneBitmask
753 llvm_unreachable("Target has no sub-registers");
754 }
755
757 LaneBitmask) const {
758 llvm_unreachable("Target has no sub-registers");
759 }
760
761 /// Return the register cost table index. This implementation is sufficient
762 /// for most architectures and can be overriden by targets in case there are
763 /// multiple cost values associated with each register.
764 virtual unsigned getRegisterCostTableIndex(const MachineFunction &MF) const {
765 return 0;
766 }
767
768public:
769 /// Find a common super-register class if it exists.
770 ///
771 /// Find a register class, SuperRC and two sub-register indices, PreA and
772 /// PreB, such that:
773 ///
774 /// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and
775 ///
776 /// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
777 ///
778 /// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
779 ///
780 /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
781 /// requirements, and there is no register class with a smaller spill size
782 /// that satisfies the requirements.
783 ///
784 /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
785 ///
786 /// Either of the PreA and PreB sub-register indices may be returned as 0. In
787 /// that case, the returned register class will be a sub-class of the
788 /// corresponding argument register class.
789 ///
790 /// The function returns NULL if no register class can be found.
792 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
793 const TargetRegisterClass *RCB, unsigned SubB,
794 unsigned &PreA, unsigned &PreB) const;
795
796 //===--------------------------------------------------------------------===//
797 // Register Class Information
798 //
799protected:
801 return RCInfos[getNumRegClasses() * HwMode + RC.getID()];
802 }
803
804public:
805 /// Register class iterators
806 regclass_iterator regclass_begin() const { return RegClassBegin; }
807 regclass_iterator regclass_end() const { return RegClassEnd; }
810 }
811
812 unsigned getNumRegClasses() const {
813 return (unsigned)(regclass_end()-regclass_begin());
814 }
815
816 /// Returns the register class associated with the enumeration value.
817 /// See class MCOperandInfo.
818 const TargetRegisterClass *getRegClass(unsigned i) const {
819 assert(i < getNumRegClasses() && "Register Class ID out of range");
820 return RegClassBegin[i];
821 }
822
823 /// Returns the name of the register class.
824 const char *getRegClassName(const TargetRegisterClass *Class) const {
825 return MCRegisterInfo::getRegClassName(Class->MC);
826 }
827
828 /// Find the largest common subclass of A and B.
829 /// Return NULL if there is no common subclass.
830 const TargetRegisterClass *
832 const TargetRegisterClass *B) const;
833
834 /// Returns a TargetRegisterClass used for pointer values.
835 /// If a target supports multiple different pointer register classes,
836 /// kind specifies which one is indicated.
837 virtual const TargetRegisterClass *
838 getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
839 llvm_unreachable("Target didn't implement getPointerRegClass!");
840 }
841
842 /// Returns a legal register class to copy a register in the specified class
843 /// to or from. If it is possible to copy the register directly without using
844 /// a cross register class copy, return the specified RC. Returns NULL if it
845 /// is not possible to copy between two registers of the specified class.
846 virtual const TargetRegisterClass *
848 return RC;
849 }
850
851 /// Returns the largest super class of RC that is legal to use in the current
852 /// sub-target and has the same spill size.
853 /// The returned register class can be used to create virtual registers which
854 /// means that all its registers can be copied and spilled.
855 virtual const TargetRegisterClass *
857 const MachineFunction &) const {
858 /// The default implementation is very conservative and doesn't allow the
859 /// register allocator to inflate register classes.
860 return RC;
861 }
862
863 /// Return the register pressure "high water mark" for the specific register
864 /// class. The scheduler is in high register pressure mode (for the specific
865 /// register class) if it goes over the limit.
866 ///
867 /// Note: this is the old register pressure model that relies on a manually
868 /// specified representative register class per value type.
869 virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
870 MachineFunction &MF) const {
871 return 0;
872 }
873
874 /// Return a heuristic for the machine scheduler to compare the profitability
875 /// of increasing one register pressure set versus another. The scheduler
876 /// will prefer increasing the register pressure of the set which returns
877 /// the largest value for this function.
878 virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
879 unsigned PSetID) const {
880 return PSetID;
881 }
882
883 /// Get the weight in units of pressure for this register class.
885 const TargetRegisterClass *RC) const = 0;
886
887 /// Returns size in bits of a phys/virtual/generic register.
889
890 /// Get the weight in units of pressure for this register unit.
891 virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
892
893 /// Get the number of dimensions of register pressure.
894 virtual unsigned getNumRegPressureSets() const = 0;
895
896 /// Get the name of this register unit pressure set.
897 virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
898
899 /// Get the register unit pressure limit for this dimension.
900 /// This limit must be adjusted dynamically for reserved registers.
901 virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
902 unsigned Idx) const = 0;
903
904 /// Get the dimensions of register pressure impacted by this register class.
905 /// Returns a -1 terminated array of pressure set IDs.
906 virtual const int *getRegClassPressureSets(
907 const TargetRegisterClass *RC) const = 0;
908
909 /// Get the dimensions of register pressure impacted by this register unit.
910 /// Returns a -1 terminated array of pressure set IDs.
911 virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
912
913 /// Get a list of 'hint' registers that the register allocator should try
914 /// first when allocating a physical register for the virtual register
915 /// VirtReg. These registers are effectively moved to the front of the
916 /// allocation order. If true is returned, regalloc will try to only use
917 /// hints to the greatest extent possible even if it means spilling.
918 ///
919 /// The Order argument is the allocation order for VirtReg's register class
920 /// as returned from RegisterClassInfo::getOrder(). The hint registers must
921 /// come from Order, and they must not be reserved.
922 ///
923 /// The default implementation of this function will only add target
924 /// independent register allocation hints. Targets that override this
925 /// function should typically call this default implementation as well and
926 /// expect to see generic copy hints added.
927 virtual bool
930 const MachineFunction &MF,
931 const VirtRegMap *VRM = nullptr,
932 const LiveRegMatrix *Matrix = nullptr) const;
933
934 /// A callback to allow target a chance to update register allocation hints
935 /// when a register is "changed" (e.g. coalesced) to another register.
936 /// e.g. On ARM, some virtual registers should target register pairs,
937 /// if one of pair is coalesced to another register, the allocation hint of
938 /// the other half of the pair should be changed to point to the new register.
940 MachineFunction &MF) const {
941 // Do nothing.
942 }
943
944 /// Allow the target to reverse allocation order of local live ranges. This
945 /// will generally allocate shorter local live ranges first. For targets with
946 /// many registers, this could reduce regalloc compile time by a large
947 /// factor. It is disabled by default for three reasons:
948 /// (1) Top-down allocation is simpler and easier to debug for targets that
949 /// don't benefit from reversing the order.
950 /// (2) Bottom-up allocation could result in poor evicition decisions on some
951 /// targets affecting the performance of compiled code.
952 /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
953 virtual bool reverseLocalAssignment() const { return false; }
954
955 /// Allow the target to override the cost of using a callee-saved register for
956 /// the first time. Default value of 0 means we will use a callee-saved
957 /// register if it is available.
958 virtual unsigned getCSRFirstUseCost() const { return 0; }
959
960 /// Returns true if the target requires (and can make use of) the register
961 /// scavenger.
962 virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
963 return false;
964 }
965
966 /// Returns true if the target wants to use frame pointer based accesses to
967 /// spill to the scavenger emergency spill slot.
968 virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
969 return true;
970 }
971
972 /// Returns true if the target requires post PEI scavenging of registers for
973 /// materializing frame index constants.
974 virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
975 return false;
976 }
977
978 /// Returns true if the target requires using the RegScavenger directly for
979 /// frame elimination despite using requiresFrameIndexScavenging.
981 const MachineFunction &MF) const {
982 return false;
983 }
984
985 /// Returns true if the target wants the LocalStackAllocation pass to be run
986 /// and virtual base registers used for more efficient stack access.
987 virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
988 return false;
989 }
990
991 /// Return true if target has reserved a spill slot in the stack frame of
992 /// the given function for the specified register. e.g. On x86, if the frame
993 /// register is required, the first fixed stack object is reserved as its
994 /// spill slot. This tells PEI not to create a new stack frame
995 /// object for the given register. It should be called only after
996 /// determineCalleeSaves().
998 int &FrameIdx) const {
999 return false;
1000 }
1001
1002 /// Returns true if the live-ins should be tracked after register allocation.
1003 virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
1004 return true;
1005 }
1006
1007 /// True if the stack can be realigned for the target.
1008 virtual bool canRealignStack(const MachineFunction &MF) const;
1009
1010 /// True if storage within the function requires the stack pointer to be
1011 /// aligned more than the normal calling convention calls for.
1012 virtual bool shouldRealignStack(const MachineFunction &MF) const;
1013
1014 /// True if stack realignment is required and still possible.
1015 bool hasStackRealignment(const MachineFunction &MF) const {
1016 return shouldRealignStack(MF) && canRealignStack(MF);
1017 }
1018
1019 /// Get the offset from the referenced frame index in the instruction,
1020 /// if there is one.
1022 int Idx) const {
1023 return 0;
1024 }
1025
1026 /// Returns true if the instruction's frame index reference would be better
1027 /// served by a base register other than FP or SP.
1028 /// Used by LocalStackFrameAllocation to determine which frame index
1029 /// references it should create new base registers for.
1030 virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
1031 return false;
1032 }
1033
1034 /// Insert defining instruction(s) for a pointer to FrameIdx before
1035 /// insertion point I. Return materialized frame pointer.
1037 int FrameIdx,
1038 int64_t Offset) const {
1039 llvm_unreachable("materializeFrameBaseRegister does not exist on this "
1040 "target");
1041 }
1042
1043 /// Resolve a frame index operand of an instruction
1044 /// to reference the indicated base register plus offset instead.
1046 int64_t Offset) const {
1047 llvm_unreachable("resolveFrameIndex does not exist on this target");
1048 }
1049
1050 /// Determine whether a given base register plus offset immediate is
1051 /// encodable to resolve a frame index.
1052 virtual bool isFrameOffsetLegal(const MachineInstr *MI, Register BaseReg,
1053 int64_t Offset) const {
1054 llvm_unreachable("isFrameOffsetLegal does not exist on this target");
1055 }
1056
1057 /// Gets the DWARF expression opcodes for \p Offset.
1058 virtual void getOffsetOpcodes(const StackOffset &Offset,
1059 SmallVectorImpl<uint64_t> &Ops) const;
1060
1061 /// Prepends a DWARF expression for \p Offset to DIExpression \p Expr.
1062 DIExpression *
1063 prependOffsetExpression(const DIExpression *Expr, unsigned PrependFlags,
1064 const StackOffset &Offset) const;
1065
1066 /// Spill the register so it can be used by the register scavenger.
1067 /// Return true if the register was spilled, false otherwise.
1068 /// If this function does not spill the register, the scavenger
1069 /// will instead spill it to the emergency spill slot.
1073 const TargetRegisterClass *RC,
1074 Register Reg) const {
1075 return false;
1076 }
1077
1078 /// Process frame indices in reverse block order. This changes the behavior of
1079 /// the RegScavenger passed to eliminateFrameIndex. If this is true targets
1080 /// should scavengeRegisterBackwards in eliminateFrameIndex. New targets
1081 /// should prefer reverse scavenging behavior.
1082 /// TODO: Remove this when all targets return true.
1083 virtual bool eliminateFrameIndicesBackwards() const { return true; }
1084
1085 /// This method must be overriden to eliminate abstract frame indices from
1086 /// instructions which may use them. The instruction referenced by the
1087 /// iterator contains an MO_FrameIndex operand which must be eliminated by
1088 /// this method. This method may modify or replace the specified instruction,
1089 /// as long as it keeps the iterator pointing at the finished product.
1090 /// SPAdj is the SP adjustment due to call frame setup instruction.
1091 /// FIOperandNum is the FI operand number.
1092 /// Returns true if the current instruction was removed and the iterator
1093 /// is not longer valid
1095 int SPAdj, unsigned FIOperandNum,
1096 RegScavenger *RS = nullptr) const = 0;
1097
1098 /// Return the assembly name for \p Reg.
1100 // FIXME: We are assuming that the assembly name is equal to the TableGen
1101 // name converted to lower case
1102 //
1103 // The TableGen name is the name of the definition for this register in the
1104 // target's tablegen files. For example, the TableGen name of
1105 // def EAX : Register <...>; is "EAX"
1106 return StringRef(getName(Reg));
1107 }
1108
1109 //===--------------------------------------------------------------------===//
1110 /// Subtarget Hooks
1111
1112 /// SrcRC and DstRC will be morphed into NewRC if this returns true.
1114 const TargetRegisterClass *SrcRC,
1115 unsigned SubReg,
1116 const TargetRegisterClass *DstRC,
1117 unsigned DstSubReg,
1118 const TargetRegisterClass *NewRC,
1119 LiveIntervals &LIS) const
1120 { return true; }
1121
1122 /// Region split has a high compile time cost especially for large live range.
1123 /// This method is used to decide whether or not \p VirtReg should
1124 /// go through this expensive splitting heuristic.
1125 virtual bool shouldRegionSplitForVirtReg(const MachineFunction &MF,
1126 const LiveInterval &VirtReg) const;
1127
1128 /// Last chance recoloring has a high compile time cost especially for
1129 /// targets with a lot of registers.
1130 /// This method is used to decide whether or not \p VirtReg should
1131 /// go through this expensive heuristic.
1132 /// When this target hook is hit, by returning false, there is a high
1133 /// chance that the register allocation will fail altogether (usually with
1134 /// "ran out of registers").
1135 /// That said, this error usually points to another problem in the
1136 /// optimization pipeline.
1137 virtual bool
1139 const LiveInterval &VirtReg) const {
1140 return true;
1141 }
1142
1143 /// Deferred spilling delays the spill insertion of a virtual register
1144 /// after every other allocation. By deferring the spilling, it is
1145 /// sometimes possible to eliminate that spilling altogether because
1146 /// something else could have been eliminated, thus leaving some space
1147 /// for the virtual register.
1148 /// However, this comes with a compile time impact because it adds one
1149 /// more stage to the greedy register allocator.
1150 /// This method is used to decide whether \p VirtReg should use the deferred
1151 /// spilling stage instead of being spilled right away.
1152 virtual bool
1154 const LiveInterval &VirtReg) const {
1155 return false;
1156 }
1157
1158 /// When prioritizing live ranges in register allocation, if this hook returns
1159 /// true then the AllocationPriority of the register class will be treated as
1160 /// more important than whether the range is local to a basic block or global.
1161 virtual bool
1163 return false;
1164 }
1165
1166 //===--------------------------------------------------------------------===//
1167 /// Debug information queries.
1168
1169 /// getFrameRegister - This method should return the register used as a base
1170 /// for values allocated in the current stack frame.
1171 virtual Register getFrameRegister(const MachineFunction &MF) const = 0;
1172
1173 /// Mark a register and all its aliases as reserved in the given set.
1174 void markSuperRegs(BitVector &RegisterSet, MCRegister Reg) const;
1175
1176 /// Returns true if for every register in the set all super registers are part
1177 /// of the set as well.
1178 bool checkAllSuperRegsMarked(const BitVector &RegisterSet,
1179 ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const;
1180
1181 virtual const TargetRegisterClass *
1183 const MachineRegisterInfo &MRI) const {
1184 return nullptr;
1185 }
1186
1187 /// Returns the physical register number of sub-register "Index"
1188 /// for physical register RegNo. Return zero if the sub-register does not
1189 /// exist.
1190 inline MCRegister getSubReg(MCRegister Reg, unsigned Idx) const {
1191 return static_cast<const MCRegisterInfo *>(this)->getSubReg(Reg, Idx);
1192 }
1193
1194 /// Some targets have non-allocatable registers that aren't technically part
1195 /// of the explicit callee saved register list, but should be handled as such
1196 /// in certain cases.
1198 return false;
1199 }
1200
1201 /// Returns the Largest Super Class that is being initialized. There
1202 /// should be a Pseudo Instruction implemented for the super class
1203 /// that is being returned to ensure that Init Undef can apply the
1204 /// initialization correctly.
1205 virtual const TargetRegisterClass *
1207 llvm_unreachable("Unexpected target register class.");
1208 }
1209
1210 /// Returns if the architecture being targeted has the required Pseudo
1211 /// Instructions for initializing the register. By default this returns false,
1212 /// but where it is overriden for an architecture, the behaviour will be
1213 /// different. This can either be a check to ensure the Register Class is
1214 /// present, or to return true as an indication the architecture supports the
1215 /// pass. If using the method that does not check for the Register Class, it
1216 /// is imperative to ensure all required Pseudo Instructions are implemented,
1217 /// otherwise compilation may fail with an `Unexpected register class` error.
1218 virtual bool
1220 return false;
1221 }
1222};
1223
1224//===----------------------------------------------------------------------===//
1225// SuperRegClassIterator
1226//===----------------------------------------------------------------------===//
1227//
1228// Iterate over the possible super-registers for a given register class. The
1229// iterator will visit a list of pairs (Idx, Mask) corresponding to the
1230// possible classes of super-registers.
1231//
1232// Each bit mask will have at least one set bit, and each set bit in Mask
1233// corresponds to a SuperRC such that:
1234//
1235// For all Reg in SuperRC: Reg:Idx is in RC.
1236//
1237// The iterator can include (O, RC->getSubClassMask()) as the first entry which
1238// also satisfies the above requirement, assuming Reg:0 == Reg.
1239//
1241 const unsigned RCMaskWords;
1242 unsigned SubReg = 0;
1243 const uint16_t *Idx;
1244 const uint32_t *Mask;
1245
1246public:
1247 /// Create a SuperRegClassIterator that visits all the super-register classes
1248 /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
1250 const TargetRegisterInfo *TRI,
1251 bool IncludeSelf = false)
1252 : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
1253 Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) {
1254 if (!IncludeSelf)
1255 ++*this;
1256 }
1257
1258 /// Returns true if this iterator is still pointing at a valid entry.
1259 bool isValid() const { return Idx; }
1260
1261 /// Returns the current sub-register index.
1262 unsigned getSubReg() const { return SubReg; }
1263
1264 /// Returns the bit mask of register classes that getSubReg() projects into
1265 /// RC.
1266 /// See TargetRegisterClass::getSubClassMask() for how to use it.
1267 const uint32_t *getMask() const { return Mask; }
1268
1269 /// Advance iterator to the next entry.
1270 void operator++() {
1271 assert(isValid() && "Cannot move iterator past end.");
1272 Mask += RCMaskWords;
1273 SubReg = *Idx++;
1274 if (!SubReg)
1275 Idx = nullptr;
1276 }
1277};
1278
1279//===----------------------------------------------------------------------===//
1280// BitMaskClassIterator
1281//===----------------------------------------------------------------------===//
1282/// This class encapuslates the logic to iterate over bitmask returned by
1283/// the various RegClass related APIs.
1284/// E.g., this class can be used to iterate over the subclasses provided by
1285/// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask.
1287 /// Total number of register classes.
1288 const unsigned NumRegClasses;
1289 /// Base index of CurrentChunk.
1290 /// In other words, the number of bit we read to get at the
1291 /// beginning of that chunck.
1292 unsigned Base = 0;
1293 /// Adjust base index of CurrentChunk.
1294 /// Base index + how many bit we read within CurrentChunk.
1295 unsigned Idx = 0;
1296 /// Current register class ID.
1297 unsigned ID = 0;
1298 /// Mask we are iterating over.
1299 const uint32_t *Mask;
1300 /// Current chunk of the Mask we are traversing.
1301 uint32_t CurrentChunk;
1302
1303 /// Move ID to the next set bit.
1304 void moveToNextID() {
1305 // If the current chunk of memory is empty, move to the next one,
1306 // while making sure we do not go pass the number of register
1307 // classes.
1308 while (!CurrentChunk) {
1309 // Move to the next chunk.
1310 Base += 32;
1311 if (Base >= NumRegClasses) {
1312 ID = NumRegClasses;
1313 return;
1314 }
1315 CurrentChunk = *++Mask;
1316 Idx = Base;
1317 }
1318 // Otherwise look for the first bit set from the right
1319 // (representation of the class ID is big endian).
1320 // See getSubClassMask for more details on the representation.
1321 unsigned Offset = llvm::countr_zero(CurrentChunk);
1322 // Add the Offset to the adjusted base number of this chunk: Idx.
1323 // This is the ID of the register class.
1324 ID = Idx + Offset;
1325
1326 // Consume the zeros, if any, and the bit we just read
1327 // so that we are at the right spot for the next call.
1328 // Do not do Offset + 1 because Offset may be 31 and 32
1329 // will be UB for the shift, though in that case we could
1330 // have make the chunk being equal to 0, but that would
1331 // have introduced a if statement.
1332 moveNBits(Offset);
1333 moveNBits(1);
1334 }
1335
1336 /// Move \p NumBits Bits forward in CurrentChunk.
1337 void moveNBits(unsigned NumBits) {
1338 assert(NumBits < 32 && "Undefined behavior spotted!");
1339 // Consume the bit we read for the next call.
1340 CurrentChunk >>= NumBits;
1341 // Adjust the base for the chunk.
1342 Idx += NumBits;
1343 }
1344
1345public:
1346 /// Create a BitMaskClassIterator that visits all the register classes
1347 /// represented by \p Mask.
1348 ///
1349 /// \pre \p Mask != nullptr
1351 : NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) {
1352 // Move to the first ID.
1353 moveToNextID();
1354 }
1355
1356 /// Returns true if this iterator is still pointing at a valid entry.
1357 bool isValid() const { return getID() != NumRegClasses; }
1358
1359 /// Returns the current register class ID.
1360 unsigned getID() const { return ID; }
1361
1362 /// Advance iterator to the next entry.
1363 void operator++() {
1364 assert(isValid() && "Cannot move iterator past end.");
1365 moveToNextID();
1366 }
1367};
1368
1369// This is useful when building IndexedMaps keyed on virtual registers
1372 unsigned operator()(Register Reg) const {
1374 }
1375};
1376
1377/// Prints virtual and physical registers with or without a TRI instance.
1378///
1379/// The format is:
1380/// %noreg - NoRegister
1381/// %5 - a virtual register.
1382/// %5:sub_8bit - a virtual register with sub-register index (with TRI).
1383/// %eax - a physical register
1384/// %physreg17 - a physical register when no TRI instance given.
1385///
1386/// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n';
1387Printable printReg(Register Reg, const TargetRegisterInfo *TRI = nullptr,
1388 unsigned SubIdx = 0,
1389 const MachineRegisterInfo *MRI = nullptr);
1390
1391/// Create Printable object to print register units on a \ref raw_ostream.
1392///
1393/// Register units are named after their root registers:
1394///
1395/// al - Single root.
1396/// fp0~st7 - Dual roots.
1397///
1398/// Usage: OS << printRegUnit(Unit, TRI) << '\n';
1399Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
1400
1401/// Create Printable object to print virtual registers and physical
1402/// registers on a \ref raw_ostream.
1403Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
1404
1405/// Create Printable object to print register classes or register banks
1406/// on a \ref raw_ostream.
1407Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo,
1408 const TargetRegisterInfo *TRI);
1409
1410} // end namespace llvm
1411
1412#endif // LLVM_CODEGEN_TARGETREGISTERINFO_H
unsigned SubReg
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
unsigned RegSize
MachineBasicBlock & MBB
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
IRTranslator LLVM IR MI
A common definition of LaneBitmask for use in TableGen and CodeGen.
Live Register Matrix
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
unsigned Reg
static cl::opt< RegAllocEvictionAdvisorAnalysis::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Development, "development", "for training")))
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
This class encapuslates the logic to iterate over bitmask returned by the various RegClass related AP...
void operator++()
Advance iterator to the next entry.
unsigned getID() const
Returns the current register class ID.
BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI)
Create a BitMaskClassIterator that visits all the register classes represented by Mask.
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
DWARF expression.
LiveInterval - This class represents the liveness of a register, or stack slot.
Definition: LiveInterval.h:687
MCRegisterClass - Base class of TargetRegisterClass.
unsigned getID() const
getID() - Return the register class ID number.
bool isAllocatable() const
isAllocatable - Return true if this register class may be used to create virtual registers.
unsigned getNumRegs() const
getNumRegs - Return the number of registers in this class.
unsigned getRegister(unsigned i) const
getRegister - Return the specified register in the class.
iterator begin() const
begin/end - Return all of the registers in this class.
bool contains(MCRegister Reg) const
contains - Return true if the specified register is included in this register class.
bool isBaseClass() const
Return true if this register class has a defined BaseClassOrder.
int getCopyCost() const
getCopyCost - Return the cost of copying a value between two registers in this class.
iterator end() const
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
unsigned getNumSubRegIndices() const
Return the number of sub-register indices understood by the target.
bool regsOverlap(MCRegister RegA, MCRegister RegB) const
Returns true if the two registers are equal or alias each other.
MCRegister getMatchingSuperReg(MCRegister Reg, unsigned SubIdx, const MCRegisterClass *RC) const
Return a super-register of the specified register Reg so its sub-register of index SubIdx is Reg.
const char * getName(MCRegister RegNo) const
Return the human-readable symbolic target-specific name for the specified physical register.
const char * getRegClassName(const MCRegisterClass *Class) const
iterator_range< MCRegUnitIterator > regunits(MCRegister Reg) const
Returns an iterator range over all regunits for Reg.
unsigned getNumRegs() const
Return the number of registers this target has (useful for sizing arrays holding per register informa...
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
Machine Value Type.
Representation of each machine instruction.
Definition: MachineInstr.h:69
MachineOperand class - Representation of each machine instruction operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Holds all the information related to register banks.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
MCRegister asMCReg() const
Utility to check-convert this value to a MCRegister.
Definition: Register.h:110
static unsigned virtReg2Index(Register Reg)
Convert a virtual register number to a 0-based index.
Definition: Register.h:77
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition: Register.h:95
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
StackOffset holds a fixed and a scalable offset in bytes.
Definition: TypeSize.h:33
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
void operator++()
Advance iterator to the next entry.
unsigned getSubReg() const
Returns the current sub-register index.
const uint32_t * getMask() const
Returns the bit mask of register classes that getSubReg() projects into RC.
SuperRegClassIterator(const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, bool IncludeSelf=false)
Create a SuperRegClassIterator that visits all the super-register classes of RC.
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
const TargetRegisterClass *const * sc_iterator
unsigned getNumRegs() const
Return the number of registers in this class.
const uint8_t TSFlags
Configurable target specific flags.
ArrayRef< MCPhysReg > getRegisters() const
bool isBaseClass() const
Return true if this register class has a defined BaseClassOrder.
const uint16_t * getSuperRegIndices() const
Returns a 0-terminated list of sub-register indices that project some super-register class into this ...
unsigned getID() const
Return the register class ID number.
const bool HasDisjunctSubRegs
Whether the class supports two (or more) disjunct subregister indices.
bool contains(Register Reg) const
Return true if the specified register is included in this register class.
const sc_iterator SuperClasses
bool isAllocatable() const
Return true if this register class may be used to create virtual registers.
ArrayRef< MCPhysReg >(* OrderFunc)(const MachineFunction &)
bool hasSubClassEq(const TargetRegisterClass *RC) const
Returns true if RC is a sub-class of or equal to this class.
bool hasSubClass(const TargetRegisterClass *RC) const
Return true if the specified TargetRegisterClass is a proper sub-class of this TargetRegisterClass.
const uint16_t * SuperRegIndices
const MCRegisterClass * MC
sc_iterator getSuperClasses() const
Returns a NULL-terminated list of super-classes.
bool hasSuperClassEq(const TargetRegisterClass *RC) const
Returns true if RC is a super-class of or equal to this class.
const bool CoveredBySubRegs
Whether a combination of subregisters can cover every register in the class.
LaneBitmask getLaneMask() const
Returns the combination of all lane masks of register in this class.
bool hasSuperClass(const TargetRegisterClass *RC) const
Return true if the specified TargetRegisterClass is a proper super-class of this TargetRegisterClass.
bool contains(Register Reg1, Register Reg2) const
Return true if both registers are in this class.
bool isASubClass() const
Return true if this TargetRegisterClass is a subset class of at least one other TargetRegisterClass.
const uint32_t * getSubClassMask() const
Returns a bit vector of subclasses, including this one.
const uint8_t AllocationPriority
Classes with a higher priority value are assigned first by register allocators using a greedy heurist...
MCRegister getRegister(unsigned i) const
Return the specified register in the class.
int getCopyCost() const
Return the cost of copying a value between two registers in this class.
iterator begin() const
begin/end - Return all of the registers in this class.
ArrayRef< MCPhysReg > getRawAllocationOrder(const MachineFunction &MF) const
Returns the preferred order for allocating registers from this register class in MF.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual bool isConstantPhysReg(MCRegister PhysReg) const
Returns true if PhysReg is unallocatable and constant throughout the function.
const TargetRegisterClass *const * regclass_iterator
virtual bool isFrameOffsetLegal(const MachineInstr *MI, Register BaseReg, int64_t Offset) const
Determine whether a given base register plus offset immediate is encodable to resolve a frame index.
vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const
bool isTypeLegalForClass(const TargetRegisterClass &RC, LLT T) const
Return true if the given TargetRegisterClass is compatible with LLT T.
virtual unsigned getNumRegPressureSets() const =0
Get the number of dimensions of register pressure.
virtual bool shouldUseDeferredSpillingForVirtReg(const MachineFunction &MF, const LiveInterval &VirtReg) const
Deferred spilling delays the spill insertion of a virtual register after every other allocation.
const TargetRegisterClass * getMinimalPhysRegClass(MCRegister Reg, MVT VT=MVT::Other) const
Returns the Register Class of a physical register of the given type, picking the most sub register cl...
iterator_range< regclass_iterator > regclasses() const
virtual bool shouldRegionSplitForVirtReg(const MachineFunction &MF, const LiveInterval &VirtReg) const
Region split has a high compile time cost especially for large live range.
virtual const TargetRegisterClass * getPhysRegBaseClass(MCRegister Reg) const
Return target defined base register class for a physical register.
virtual bool canRealignStack(const MachineFunction &MF) const
True if the stack can be realigned for the target.
virtual bool isAsmClobberable(const MachineFunction &MF, MCRegister PhysReg) const
Returns false if we can't guarantee that Physreg, specified as an IR asm clobber constraint,...
virtual const TargetRegisterClass * getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const
Returns the largest legal sub-class of RC that supports the sub-register index Idx.
const TargetRegisterClass * getRegClass(unsigned i) const
Returns the register class associated with the enumeration value.
virtual bool useFPForScavengingIndex(const MachineFunction &MF) const
Returns true if the target wants to use frame pointer based accesses to spill to the scavenger emerge...
virtual const TargetRegisterClass * getCrossCopyRegClass(const TargetRegisterClass *RC) const
Returns a legal register class to copy a register in the specified class to or from.
virtual bool shouldUseLastChanceRecoloringForVirtReg(const MachineFunction &MF, const LiveInterval &VirtReg) const
Last chance recoloring has a high compile time cost especially for targets with a lot of registers.
virtual bool eliminateFrameIndicesBackwards() const
Process frame indices in reverse block order.
unsigned composeSubRegIndices(unsigned a, unsigned b) const
Return the subregister index you get from composing two subregister indices.
const TargetRegisterClass * getCommonSubClass(const TargetRegisterClass *A, const TargetRegisterClass *B) const
Find the largest common subclass of A and B.
virtual LaneBitmask composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const
Overridden by TableGen in targets that have sub-registers.
virtual const int * getRegUnitPressureSets(unsigned RegUnit) const =0
Get the dimensions of register pressure impacted by this register unit.
virtual unsigned getCSRFirstUseCost() const
Allow the target to override the cost of using a callee-saved register for the first time.
const TargetRegisterClass * getMinimalPhysRegClassLLT(MCRegister Reg, LLT Ty=LLT()) const
Returns the Register Class of a physical register of the given type, picking the most sub register cl...
void markSuperRegs(BitVector &RegisterSet, MCRegister Reg) const
Mark a register and all its aliases as reserved in the given set.
virtual bool isInlineAsmReadOnlyReg(const MachineFunction &MF, unsigned PhysReg) const
Returns true if PhysReg cannot be written to in inline asm statements.
virtual const uint32_t * getCustomEHPadPreservedMask(const MachineFunction &MF) const
Return a register mask for the registers preserved by the unwinder, or nullptr if no custom mask is n...
virtual bool isUniformReg(const MachineRegisterInfo &MRI, const RegisterBankInfo &RBI, Register Reg) const
Returns true if the register is considered uniform.
bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const
Return true if all bits that are set in mask mask0 are also set in mask1.
TypeSize getRegSizeInBits(const TargetRegisterClass &RC) const
Return the size in bits of a register from class RC.
virtual std::optional< std::string > explainReservedReg(const MachineFunction &MF, MCRegister PhysReg) const
Returns either a string explaining why the given register is reserved for this function,...
virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const
Returns true if the target requires post PEI scavenging of registers for materializing frame index co...
const char * getSubRegIndexName(unsigned SubIdx) const
Return the human-readable symbolic target-specific name for the specified SubRegIndex.
virtual const uint32_t * getCallPreservedMask(const MachineFunction &MF, CallingConv::ID) const
Return a mask of call-preserved registers for the given calling convention on the current function.
virtual const char * getRegPressureSetName(unsigned Idx) const =0
Get the name of this register unit pressure set.
virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const
virtual Register lookThruSingleUseCopyChain(Register SrcReg, const MachineRegisterInfo *MRI) const
Find the original SrcReg unless it is the target of a copy-like operation, in which case we chain bac...
LaneBitmask getCoveringLanes() const
The lane masks returned by getSubRegIndexLaneMask() above can only be used to determine if sub-regist...
virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI, int Idx) const
Get the offset from the referenced frame index in the instruction, if there is one.
ArrayRef< uint8_t > getRegisterCosts(const MachineFunction &MF) const
Get a list of cost values for all registers that correspond to the index returned by RegisterCostTabl...
virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC, unsigned DefSubReg, const TargetRegisterClass *SrcRC, unsigned SrcSubReg) const
virtual bool isGeneralPurposeRegister(const MachineFunction &MF, MCRegister PhysReg) const
Returns true if PhysReg is a general purpose register.
virtual ArrayRef< const uint32_t * > getRegMasks() const =0
Return all the call-preserved register masks defined for this target.
LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA, LaneBitmask LaneMask) const
Transform a lanemask given for a virtual register to the corresponding lanemask before using subregis...
regclass_iterator regclass_begin() const
Register class iterators.
virtual unsigned getRegPressureSetScore(const MachineFunction &MF, unsigned PSetID) const
Return a heuristic for the machine scheduler to compare the profitability of increasing one register ...
virtual bool doesRegClassHavePseudoInitUndef(const TargetRegisterClass *RC) const
Returns if the architecture being targeted has the required Pseudo Instructions for initializing the ...
unsigned getNumRegClasses() const
virtual const int * getRegClassPressureSets(const TargetRegisterClass *RC) const =0
Get the dimensions of register pressure impacted by this register class.
virtual const RegClassWeight & getRegClassWeight(const TargetRegisterClass *RC) const =0
Get the weight in units of pressure for this register class.
virtual ArrayRef< MCPhysReg > getIntraCallClobberedRegs(const MachineFunction *MF) const
Return a list of all of the registers which are clobbered "inside" a call to the given function.
virtual bool reverseLocalAssignment() const
Allow the target to reverse allocation order of local live ranges.
bool hasRegUnit(MCRegister Reg, Register RegUnit) const
Returns true if Reg contains RegUnit.
virtual bool isNonallocatableRegisterCalleeSave(MCRegister Reg) const
Some targets have non-allocatable registers that aren't technically part of the explicit callee saved...
vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const
Loop over all of the value types that can be represented by values in the given register class.
virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC, MachineFunction &MF) const
Return the register pressure "high water mark" for the specific register class.
LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const
Return a bitmask representing the parts of a register that are covered by SubIdx.
bool checkAllSuperRegsMarked(const BitVector &RegisterSet, ArrayRef< MCPhysReg > Exceptions=ArrayRef< MCPhysReg >()) const
Returns true if for every register in the set all super registers are part of the set as well.
virtual const TargetRegisterClass * getLargestLegalSuperClass(const TargetRegisterClass *RC, const MachineFunction &) const
Returns the largest super class of RC that is legal to use in the current sub-target and has the same...
virtual BitVector getReservedRegs(const MachineFunction &MF) const =0
Returns a bitset indexed by physical register number indicating if a register is a special register t...
const RegClassInfo & getRegClassInfo(const TargetRegisterClass &RC) const
virtual const uint32_t * getNoPreservedMask() const
Return a register mask that clobbers everything.
virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const
Returns true if the live-ins should be tracked after register allocation.
virtual bool isArgumentRegister(const MachineFunction &MF, MCRegister PhysReg) const
Returns true if PhysReg can be used as an argument to a function.
Align getSpillAlign(const TargetRegisterClass &RC) const
Return the minimum required alignment in bytes for a spill slot for a register of this class.
virtual const TargetRegisterClass * getSubRegisterClass(const TargetRegisterClass *SuperRC, unsigned SubRegIdx) const
Return a register class that can be used for a subregister copy from/into SuperRC at SubRegIdx.
virtual unsigned getRegPressureSetLimit(const MachineFunction &MF, unsigned Idx) const =0
Get the register unit pressure limit for this dimension.
virtual bool requiresFrameIndexReplacementScavenging(const MachineFunction &MF) const
Returns true if the target requires using the RegScavenger directly for frame elimination despite usi...
virtual bool eliminateFrameIndex(MachineBasicBlock::iterator MI, int SPAdj, unsigned FIOperandNum, RegScavenger *RS=nullptr) const =0
This method must be overriden to eliminate abstract frame indices from instructions which may use the...
virtual bool requiresRegisterScavenging(const MachineFunction &MF) const
Returns true if the target requires (and can make use of) the register scavenger.
const TargetRegisterClass * getAllocatableClass(const TargetRegisterClass *RC) const
Return the maximal subclass of the given register class that is allocatable or NULL.
regclass_iterator regclass_end() const
LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA, LaneBitmask Mask) const
Transforms a LaneMask computed for one subregister to the lanemask that would have been computed when...
virtual Register lookThruCopyLike(Register SrcReg, const MachineRegisterInfo *MRI) const
Returns the original SrcReg unless it is the target of a copy-like operation, in which case we chain ...
bool hasStackRealignment(const MachineFunction &MF) const
True if stack realignment is required and still possible.
const TargetRegisterClass * getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, const TargetRegisterClass *RCB, unsigned SubB, unsigned &PreA, unsigned &PreB) const
Find a common super-register class if it exists.
virtual bool shouldAnalyzePhysregInMachineLoopInfo(MCRegister R) const
Returns true if MachineLoopInfo should analyze the given physreg for loop invariance.
virtual bool saveScavengerRegister(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, MachineBasicBlock::iterator &UseMI, const TargetRegisterClass *RC, Register Reg) const
Spill the register so it can be used by the register scavenger.
unsigned getSubRegIdxSize(unsigned Idx) const
Get the size of the bit range covered by a sub-register index.
MCRegister getMatchingSuperReg(MCRegister Reg, unsigned SubIdx, const TargetRegisterClass *RC) const
Return a super-register of the specified register Reg so its sub-register of index SubIdx is Reg.
virtual bool isCallerPreservedPhysReg(MCRegister PhysReg, const MachineFunction &MF) const
Physical registers that may be modified within a function but are guaranteed to be restored before an...
virtual bool hasReservedSpillSlot(const MachineFunction &MF, Register Reg, int &FrameIdx) const
Return true if target has reserved a spill slot in the stack frame of the given function for the spec...
static void dumpReg(Register Reg, unsigned SubRegIndex=0, const TargetRegisterInfo *TRI=nullptr)
Debugging helper: dump register in human readable form to dbgs() stream.
virtual void resolveFrameIndex(MachineInstr &MI, Register BaseReg, int64_t Offset) const
Resolve a frame index operand of an instruction to reference the indicated base register plus offset ...
virtual unsigned getRegUnitWeight(unsigned RegUnit) const =0
Get the weight in units of pressure for this register unit.
MCRegister getSubReg(MCRegister Reg, unsigned Idx) const
Returns the physical register number of sub-register "Index" for physical register RegNo.
virtual bool isDivergentRegClass(const TargetRegisterClass *RC) const
Returns true if the register class is considered divergent.
virtual Register materializeFrameBaseRegister(MachineBasicBlock *MBB, int FrameIdx, int64_t Offset) const
Insert defining instruction(s) for a pointer to FrameIdx before insertion point I.
bool regsOverlap(Register RegA, Register RegB) const
Returns true if the two registers are equal or alias each other.
virtual bool shouldRealignStack(const MachineFunction &MF) const
True if storage within the function requires the stack pointer to be aligned more than the normal cal...
virtual unsigned getNumSupportedRegs(const MachineFunction &) const
Return the number of registers for the function. (may overestimate)
virtual ArrayRef< const char * > getRegMaskNames() const =0
virtual bool isFixedRegister(const MachineFunction &MF, MCRegister PhysReg) const
Returns true if PhysReg is a fixed register.
DIExpression * prependOffsetExpression(const DIExpression *Expr, unsigned PrependFlags, const StackOffset &Offset) const
Prepends a DWARF expression for Offset to DIExpression Expr.
virtual const TargetRegisterClass * getConstrainedRegClassForOperand(const MachineOperand &MO, const MachineRegisterInfo &MRI) const
unsigned getSpillSize(const TargetRegisterClass &RC) const
Return the size in bytes of the stack slot allocated to hold a spilled copy of a register from class ...
virtual StringRef getRegAsmName(MCRegister Reg) const
Return the assembly name for Reg.
virtual const MCPhysReg * getCalleeSavedRegs(const MachineFunction *MF) const =0
Return a null-terminated list of all of the callee-saved registers on this target.
virtual bool isCalleeSavedPhysReg(MCRegister PhysReg, const MachineFunction &MF) const
This is a wrapper around getCallPreservedMask().
virtual const TargetRegisterClass * getLargestSuperClass(const TargetRegisterClass *RC) const
Returns the Largest Super Class that is being initialized.
bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const
Return true if the given TargetRegisterClass has the ValueType T.
virtual unsigned getRegisterCostTableIndex(const MachineFunction &MF) const
Return the register cost table index.
virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const
Returns true if the instruction's frame index reference would be better served by a base register oth...
unsigned getSubRegIdxOffset(unsigned Idx) const
Get the offset of the bit range covered by a sub-register index.
virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const
Overridden by TableGen in targets that have sub-registers.
bool getCoveringSubRegIndexes(const MachineRegisterInfo &MRI, const TargetRegisterClass *RC, LaneBitmask LaneMask, SmallVectorImpl< unsigned > &Indexes) const
Try to find one or more subregister indexes to cover LaneMask.
virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const
Prior to adding the live-out mask to a stackmap or patchpoint instruction, provide the target the opp...
virtual bool shouldCoalesce(MachineInstr *MI, const TargetRegisterClass *SrcRC, unsigned SubReg, const TargetRegisterClass *DstRC, unsigned DstSubReg, const TargetRegisterClass *NewRC, LiveIntervals &LIS) const
Subtarget Hooks.
virtual Register getFrameRegister(const MachineFunction &MF) const =0
Debug information queries.
const char * getRegClassName(const TargetRegisterClass *Class) const
Returns the name of the register class.
virtual const TargetRegisterClass * getMatchingSuperRegClass(const TargetRegisterClass *A, const TargetRegisterClass *B, unsigned Idx) const
Return a subclass of the specified register class A so that each register in it has a sub-register of...
virtual void getOffsetOpcodes(const StackOffset &Offset, SmallVectorImpl< uint64_t > &Ops) const
Gets the DWARF expression opcodes for Offset.
virtual bool regClassPriorityTrumpsGlobalness(const MachineFunction &MF) const
When prioritizing live ranges in register allocation, if this hook returns true then the AllocationPr...
bool isInAllocatableClass(MCRegister RegNo) const
Return true if the register is in the allocation of any register class.
BitVector getAllocatableSet(const MachineFunction &MF, const TargetRegisterClass *RC=nullptr) const
Returns a bitset indexed by register number indicating if a register is allocatable or not.
virtual void updateRegAllocHint(Register Reg, Register NewReg, MachineFunction &MF) const
A callback to allow target a chance to update register allocation hints when a register is "changed" ...
virtual bool getRegAllocationHints(Register VirtReg, ArrayRef< MCPhysReg > Order, SmallVectorImpl< MCPhysReg > &Hints, const MachineFunction &MF, const VirtRegMap *VRM=nullptr, const LiveRegMatrix *Matrix=nullptr) const
Get a list of 'hint' registers that the register allocator should try first when allocating a physica...
virtual const TargetRegisterClass * getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const
Returns a TargetRegisterClass used for pointer values.
virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const
Returns true if the target wants the LocalStackAllocation pass to be run and virtual base registers u...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition: TypeSize.h:330
A range adaptor for a pair of iterators.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:456
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI)
Create Printable object to print register units on a raw_ostream.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition: bit.h:215
Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI)
Create Printable object to print virtual registers and physical registers on a raw_ostream.
Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo, const TargetRegisterInfo *TRI)
Create Printable object to print register classes or register banks on a raw_ostream.
Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Each TargetRegisterClass has a per register weight, and weight limit which must be less than the limi...
Extra information, not in MCRegisterDesc, about registers.
SubRegCoveredBits - Emitted by tablegen: bit range covered by a subreg index, -1 in any being invalid...
unsigned operator()(Register Reg) const