LLVM 19.0.0git
X86ExpandPseudo.cpp
Go to the documentation of this file.
1//===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains a pass that expands pseudo instructions into target
10// instructions to allow proper scheduling, if-conversion, other late
11// optimizations, or simply the encoding of the instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86FrameLowering.h"
17#include "X86InstrBuilder.h"
18#include "X86InstrInfo.h"
20#include "X86Subtarget.h"
24#include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved.
26#include "llvm/IR/GlobalValue.h"
28using namespace llvm;
29
30#define DEBUG_TYPE "x86-pseudo"
31#define X86_EXPAND_PSEUDO_NAME "X86 pseudo instruction expansion pass"
32
33namespace {
34class X86ExpandPseudo : public MachineFunctionPass {
35public:
36 static char ID;
37 X86ExpandPseudo() : MachineFunctionPass(ID) {}
38
39 void getAnalysisUsage(AnalysisUsage &AU) const override {
40 AU.setPreservesCFG();
44 }
45
46 const X86Subtarget *STI = nullptr;
47 const X86InstrInfo *TII = nullptr;
48 const X86RegisterInfo *TRI = nullptr;
49 const X86MachineFunctionInfo *X86FI = nullptr;
50 const X86FrameLowering *X86FL = nullptr;
51
52 bool runOnMachineFunction(MachineFunction &MF) override;
53
56 MachineFunctionProperties::Property::NoVRegs);
57 }
58
59 StringRef getPassName() const override {
60 return "X86 pseudo instruction expansion pass";
61 }
62
63private:
64 void expandICallBranchFunnel(MachineBasicBlock *MBB,
66 void expandCALL_RVMARKER(MachineBasicBlock &MBB,
69 bool expandMBB(MachineBasicBlock &MBB);
70
71 /// This function expands pseudos which affects control flow.
72 /// It is done in separate pass to simplify blocks navigation in main
73 /// pass(calling expandMBB).
74 bool expandPseudosWhichAffectControlFlow(MachineFunction &MF);
75
76 /// Expand X86::VASTART_SAVE_XMM_REGS into set of xmm copying instructions,
77 /// placed into separate block guarded by check for al register(for SystemV
78 /// abi).
79 void expandVastartSaveXmmRegs(
80 MachineBasicBlock *EntryBlk,
81 MachineBasicBlock::iterator VAStartPseudoInstr) const;
82};
83char X86ExpandPseudo::ID = 0;
84
85} // End anonymous namespace.
86
88 false)
89
90void X86ExpandPseudo::expandICallBranchFunnel(
92 MachineBasicBlock *JTMBB = MBB;
93 MachineInstr *JTInst = &*MBBI;
95 const BasicBlock *BB = MBB->getBasicBlock();
96 auto InsPt = MachineFunction::iterator(MBB);
97 ++InsPt;
98
99 std::vector<std::pair<MachineBasicBlock *, unsigned>> TargetMBBs;
100 const DebugLoc &DL = JTInst->getDebugLoc();
101 MachineOperand Selector = JTInst->getOperand(0);
102 const GlobalValue *CombinedGlobal = JTInst->getOperand(1).getGlobal();
103
104 auto CmpTarget = [&](unsigned Target) {
105 if (Selector.isReg())
106 MBB->addLiveIn(Selector.getReg());
107 BuildMI(*MBB, MBBI, DL, TII->get(X86::LEA64r), X86::R11)
108 .addReg(X86::RIP)
109 .addImm(1)
110 .addReg(0)
111 .addGlobalAddress(CombinedGlobal,
112 JTInst->getOperand(2 + 2 * Target).getImm())
113 .addReg(0);
114 BuildMI(*MBB, MBBI, DL, TII->get(X86::CMP64rr))
115 .add(Selector)
116 .addReg(X86::R11);
117 };
118
119 auto CreateMBB = [&]() {
120 auto *NewMBB = MF->CreateMachineBasicBlock(BB);
121 MBB->addSuccessor(NewMBB);
122 if (!MBB->isLiveIn(X86::EFLAGS))
123 MBB->addLiveIn(X86::EFLAGS);
124 return NewMBB;
125 };
126
127 auto EmitCondJump = [&](unsigned CC, MachineBasicBlock *ThenMBB) {
128 BuildMI(*MBB, MBBI, DL, TII->get(X86::JCC_1)).addMBB(ThenMBB).addImm(CC);
129
130 auto *ElseMBB = CreateMBB();
131 MF->insert(InsPt, ElseMBB);
132 MBB = ElseMBB;
133 MBBI = MBB->end();
134 };
135
136 auto EmitCondJumpTarget = [&](unsigned CC, unsigned Target) {
137 auto *ThenMBB = CreateMBB();
138 TargetMBBs.push_back({ThenMBB, Target});
139 EmitCondJump(CC, ThenMBB);
140 };
141
142 auto EmitTailCall = [&](unsigned Target) {
143 BuildMI(*MBB, MBBI, DL, TII->get(X86::TAILJMPd64))
144 .add(JTInst->getOperand(3 + 2 * Target));
145 };
146
147 std::function<void(unsigned, unsigned)> EmitBranchFunnel =
148 [&](unsigned FirstTarget, unsigned NumTargets) {
149 if (NumTargets == 1) {
150 EmitTailCall(FirstTarget);
151 return;
152 }
153
154 if (NumTargets == 2) {
155 CmpTarget(FirstTarget + 1);
156 EmitCondJumpTarget(X86::COND_B, FirstTarget);
157 EmitTailCall(FirstTarget + 1);
158 return;
159 }
160
161 if (NumTargets < 6) {
162 CmpTarget(FirstTarget + 1);
163 EmitCondJumpTarget(X86::COND_B, FirstTarget);
164 EmitCondJumpTarget(X86::COND_E, FirstTarget + 1);
165 EmitBranchFunnel(FirstTarget + 2, NumTargets - 2);
166 return;
167 }
168
169 auto *ThenMBB = CreateMBB();
170 CmpTarget(FirstTarget + (NumTargets / 2));
171 EmitCondJump(X86::COND_B, ThenMBB);
172 EmitCondJumpTarget(X86::COND_E, FirstTarget + (NumTargets / 2));
173 EmitBranchFunnel(FirstTarget + (NumTargets / 2) + 1,
174 NumTargets - (NumTargets / 2) - 1);
175
176 MF->insert(InsPt, ThenMBB);
177 MBB = ThenMBB;
178 MBBI = MBB->end();
179 EmitBranchFunnel(FirstTarget, NumTargets / 2);
180 };
181
182 EmitBranchFunnel(0, (JTInst->getNumOperands() - 2) / 2);
183 for (auto P : TargetMBBs) {
184 MF->insert(InsPt, P.first);
185 BuildMI(P.first, DL, TII->get(X86::TAILJMPd64))
186 .add(JTInst->getOperand(3 + 2 * P.second));
187 }
188 JTMBB->erase(JTInst);
189}
190
191void X86ExpandPseudo::expandCALL_RVMARKER(MachineBasicBlock &MBB,
193 // Expand CALL_RVMARKER pseudo to call instruction, followed by the special
194 //"movq %rax, %rdi" marker.
195 MachineInstr &MI = *MBBI;
196
197 MachineInstr *OriginalCall;
198 assert((MI.getOperand(1).isGlobal() || MI.getOperand(1).isReg()) &&
199 "invalid operand for regular call");
200 unsigned Opc = -1;
201 if (MI.getOpcode() == X86::CALL64m_RVMARKER)
202 Opc = X86::CALL64m;
203 else if (MI.getOpcode() == X86::CALL64r_RVMARKER)
204 Opc = X86::CALL64r;
205 else if (MI.getOpcode() == X86::CALL64pcrel32_RVMARKER)
206 Opc = X86::CALL64pcrel32;
207 else
208 llvm_unreachable("unexpected opcode");
209
210 OriginalCall = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc)).getInstr();
211 bool RAXImplicitDead = false;
212 for (MachineOperand &Op : llvm::drop_begin(MI.operands())) {
213 // RAX may be 'implicit dead', if there are no other users of the return
214 // value. We introduce a new use, so change it to 'implicit def'.
215 if (Op.isReg() && Op.isImplicit() && Op.isDead() &&
216 TRI->regsOverlap(Op.getReg(), X86::RAX)) {
217 Op.setIsDead(false);
218 Op.setIsDef(true);
219 RAXImplicitDead = true;
220 }
221 OriginalCall->addOperand(Op);
222 }
223
224 // Emit marker "movq %rax, %rdi". %rdi is not callee-saved, so it cannot be
225 // live across the earlier call. The call to the ObjC runtime function returns
226 // the first argument, so the value of %rax is unchanged after the ObjC
227 // runtime call. On Windows targets, the runtime call follows the regular
228 // x64 calling convention and expects the first argument in %rcx.
229 auto TargetReg = STI->getTargetTriple().isOSWindows() ? X86::RCX : X86::RDI;
230 auto *Marker = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::MOV64rr))
231 .addReg(TargetReg, RegState::Define)
232 .addReg(X86::RAX)
233 .getInstr();
234 if (MI.shouldUpdateCallSiteInfo())
235 MBB.getParent()->moveCallSiteInfo(&MI, Marker);
236
237 // Emit call to ObjC runtime.
238 const uint32_t *RegMask =
239 TRI->getCallPreservedMask(*MBB.getParent(), CallingConv::C);
240 MachineInstr *RtCall =
241 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::CALL64pcrel32))
242 .addGlobalAddress(MI.getOperand(0).getGlobal(), 0, 0)
243 .addRegMask(RegMask)
244 .addReg(X86::RAX,
246 (RAXImplicitDead ? (RegState::Dead | RegState::Define)
248 .getInstr();
249 MI.eraseFromParent();
250
251 auto &TM = MBB.getParent()->getTarget();
252 // On Darwin platforms, wrap the expanded sequence in a bundle to prevent
253 // later optimizations from breaking up the sequence.
254 if (TM.getTargetTriple().isOSDarwin())
255 finalizeBundle(MBB, OriginalCall->getIterator(),
256 std::next(RtCall->getIterator()));
257}
258
259/// If \p MBBI is a pseudo instruction, this method expands
260/// it to the corresponding (sequence of) actual instruction(s).
261/// \returns true if \p MBBI has been expanded.
262bool X86ExpandPseudo::expandMI(MachineBasicBlock &MBB,
264 MachineInstr &MI = *MBBI;
265 unsigned Opcode = MI.getOpcode();
266 const DebugLoc &DL = MBBI->getDebugLoc();
267#define GET_EGPR_IF_ENABLED(OPC) (STI->hasEGPR() ? OPC##_EVEX : OPC)
268 switch (Opcode) {
269 default:
270 return false;
271 case X86::TCRETURNdi:
272 case X86::TCRETURNdicc:
273 case X86::TCRETURNri:
274 case X86::TCRETURNmi:
275 case X86::TCRETURNdi64:
276 case X86::TCRETURNdi64cc:
277 case X86::TCRETURNri64:
278 case X86::TCRETURNmi64: {
279 bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64;
280 MachineOperand &JumpTarget = MBBI->getOperand(0);
281 MachineOperand &StackAdjust = MBBI->getOperand(isMem ? X86::AddrNumOperands
282 : 1);
283 assert(StackAdjust.isImm() && "Expecting immediate value.");
284
285 // Adjust stack pointer.
286 int StackAdj = StackAdjust.getImm();
287 int MaxTCDelta = X86FI->getTCReturnAddrDelta();
288 int Offset = 0;
289 assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
290
291 // Incoporate the retaddr area.
292 Offset = StackAdj - MaxTCDelta;
293 assert(Offset >= 0 && "Offset should never be negative");
294
295 if (Opcode == X86::TCRETURNdicc || Opcode == X86::TCRETURNdi64cc) {
296 assert(Offset == 0 && "Conditional tail call cannot adjust the stack.");
297 }
298
299 if (Offset) {
300 // Check for possible merge with preceding ADD instruction.
301 Offset += X86FL->mergeSPUpdates(MBB, MBBI, true);
302 X86FL->emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue=*/true);
303 }
304
305 // Jump to label or value in register.
306 bool IsWin64 = STI->isTargetWin64();
307 if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdicc ||
308 Opcode == X86::TCRETURNdi64 || Opcode == X86::TCRETURNdi64cc) {
309 unsigned Op;
310 switch (Opcode) {
311 case X86::TCRETURNdi:
312 Op = X86::TAILJMPd;
313 break;
314 case X86::TCRETURNdicc:
315 Op = X86::TAILJMPd_CC;
316 break;
317 case X86::TCRETURNdi64cc:
319 "Conditional tail calls confuse "
320 "the Win64 unwinder.");
321 Op = X86::TAILJMPd64_CC;
322 break;
323 default:
324 // Note: Win64 uses REX prefixes indirect jumps out of functions, but
325 // not direct ones.
326 Op = X86::TAILJMPd64;
327 break;
328 }
329 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
330 if (JumpTarget.isGlobal()) {
331 MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
332 JumpTarget.getTargetFlags());
333 } else {
334 assert(JumpTarget.isSymbol());
335 MIB.addExternalSymbol(JumpTarget.getSymbolName(),
336 JumpTarget.getTargetFlags());
337 }
338 if (Op == X86::TAILJMPd_CC || Op == X86::TAILJMPd64_CC) {
339 MIB.addImm(MBBI->getOperand(2).getImm());
340 }
341
342 } else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) {
343 unsigned Op = (Opcode == X86::TCRETURNmi)
344 ? X86::TAILJMPm
345 : (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64);
346 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
347 for (unsigned i = 0; i != X86::AddrNumOperands; ++i)
348 MIB.add(MBBI->getOperand(i));
349 } else if (Opcode == X86::TCRETURNri64) {
350 JumpTarget.setIsKill();
351 BuildMI(MBB, MBBI, DL,
352 TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64))
353 .add(JumpTarget);
354 } else {
355 JumpTarget.setIsKill();
356 BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr))
357 .add(JumpTarget);
358 }
359
360 MachineInstr &NewMI = *std::prev(MBBI);
361 NewMI.copyImplicitOps(*MBBI->getParent()->getParent(), *MBBI);
362 NewMI.setCFIType(*MBB.getParent(), MI.getCFIType());
363
364 // Update the call site info.
365 if (MBBI->isCandidateForCallSiteEntry())
366 MBB.getParent()->moveCallSiteInfo(&*MBBI, &NewMI);
367
368 // Delete the pseudo instruction TCRETURN.
369 MBB.erase(MBBI);
370
371 return true;
372 }
373 case X86::EH_RETURN:
374 case X86::EH_RETURN64: {
375 MachineOperand &DestAddr = MBBI->getOperand(0);
376 assert(DestAddr.isReg() && "Offset should be in register!");
377 const bool Uses64BitFramePtr =
378 STI->isTarget64BitLP64() || STI->isTargetNaCl64();
379 Register StackPtr = TRI->getStackRegister();
380 BuildMI(MBB, MBBI, DL,
381 TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr)
382 .addReg(DestAddr.getReg());
383 // The EH_RETURN pseudo is really removed during the MC Lowering.
384 return true;
385 }
386 case X86::IRET: {
387 // Adjust stack to erase error code
388 int64_t StackAdj = MBBI->getOperand(0).getImm();
389 X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, true);
390 // Replace pseudo with machine iret
391 unsigned RetOp = STI->is64Bit() ? X86::IRET64 : X86::IRET32;
392 // Use UIRET if UINTR is present (except for building kernel)
393 if (STI->is64Bit() && STI->hasUINTR() &&
395 RetOp = X86::UIRET;
396 BuildMI(MBB, MBBI, DL, TII->get(RetOp));
397 MBB.erase(MBBI);
398 return true;
399 }
400 case X86::RET: {
401 // Adjust stack to erase error code
402 int64_t StackAdj = MBBI->getOperand(0).getImm();
404 if (StackAdj == 0) {
405 MIB = BuildMI(MBB, MBBI, DL,
406 TII->get(STI->is64Bit() ? X86::RET64 : X86::RET32));
407 } else if (isUInt<16>(StackAdj)) {
408 MIB = BuildMI(MBB, MBBI, DL,
409 TII->get(STI->is64Bit() ? X86::RETI64 : X86::RETI32))
410 .addImm(StackAdj);
411 } else {
412 assert(!STI->is64Bit() &&
413 "shouldn't need to do this for x86_64 targets!");
414 // A ret can only handle immediates as big as 2**16-1. If we need to pop
415 // off bytes before the return address, we must do it manually.
416 BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r)).addReg(X86::ECX, RegState::Define);
417 X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, /*InEpilogue=*/true);
418 BuildMI(MBB, MBBI, DL, TII->get(X86::PUSH32r)).addReg(X86::ECX);
419 MIB = BuildMI(MBB, MBBI, DL, TII->get(X86::RET32));
420 }
421 for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I)
422 MIB.add(MBBI->getOperand(I));
423 MBB.erase(MBBI);
424 return true;
425 }
426 case X86::LCMPXCHG16B_SAVE_RBX: {
427 // Perform the following transformation.
428 // SaveRbx = pseudocmpxchg Addr, <4 opds for the address>, InArg, SaveRbx
429 // =>
430 // RBX = InArg
431 // actualcmpxchg Addr
432 // RBX = SaveRbx
433 const MachineOperand &InArg = MBBI->getOperand(6);
434 Register SaveRbx = MBBI->getOperand(7).getReg();
435
436 // Copy the input argument of the pseudo into the argument of the
437 // actual instruction.
438 // NOTE: We don't copy the kill flag since the input might be the same reg
439 // as one of the other operands of LCMPXCHG16B.
440 TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, InArg.getReg(), false);
441 // Create the actual instruction.
442 MachineInstr *NewInstr = BuildMI(MBB, MBBI, DL, TII->get(X86::LCMPXCHG16B));
443 // Copy the operands related to the address.
444 for (unsigned Idx = 1; Idx < 6; ++Idx)
445 NewInstr->addOperand(MBBI->getOperand(Idx));
446 // Finally, restore the value of RBX.
447 TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx,
448 /*SrcIsKill*/ true);
449
450 // Delete the pseudo.
452 return true;
453 }
454 // Loading/storing mask pairs requires two kmov operations. The second one of
455 // these needs a 2 byte displacement relative to the specified address (with
456 // 32 bit spill size). The pairs of 1bit masks up to 16 bit masks all use the
457 // same spill size, they all are stored using MASKPAIR16STORE, loaded using
458 // MASKPAIR16LOAD.
459 //
460 // The displacement value might wrap around in theory, thus the asserts in
461 // both cases.
462 case X86::MASKPAIR16LOAD: {
463 int64_t Disp = MBBI->getOperand(1 + X86::AddrDisp).getImm();
464 assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
465 Register Reg = MBBI->getOperand(0).getReg();
466 bool DstIsDead = MBBI->getOperand(0).isDead();
467 Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
468 Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
469
470 auto MIBLo =
471 BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWkm)))
472 .addReg(Reg0, RegState::Define | getDeadRegState(DstIsDead));
473 auto MIBHi =
474 BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWkm)))
475 .addReg(Reg1, RegState::Define | getDeadRegState(DstIsDead));
476
477 for (int i = 0; i < X86::AddrNumOperands; ++i) {
478 MIBLo.add(MBBI->getOperand(1 + i));
479 if (i == X86::AddrDisp)
480 MIBHi.addImm(Disp + 2);
481 else
482 MIBHi.add(MBBI->getOperand(1 + i));
483 }
484
485 // Split the memory operand, adjusting the offset and size for the halves.
486 MachineMemOperand *OldMMO = MBBI->memoperands().front();
488 MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
489 MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
490
491 MIBLo.setMemRefs(MMOLo);
492 MIBHi.setMemRefs(MMOHi);
493
494 // Delete the pseudo.
495 MBB.erase(MBBI);
496 return true;
497 }
498 case X86::MASKPAIR16STORE: {
499 int64_t Disp = MBBI->getOperand(X86::AddrDisp).getImm();
500 assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
501 Register Reg = MBBI->getOperand(X86::AddrNumOperands).getReg();
502 bool SrcIsKill = MBBI->getOperand(X86::AddrNumOperands).isKill();
503 Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
504 Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
505
506 auto MIBLo =
507 BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWmk)));
508 auto MIBHi =
509 BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWmk)));
510
511 for (int i = 0; i < X86::AddrNumOperands; ++i) {
512 MIBLo.add(MBBI->getOperand(i));
513 if (i == X86::AddrDisp)
514 MIBHi.addImm(Disp + 2);
515 else
516 MIBHi.add(MBBI->getOperand(i));
517 }
518 MIBLo.addReg(Reg0, getKillRegState(SrcIsKill));
519 MIBHi.addReg(Reg1, getKillRegState(SrcIsKill));
520
521 // Split the memory operand, adjusting the offset and size for the halves.
522 MachineMemOperand *OldMMO = MBBI->memoperands().front();
524 MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
525 MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
526
527 MIBLo.setMemRefs(MMOLo);
528 MIBHi.setMemRefs(MMOHi);
529
530 // Delete the pseudo.
531 MBB.erase(MBBI);
532 return true;
533 }
534 case X86::MWAITX_SAVE_RBX: {
535 // Perform the following transformation.
536 // SaveRbx = pseudomwaitx InArg, SaveRbx
537 // =>
538 // [E|R]BX = InArg
539 // actualmwaitx
540 // [E|R]BX = SaveRbx
541 const MachineOperand &InArg = MBBI->getOperand(1);
542 // Copy the input argument of the pseudo into the argument of the
543 // actual instruction.
544 TII->copyPhysReg(MBB, MBBI, DL, X86::EBX, InArg.getReg(), InArg.isKill());
545 // Create the actual instruction.
546 BuildMI(MBB, MBBI, DL, TII->get(X86::MWAITXrrr));
547 // Finally, restore the value of RBX.
548 Register SaveRbx = MBBI->getOperand(2).getReg();
549 TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx, /*SrcIsKill*/ true);
550 // Delete the pseudo.
552 return true;
553 }
554 case TargetOpcode::ICALL_BRANCH_FUNNEL:
555 expandICallBranchFunnel(&MBB, MBBI);
556 return true;
557 case X86::PLDTILECFGV: {
558 MI.setDesc(TII->get(GET_EGPR_IF_ENABLED(X86::LDTILECFG)));
559 return true;
560 }
561 case X86::PTILELOADDV:
562 case X86::PTILELOADDT1V: {
563 for (unsigned i = 2; i > 0; --i)
564 MI.removeOperand(i);
565 unsigned Opc = Opcode == X86::PTILELOADDV
566 ? GET_EGPR_IF_ENABLED(X86::TILELOADD)
567 : GET_EGPR_IF_ENABLED(X86::TILELOADDT1);
568 MI.setDesc(TII->get(Opc));
569 return true;
570 }
571 case X86::PTCMMIMFP16PSV:
572 case X86::PTCMMRLFP16PSV:
573 case X86::PTDPBSSDV:
574 case X86::PTDPBSUDV:
575 case X86::PTDPBUSDV:
576 case X86::PTDPBUUDV:
577 case X86::PTDPBF16PSV:
578 case X86::PTDPFP16PSV: {
579 MI.untieRegOperand(4);
580 for (unsigned i = 3; i > 0; --i)
581 MI.removeOperand(i);
582 unsigned Opc;
583 switch (Opcode) {
584 case X86::PTCMMIMFP16PSV: Opc = X86::TCMMIMFP16PS; break;
585 case X86::PTCMMRLFP16PSV: Opc = X86::TCMMRLFP16PS; break;
586 case X86::PTDPBSSDV: Opc = X86::TDPBSSD; break;
587 case X86::PTDPBSUDV: Opc = X86::TDPBSUD; break;
588 case X86::PTDPBUSDV: Opc = X86::TDPBUSD; break;
589 case X86::PTDPBUUDV: Opc = X86::TDPBUUD; break;
590 case X86::PTDPBF16PSV: Opc = X86::TDPBF16PS; break;
591 case X86::PTDPFP16PSV: Opc = X86::TDPFP16PS; break;
592 default: llvm_unreachable("Impossible Opcode!");
593 }
594 MI.setDesc(TII->get(Opc));
595 MI.tieOperands(0, 1);
596 return true;
597 }
598 case X86::PTILESTOREDV: {
599 for (int i = 1; i >= 0; --i)
600 MI.removeOperand(i);
601 MI.setDesc(TII->get(GET_EGPR_IF_ENABLED(X86::TILESTORED)));
602 return true;
603 }
604#undef GET_EGPR_IF_ENABLED
605 case X86::PTILEZEROV: {
606 for (int i = 2; i > 0; --i) // Remove row, col
607 MI.removeOperand(i);
608 MI.setDesc(TII->get(X86::TILEZERO));
609 return true;
610 }
611 case X86::CALL64pcrel32_RVMARKER:
612 case X86::CALL64r_RVMARKER:
613 case X86::CALL64m_RVMARKER:
614 expandCALL_RVMARKER(MBB, MBBI);
615 return true;
616 case X86::ADD32mi_ND:
617 case X86::ADD64mi32_ND:
618 case X86::SUB32mi_ND:
619 case X86::SUB64mi32_ND:
620 case X86::AND32mi_ND:
621 case X86::AND64mi32_ND:
622 case X86::OR32mi_ND:
623 case X86::OR64mi32_ND:
624 case X86::XOR32mi_ND:
625 case X86::XOR64mi32_ND:
626 case X86::ADC32mi_ND:
627 case X86::ADC64mi32_ND:
628 case X86::SBB32mi_ND:
629 case X86::SBB64mi32_ND: {
630 // It's possible for an EVEX-encoded legacy instruction to reach the 15-byte
631 // instruction length limit: 4 bytes of EVEX prefix + 1 byte of opcode + 1
632 // byte of ModRM + 1 byte of SIB + 4 bytes of displacement + 4 bytes of
633 // immediate = 15 bytes in total, e.g.
634 //
635 // subq $184, %fs:257(%rbx, %rcx), %rax
636 //
637 // In such a case, no additional (ADSIZE or segment override) prefix can be
638 // used. To resolve the issue, we split the “long” instruction into 2
639 // instructions:
640 //
641 // movq %fs:257(%rbx, %rcx),%rax
642 // subq $184, %rax
643 //
644 // Therefore we consider the OPmi_ND to be a pseudo instruction to some
645 // extent.
646 const MachineOperand &ImmOp =
647 MI.getOperand(MI.getNumExplicitOperands() - 1);
648 // If the immediate is a expr, conservatively estimate 4 bytes.
649 if (ImmOp.isImm() && isInt<8>(ImmOp.getImm()))
650 return false;
651 int MemOpNo = X86::getFirstAddrOperandIdx(MI);
652 const MachineOperand &DispOp = MI.getOperand(MemOpNo + X86::AddrDisp);
653 Register Base = MI.getOperand(MemOpNo + X86::AddrBaseReg).getReg();
654 // If the displacement is a expr, conservatively estimate 4 bytes.
655 if (Base && DispOp.isImm() && isInt<8>(DispOp.getImm()))
656 return false;
657 // There can only be one of three: SIB, segment override register, ADSIZE
658 Register Index = MI.getOperand(MemOpNo + X86::AddrIndexReg).getReg();
659 unsigned Count = !!MI.getOperand(MemOpNo + X86::AddrSegmentReg).getReg();
660 if (X86II::needSIB(Base, Index, /*In64BitMode=*/true))
661 ++Count;
662 if (X86MCRegisterClasses[X86::GR32RegClassID].contains(Base) ||
663 X86MCRegisterClasses[X86::GR32RegClassID].contains(Index))
664 ++Count;
665 if (Count < 2)
666 return false;
667 unsigned Opc, LoadOpc;
668 switch (Opcode) {
669#define MI_TO_RI(OP) \
670 case X86::OP##32mi_ND: \
671 Opc = X86::OP##32ri; \
672 LoadOpc = X86::MOV32rm; \
673 break; \
674 case X86::OP##64mi32_ND: \
675 Opc = X86::OP##64ri32; \
676 LoadOpc = X86::MOV64rm; \
677 break;
678
679 default:
680 llvm_unreachable("Unexpected Opcode");
681 MI_TO_RI(ADD);
682 MI_TO_RI(SUB);
683 MI_TO_RI(AND);
684 MI_TO_RI(OR);
685 MI_TO_RI(XOR);
686 MI_TO_RI(ADC);
687 MI_TO_RI(SBB);
688#undef MI_TO_RI
689 }
690 // Insert OPri.
691 Register DestReg = MI.getOperand(0).getReg();
692 BuildMI(MBB, std::next(MBBI), DL, TII->get(Opc), DestReg)
693 .addReg(DestReg)
694 .add(ImmOp);
695 // Change OPmi_ND to MOVrm.
696 for (unsigned I = MI.getNumImplicitOperands() + 1; I != 0; --I)
697 MI.removeOperand(MI.getNumOperands() - 1);
698 MI.setDesc(TII->get(LoadOpc));
699 return true;
700 }
701 }
702 llvm_unreachable("Previous switch has a fallthrough?");
703}
704
705// This function creates additional block for storing varargs guarded
706// registers. It adds check for %al into entry block, to skip
707// GuardedRegsBlk if xmm registers should not be stored.
708//
709// EntryBlk[VAStartPseudoInstr] EntryBlk
710// | | .
711// | | .
712// | | GuardedRegsBlk
713// | => | .
714// | | .
715// | TailBlk
716// | |
717// | |
718//
719void X86ExpandPseudo::expandVastartSaveXmmRegs(
720 MachineBasicBlock *EntryBlk,
721 MachineBasicBlock::iterator VAStartPseudoInstr) const {
722 assert(VAStartPseudoInstr->getOpcode() == X86::VASTART_SAVE_XMM_REGS);
723
724 MachineFunction *Func = EntryBlk->getParent();
725 const TargetInstrInfo *TII = STI->getInstrInfo();
726 const DebugLoc &DL = VAStartPseudoInstr->getDebugLoc();
727 Register CountReg = VAStartPseudoInstr->getOperand(0).getReg();
728
729 // Calculate liveins for newly created blocks.
730 LivePhysRegs LiveRegs(*STI->getRegisterInfo());
732
733 LiveRegs.addLiveIns(*EntryBlk);
734 for (MachineInstr &MI : EntryBlk->instrs()) {
735 if (MI.getOpcode() == VAStartPseudoInstr->getOpcode())
736 break;
737
738 LiveRegs.stepForward(MI, Clobbers);
739 }
740
741 // Create the new basic blocks. One block contains all the XMM stores,
742 // and another block is the final destination regardless of whether any
743 // stores were performed.
744 const BasicBlock *LLVMBlk = EntryBlk->getBasicBlock();
745 MachineFunction::iterator EntryBlkIter = ++EntryBlk->getIterator();
746 MachineBasicBlock *GuardedRegsBlk = Func->CreateMachineBasicBlock(LLVMBlk);
747 MachineBasicBlock *TailBlk = Func->CreateMachineBasicBlock(LLVMBlk);
748 Func->insert(EntryBlkIter, GuardedRegsBlk);
749 Func->insert(EntryBlkIter, TailBlk);
750
751 // Transfer the remainder of EntryBlk and its successor edges to TailBlk.
752 TailBlk->splice(TailBlk->begin(), EntryBlk,
753 std::next(MachineBasicBlock::iterator(VAStartPseudoInstr)),
754 EntryBlk->end());
755 TailBlk->transferSuccessorsAndUpdatePHIs(EntryBlk);
756
757 uint64_t FrameOffset = VAStartPseudoInstr->getOperand(4).getImm();
758 uint64_t VarArgsRegsOffset = VAStartPseudoInstr->getOperand(6).getImm();
759
760 // TODO: add support for YMM and ZMM here.
761 unsigned MOVOpc = STI->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
762
763 // In the XMM save block, save all the XMM argument registers.
764 for (int64_t OpndIdx = 7, RegIdx = 0;
765 OpndIdx < VAStartPseudoInstr->getNumOperands() - 1;
766 OpndIdx++, RegIdx++) {
767 auto NewMI = BuildMI(GuardedRegsBlk, DL, TII->get(MOVOpc));
768 for (int i = 0; i < X86::AddrNumOperands; ++i) {
769 if (i == X86::AddrDisp)
770 NewMI.addImm(FrameOffset + VarArgsRegsOffset + RegIdx * 16);
771 else
772 NewMI.add(VAStartPseudoInstr->getOperand(i + 1));
773 }
774 NewMI.addReg(VAStartPseudoInstr->getOperand(OpndIdx).getReg());
775 assert(VAStartPseudoInstr->getOperand(OpndIdx).getReg().isPhysical());
776 }
777
778 // The original block will now fall through to the GuardedRegsBlk.
779 EntryBlk->addSuccessor(GuardedRegsBlk);
780 // The GuardedRegsBlk will fall through to the TailBlk.
781 GuardedRegsBlk->addSuccessor(TailBlk);
782
783 if (!STI->isCallingConvWin64(Func->getFunction().getCallingConv())) {
784 // If %al is 0, branch around the XMM save block.
785 BuildMI(EntryBlk, DL, TII->get(X86::TEST8rr))
786 .addReg(CountReg)
787 .addReg(CountReg);
788 BuildMI(EntryBlk, DL, TII->get(X86::JCC_1))
789 .addMBB(TailBlk)
791 EntryBlk->addSuccessor(TailBlk);
792 }
793
794 // Add liveins to the created block.
795 addLiveIns(*GuardedRegsBlk, LiveRegs);
796 addLiveIns(*TailBlk, LiveRegs);
797
798 // Delete the pseudo.
799 VAStartPseudoInstr->eraseFromParent();
800}
801
802/// Expand all pseudo instructions contained in \p MBB.
803/// \returns true if any expansion occurred for \p MBB.
804bool X86ExpandPseudo::expandMBB(MachineBasicBlock &MBB) {
805 bool Modified = false;
806
807 // MBBI may be invalidated by the expansion.
809 while (MBBI != E) {
810 MachineBasicBlock::iterator NMBBI = std::next(MBBI);
811 Modified |= expandMI(MBB, MBBI);
812 MBBI = NMBBI;
813 }
814
815 return Modified;
816}
817
818bool X86ExpandPseudo::expandPseudosWhichAffectControlFlow(MachineFunction &MF) {
819 // Currently pseudo which affects control flow is only
820 // X86::VASTART_SAVE_XMM_REGS which is located in Entry block.
821 // So we do not need to evaluate other blocks.
822 for (MachineInstr &Instr : MF.front().instrs()) {
823 if (Instr.getOpcode() == X86::VASTART_SAVE_XMM_REGS) {
824 expandVastartSaveXmmRegs(&(MF.front()), Instr);
825 return true;
826 }
827 }
828
829 return false;
830}
831
832bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
833 STI = &MF.getSubtarget<X86Subtarget>();
834 TII = STI->getInstrInfo();
835 TRI = STI->getRegisterInfo();
836 X86FI = MF.getInfo<X86MachineFunctionInfo>();
837 X86FL = STI->getFrameLowering();
838
839 bool Modified = expandPseudosWhichAffectControlFlow(MF);
840
841 for (MachineBasicBlock &MBB : MF)
842 Modified |= expandMBB(MBB);
843 return Modified;
844}
845
846/// Returns an instance of the pseudo instruction expansion pass.
848 return new X86ExpandPseudo();
849}
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
This file implements the LivePhysRegs utility for tracking liveness of physical registers.
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
#define P(N)
const char LLVMTargetMachineRef TM
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static Target * FirstTarget
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition: Value.cpp:469
#define MI_TO_RI(OP)
#define GET_EGPR_IF_ENABLED(OPC)
#define X86_EXPAND_PSEUDO_NAME
#define DEBUG_TYPE
Represent the analysis usage information of a pass.
AnalysisUsage & addPreservedID(const void *ID)
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:269
LLVM Basic Block Representation.
Definition: BasicBlock.h:60
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:311
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc) const override
Emit instructions to copy a pair of physical registers.
A set of physical registers with utility functions to track liveness when walking backward/forward th...
Definition: LivePhysRegs.h:52
void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
bool isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask=LaneBitmask::getAll()) const
Return true if the specified register is in the live in set.
void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
void eraseFromParent()
This method unlinks 'this' from the containing function and deletes it.
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
virtual MachineFunctionProperties getRequiredProperties() const
Properties which a MachineFunction may have at a given point in time.
MachineFunctionProperties & set(Property P)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
const LLVMTargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const MachineBasicBlock & front() const
void moveCallSiteInfo(const MachineInstr *Old, const MachineInstr *New)
Move the call site info from Old to \New call site info.
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineBasicBlock - Allocate a new MachineBasicBlock.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & addExternalSymbol(const char *FnName, unsigned TargetFlags=0) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addRegMask(const uint32_t *Mask) const
const MachineInstrBuilder & addGlobalAddress(const GlobalValue *GV, int64_t Offset=0, unsigned TargetFlags=0) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
Representation of each machine instruction.
Definition: MachineInstr.h:69
void setCFIType(MachineFunction &MF, uint32_t Type)
Set the CFI type for the instruction.
unsigned getNumOperands() const
Retuns the total number of operands.
Definition: MachineInstr.h:549
void addOperand(MachineFunction &MF, const MachineOperand &Op)
Add the specified operand to the instruction.
void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI)
Copy implicit register operands from specified instruction to this instruction.
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:475
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:556
A description of a memory reference used in the backend.
MachineOperand class - Representation of each machine instruction operand.
const GlobalValue * getGlobal() const
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
bool isSymbol() const
isSymbol - Tests if this is a MO_ExternalSymbol operand.
void setIsKill(bool Val=true)
unsigned getTargetFlags() const
bool isGlobal() const
isGlobal - Tests if this is a MO_GlobalAddress operand.
const char * getSymbolName() const
Register getReg() const
getReg - Returns the register number.
int64_t getOffset() const
Return the offset from the symbol in this operand.
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
TargetInstrInfo - Interface to description of machine instruction set.
CodeModel::Model getCodeModel() const
Returns the code model.
Target - Wrapper for Target specific information.
X86MachineFunctionInfo - This class is derived from MachineFunction and contains private X86 target-s...
self_iterator getIterator()
Definition: ilist_node.h:109
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Dead
Unused definition.
@ Define
Register definition.
@ X86
Windows x64, Windows Itanium (IA-64)
Reg
All possible values of the reg field in the ModR/M byte.
bool needSIB(unsigned BaseReg, unsigned IndexReg, bool In64BitMode)
Definition: X86BaseInfo.h:1334
int getFirstAddrOperandIdx(const MachineInstr &MI)
Return the index of the instruction's first address operand, if it has a memory reference,...
@ AddrSegmentReg
Definition: X86BaseInfo.h:34
@ AddrIndexReg
Definition: X86BaseInfo.h:31
@ AddrNumOperands
Definition: X86BaseInfo.h:36
NodeAddr< InstrNode * > Instr
Definition: RDFGraph.h:389
NodeAddr< FuncNode * > Func
Definition: RDFGraph.h:393
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
@ Offset
Definition: DWP.cpp:456
void finalizeBundle(MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
finalizeBundle - Finalize a machine instruction bundle which includes a sequence of instructions star...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
static bool isMem(const MachineInstr &MI, unsigned Op)
Definition: X86InstrInfo.h:158
unsigned getDeadRegState(bool B)
char & MachineDominatorsID
MachineDominators - This pass is a machine dominators analysis pass.
char & MachineLoopInfoID
MachineLoopInfo - This pass is a loop analysis pass.
FunctionPass * createX86ExpandPseudoPass()
Return a Machine IR pass that expands X86-specific pseudo instructions into a sequence of actual inst...
unsigned getKillRegState(bool B)
DWARFExpression::Operation Op
void addLiveIns(MachineBasicBlock &MBB, const LivePhysRegs &LiveRegs)
Adds registers contained in LiveRegs to the block live-in list of MBB.