LLVM  8.0.0svn
ConstantFolding.cpp
Go to the documentation of this file.
1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines routines for folding instructions into constants.
11 //
12 // Also, to supplement the basic IR ConstantExpr simplifications,
13 // this file defines some additional folding routines that can make use of
14 // DataLayout information. These functions cannot go in IR due to library
15 // dependency issues.
16 //
17 //===----------------------------------------------------------------------===//
18 
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
29 #include "llvm/Config/config.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/GlobalValue.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/KnownBits.h"
47 #include <cassert>
48 #include <cerrno>
49 #include <cfenv>
50 #include <cmath>
51 #include <cstddef>
52 #include <cstdint>
53 
54 using namespace llvm;
55 
56 namespace {
57 
58 //===----------------------------------------------------------------------===//
59 // Constant Folding internal helper functions
60 //===----------------------------------------------------------------------===//
61 
62 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
63  Constant *C, Type *SrcEltTy,
64  unsigned NumSrcElts,
65  const DataLayout &DL) {
66  // Now that we know that the input value is a vector of integers, just shift
67  // and insert them into our result.
68  unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
69  for (unsigned i = 0; i != NumSrcElts; ++i) {
70  Constant *Element;
71  if (DL.isLittleEndian())
72  Element = C->getAggregateElement(NumSrcElts - i - 1);
73  else
74  Element = C->getAggregateElement(i);
75 
76  if (Element && isa<UndefValue>(Element)) {
77  Result <<= BitShift;
78  continue;
79  }
80 
81  auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
82  if (!ElementCI)
83  return ConstantExpr::getBitCast(C, DestTy);
84 
85  Result <<= BitShift;
86  Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
87  }
88 
89  return nullptr;
90 }
91 
92 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
93 /// This always returns a non-null constant, but it may be a
94 /// ConstantExpr if unfoldable.
95 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
96  // Catch the obvious splat cases.
97  if (C->isNullValue() && !DestTy->isX86_MMXTy())
98  return Constant::getNullValue(DestTy);
99  if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
100  !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
101  return Constant::getAllOnesValue(DestTy);
102 
103  if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
104  // Handle a vector->scalar integer/fp cast.
105  if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
106  unsigned NumSrcElts = VTy->getNumElements();
107  Type *SrcEltTy = VTy->getElementType();
108 
109  // If the vector is a vector of floating point, convert it to vector of int
110  // to simplify things.
111  if (SrcEltTy->isFloatingPointTy()) {
112  unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
113  Type *SrcIVTy =
114  VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
115  // Ask IR to do the conversion now that #elts line up.
116  C = ConstantExpr::getBitCast(C, SrcIVTy);
117  }
118 
119  APInt Result(DL.getTypeSizeInBits(DestTy), 0);
120  if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
121  SrcEltTy, NumSrcElts, DL))
122  return CE;
123 
124  if (isa<IntegerType>(DestTy))
125  return ConstantInt::get(DestTy, Result);
126 
127  APFloat FP(DestTy->getFltSemantics(), Result);
128  return ConstantFP::get(DestTy->getContext(), FP);
129  }
130  }
131 
132  // The code below only handles casts to vectors currently.
133  auto *DestVTy = dyn_cast<VectorType>(DestTy);
134  if (!DestVTy)
135  return ConstantExpr::getBitCast(C, DestTy);
136 
137  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
138  // vector so the code below can handle it uniformly.
139  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
140  Constant *Ops = C; // don't take the address of C!
141  return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
142  }
143 
144  // If this is a bitcast from constant vector -> vector, fold it.
145  if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
146  return ConstantExpr::getBitCast(C, DestTy);
147 
148  // If the element types match, IR can fold it.
149  unsigned NumDstElt = DestVTy->getNumElements();
150  unsigned NumSrcElt = C->getType()->getVectorNumElements();
151  if (NumDstElt == NumSrcElt)
152  return ConstantExpr::getBitCast(C, DestTy);
153 
154  Type *SrcEltTy = C->getType()->getVectorElementType();
155  Type *DstEltTy = DestVTy->getElementType();
156 
157  // Otherwise, we're changing the number of elements in a vector, which
158  // requires endianness information to do the right thing. For example,
159  // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
160  // folds to (little endian):
161  // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
162  // and to (big endian):
163  // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
164 
165  // First thing is first. We only want to think about integer here, so if
166  // we have something in FP form, recast it as integer.
167  if (DstEltTy->isFloatingPointTy()) {
168  // Fold to an vector of integers with same size as our FP type.
169  unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
170  Type *DestIVTy =
171  VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
172  // Recursively handle this integer conversion, if possible.
173  C = FoldBitCast(C, DestIVTy, DL);
174 
175  // Finally, IR can handle this now that #elts line up.
176  return ConstantExpr::getBitCast(C, DestTy);
177  }
178 
179  // Okay, we know the destination is integer, if the input is FP, convert
180  // it to integer first.
181  if (SrcEltTy->isFloatingPointTy()) {
182  unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
183  Type *SrcIVTy =
184  VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
185  // Ask IR to do the conversion now that #elts line up.
186  C = ConstantExpr::getBitCast(C, SrcIVTy);
187  // If IR wasn't able to fold it, bail out.
188  if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
189  !isa<ConstantDataVector>(C))
190  return C;
191  }
192 
193  // Now we know that the input and output vectors are both integer vectors
194  // of the same size, and that their #elements is not the same. Do the
195  // conversion here, which depends on whether the input or output has
196  // more elements.
197  bool isLittleEndian = DL.isLittleEndian();
198 
200  if (NumDstElt < NumSrcElt) {
201  // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
202  Constant *Zero = Constant::getNullValue(DstEltTy);
203  unsigned Ratio = NumSrcElt/NumDstElt;
204  unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
205  unsigned SrcElt = 0;
206  for (unsigned i = 0; i != NumDstElt; ++i) {
207  // Build each element of the result.
208  Constant *Elt = Zero;
209  unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
210  for (unsigned j = 0; j != Ratio; ++j) {
211  Constant *Src = C->getAggregateElement(SrcElt++);
212  if (Src && isa<UndefValue>(Src))
214  else
215  Src = dyn_cast_or_null<ConstantInt>(Src);
216  if (!Src) // Reject constantexpr elements.
217  return ConstantExpr::getBitCast(C, DestTy);
218 
219  // Zero extend the element to the right size.
220  Src = ConstantExpr::getZExt(Src, Elt->getType());
221 
222  // Shift it to the right place, depending on endianness.
223  Src = ConstantExpr::getShl(Src,
224  ConstantInt::get(Src->getType(), ShiftAmt));
225  ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
226 
227  // Mix it in.
228  Elt = ConstantExpr::getOr(Elt, Src);
229  }
230  Result.push_back(Elt);
231  }
232  return ConstantVector::get(Result);
233  }
234 
235  // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
236  unsigned Ratio = NumDstElt/NumSrcElt;
237  unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
238 
239  // Loop over each source value, expanding into multiple results.
240  for (unsigned i = 0; i != NumSrcElt; ++i) {
241  auto *Element = C->getAggregateElement(i);
242 
243  if (!Element) // Reject constantexpr elements.
244  return ConstantExpr::getBitCast(C, DestTy);
245 
246  if (isa<UndefValue>(Element)) {
247  // Correctly Propagate undef values.
248  Result.append(Ratio, UndefValue::get(DstEltTy));
249  continue;
250  }
251 
252  auto *Src = dyn_cast<ConstantInt>(Element);
253  if (!Src)
254  return ConstantExpr::getBitCast(C, DestTy);
255 
256  unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
257  for (unsigned j = 0; j != Ratio; ++j) {
258  // Shift the piece of the value into the right place, depending on
259  // endianness.
260  Constant *Elt = ConstantExpr::getLShr(Src,
261  ConstantInt::get(Src->getType(), ShiftAmt));
262  ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
263 
264  // Truncate the element to an integer with the same pointer size and
265  // convert the element back to a pointer using a inttoptr.
266  if (DstEltTy->isPointerTy()) {
267  IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
268  Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
269  Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
270  continue;
271  }
272 
273  // Truncate and remember this piece.
274  Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
275  }
276  }
277 
278  return ConstantVector::get(Result);
279 }
280 
281 } // end anonymous namespace
282 
283 /// If this constant is a constant offset from a global, return the global and
284 /// the constant. Because of constantexprs, this function is recursive.
286  APInt &Offset, const DataLayout &DL) {
287  // Trivial case, constant is the global.
288  if ((GV = dyn_cast<GlobalValue>(C))) {
289  unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
290  Offset = APInt(BitWidth, 0);
291  return true;
292  }
293 
294  // Otherwise, if this isn't a constant expr, bail out.
295  auto *CE = dyn_cast<ConstantExpr>(C);
296  if (!CE) return false;
297 
298  // Look through ptr->int and ptr->ptr casts.
299  if (CE->getOpcode() == Instruction::PtrToInt ||
300  CE->getOpcode() == Instruction::BitCast)
301  return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
302 
303  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
304  auto *GEP = dyn_cast<GEPOperator>(CE);
305  if (!GEP)
306  return false;
307 
308  unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
309  APInt TmpOffset(BitWidth, 0);
310 
311  // If the base isn't a global+constant, we aren't either.
312  if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
313  return false;
314 
315  // Otherwise, add any offset that our operands provide.
316  if (!GEP->accumulateConstantOffset(DL, TmpOffset))
317  return false;
318 
319  Offset = TmpOffset;
320  return true;
321 }
322 
324  const DataLayout &DL) {
325  do {
326  Type *SrcTy = C->getType();
327 
328  // If the type sizes are the same and a cast is legal, just directly
329  // cast the constant.
330  if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
331  Instruction::CastOps Cast = Instruction::BitCast;
332  // If we are going from a pointer to int or vice versa, we spell the cast
333  // differently.
334  if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
335  Cast = Instruction::IntToPtr;
336  else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
337  Cast = Instruction::PtrToInt;
338 
339  if (CastInst::castIsValid(Cast, C, DestTy))
340  return ConstantExpr::getCast(Cast, C, DestTy);
341  }
342 
343  // If this isn't an aggregate type, there is nothing we can do to drill down
344  // and find a bitcastable constant.
345  if (!SrcTy->isAggregateType())
346  return nullptr;
347 
348  // We're simulating a load through a pointer that was bitcast to point to
349  // a different type, so we can try to walk down through the initial
350  // elements of an aggregate to see if some part of th e aggregate is
351  // castable to implement the "load" semantic model.
352  C = C->getAggregateElement(0u);
353  } while (C);
354 
355  return nullptr;
356 }
357 
358 namespace {
359 
360 /// Recursive helper to read bits out of global. C is the constant being copied
361 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
362 /// results into and BytesLeft is the number of bytes left in
363 /// the CurPtr buffer. DL is the DataLayout.
364 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
365  unsigned BytesLeft, const DataLayout &DL) {
366  assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
367  "Out of range access");
368 
369  // If this element is zero or undefined, we can just return since *CurPtr is
370  // zero initialized.
371  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
372  return true;
373 
374  if (auto *CI = dyn_cast<ConstantInt>(C)) {
375  if (CI->getBitWidth() > 64 ||
376  (CI->getBitWidth() & 7) != 0)
377  return false;
378 
379  uint64_t Val = CI->getZExtValue();
380  unsigned IntBytes = unsigned(CI->getBitWidth()/8);
381 
382  for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
383  int n = ByteOffset;
384  if (!DL.isLittleEndian())
385  n = IntBytes - n - 1;
386  CurPtr[i] = (unsigned char)(Val >> (n * 8));
387  ++ByteOffset;
388  }
389  return true;
390  }
391 
392  if (auto *CFP = dyn_cast<ConstantFP>(C)) {
393  if (CFP->getType()->isDoubleTy()) {
394  C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
395  return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
396  }
397  if (CFP->getType()->isFloatTy()){
398  C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
399  return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
400  }
401  if (CFP->getType()->isHalfTy()){
402  C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
403  return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
404  }
405  return false;
406  }
407 
408  if (auto *CS = dyn_cast<ConstantStruct>(C)) {
409  const StructLayout *SL = DL.getStructLayout(CS->getType());
410  unsigned Index = SL->getElementContainingOffset(ByteOffset);
411  uint64_t CurEltOffset = SL->getElementOffset(Index);
412  ByteOffset -= CurEltOffset;
413 
414  while (true) {
415  // If the element access is to the element itself and not to tail padding,
416  // read the bytes from the element.
417  uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
418 
419  if (ByteOffset < EltSize &&
420  !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
421  BytesLeft, DL))
422  return false;
423 
424  ++Index;
425 
426  // Check to see if we read from the last struct element, if so we're done.
427  if (Index == CS->getType()->getNumElements())
428  return true;
429 
430  // If we read all of the bytes we needed from this element we're done.
431  uint64_t NextEltOffset = SL->getElementOffset(Index);
432 
433  if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
434  return true;
435 
436  // Move to the next element of the struct.
437  CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
438  BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
439  ByteOffset = 0;
440  CurEltOffset = NextEltOffset;
441  }
442  // not reached.
443  }
444 
445  if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
446  isa<ConstantDataSequential>(C)) {
447  Type *EltTy = C->getType()->getSequentialElementType();
448  uint64_t EltSize = DL.getTypeAllocSize(EltTy);
449  uint64_t Index = ByteOffset / EltSize;
450  uint64_t Offset = ByteOffset - Index * EltSize;
451  uint64_t NumElts;
452  if (auto *AT = dyn_cast<ArrayType>(C->getType()))
453  NumElts = AT->getNumElements();
454  else
455  NumElts = C->getType()->getVectorNumElements();
456 
457  for (; Index != NumElts; ++Index) {
458  if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
459  BytesLeft, DL))
460  return false;
461 
462  uint64_t BytesWritten = EltSize - Offset;
463  assert(BytesWritten <= EltSize && "Not indexing into this element?");
464  if (BytesWritten >= BytesLeft)
465  return true;
466 
467  Offset = 0;
468  BytesLeft -= BytesWritten;
469  CurPtr += BytesWritten;
470  }
471  return true;
472  }
473 
474  if (auto *CE = dyn_cast<ConstantExpr>(C)) {
475  if (CE->getOpcode() == Instruction::IntToPtr &&
476  CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
477  return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
478  BytesLeft, DL);
479  }
480  }
481 
482  // Otherwise, unknown initializer type.
483  return false;
484 }
485 
486 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
487  const DataLayout &DL) {
488  auto *PTy = cast<PointerType>(C->getType());
489  auto *IntType = dyn_cast<IntegerType>(LoadTy);
490 
491  // If this isn't an integer load we can't fold it directly.
492  if (!IntType) {
493  unsigned AS = PTy->getAddressSpace();
494 
495  // If this is a float/double load, we can try folding it as an int32/64 load
496  // and then bitcast the result. This can be useful for union cases. Note
497  // that address spaces don't matter here since we're not going to result in
498  // an actual new load.
499  Type *MapTy;
500  if (LoadTy->isHalfTy())
501  MapTy = Type::getInt16Ty(C->getContext());
502  else if (LoadTy->isFloatTy())
503  MapTy = Type::getInt32Ty(C->getContext());
504  else if (LoadTy->isDoubleTy())
505  MapTy = Type::getInt64Ty(C->getContext());
506  else if (LoadTy->isVectorTy()) {
507  MapTy = PointerType::getIntNTy(C->getContext(),
508  DL.getTypeAllocSizeInBits(LoadTy));
509  } else
510  return nullptr;
511 
512  C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
513  if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL))
514  return FoldBitCast(Res, LoadTy, DL);
515  return nullptr;
516  }
517 
518  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
519  if (BytesLoaded > 32 || BytesLoaded == 0)
520  return nullptr;
521 
522  GlobalValue *GVal;
523  APInt OffsetAI;
524  if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
525  return nullptr;
526 
527  auto *GV = dyn_cast<GlobalVariable>(GVal);
528  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
529  !GV->getInitializer()->getType()->isSized())
530  return nullptr;
531 
532  int64_t Offset = OffsetAI.getSExtValue();
533  int64_t InitializerSize = DL.getTypeAllocSize(GV->getInitializer()->getType());
534 
535  // If we're not accessing anything in this constant, the result is undefined.
536  if (Offset + BytesLoaded <= 0)
537  return UndefValue::get(IntType);
538 
539  // If we're not accessing anything in this constant, the result is undefined.
540  if (Offset >= InitializerSize)
541  return UndefValue::get(IntType);
542 
543  unsigned char RawBytes[32] = {0};
544  unsigned char *CurPtr = RawBytes;
545  unsigned BytesLeft = BytesLoaded;
546 
547  // If we're loading off the beginning of the global, some bytes may be valid.
548  if (Offset < 0) {
549  CurPtr += -Offset;
550  BytesLeft += Offset;
551  Offset = 0;
552  }
553 
554  if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
555  return nullptr;
556 
557  APInt ResultVal = APInt(IntType->getBitWidth(), 0);
558  if (DL.isLittleEndian()) {
559  ResultVal = RawBytes[BytesLoaded - 1];
560  for (unsigned i = 1; i != BytesLoaded; ++i) {
561  ResultVal <<= 8;
562  ResultVal |= RawBytes[BytesLoaded - 1 - i];
563  }
564  } else {
565  ResultVal = RawBytes[0];
566  for (unsigned i = 1; i != BytesLoaded; ++i) {
567  ResultVal <<= 8;
568  ResultVal |= RawBytes[i];
569  }
570  }
571 
572  return ConstantInt::get(IntType->getContext(), ResultVal);
573 }
574 
575 Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy,
576  const DataLayout &DL) {
577  auto *SrcPtr = CE->getOperand(0);
578  auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType());
579  if (!SrcPtrTy)
580  return nullptr;
581  Type *SrcTy = SrcPtrTy->getPointerElementType();
582 
583  Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL);
584  if (!C)
585  return nullptr;
586 
587  return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL);
588 }
589 
590 } // end anonymous namespace
591 
593  const DataLayout &DL) {
594  // First, try the easy cases:
595  if (auto *GV = dyn_cast<GlobalVariable>(C))
596  if (GV->isConstant() && GV->hasDefinitiveInitializer())
597  return GV->getInitializer();
598 
599  if (auto *GA = dyn_cast<GlobalAlias>(C))
600  if (GA->getAliasee() && !GA->isInterposable())
601  return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);
602 
603  // If the loaded value isn't a constant expr, we can't handle it.
604  auto *CE = dyn_cast<ConstantExpr>(C);
605  if (!CE)
606  return nullptr;
607 
608  if (CE->getOpcode() == Instruction::GetElementPtr) {
609  if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
610  if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
611  if (Constant *V =
612  ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
613  return V;
614  }
615  }
616  }
617 
618  if (CE->getOpcode() == Instruction::BitCast)
619  if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL))
620  return LoadedC;
621 
622  // Instead of loading constant c string, use corresponding integer value
623  // directly if string length is small enough.
624  StringRef Str;
625  if (getConstantStringInfo(CE, Str) && !Str.empty()) {
626  size_t StrLen = Str.size();
627  unsigned NumBits = Ty->getPrimitiveSizeInBits();
628  // Replace load with immediate integer if the result is an integer or fp
629  // value.
630  if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
631  (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
632  APInt StrVal(NumBits, 0);
633  APInt SingleChar(NumBits, 0);
634  if (DL.isLittleEndian()) {
635  for (unsigned char C : reverse(Str.bytes())) {
636  SingleChar = static_cast<uint64_t>(C);
637  StrVal = (StrVal << 8) | SingleChar;
638  }
639  } else {
640  for (unsigned char C : Str.bytes()) {
641  SingleChar = static_cast<uint64_t>(C);
642  StrVal = (StrVal << 8) | SingleChar;
643  }
644  // Append NULL at the end.
645  SingleChar = 0;
646  StrVal = (StrVal << 8) | SingleChar;
647  }
648 
649  Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
650  if (Ty->isFloatingPointTy())
651  Res = ConstantExpr::getBitCast(Res, Ty);
652  return Res;
653  }
654  }
655 
656  // If this load comes from anywhere in a constant global, and if the global
657  // is all undef or zero, we know what it loads.
658  if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
659  if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
660  if (GV->getInitializer()->isNullValue())
661  return Constant::getNullValue(Ty);
662  if (isa<UndefValue>(GV->getInitializer()))
663  return UndefValue::get(Ty);
664  }
665  }
666 
667  // Try hard to fold loads from bitcasted strange and non-type-safe things.
668  return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
669 }
670 
671 namespace {
672 
673 Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) {
674  if (LI->isVolatile()) return nullptr;
675 
676  if (auto *C = dyn_cast<Constant>(LI->getOperand(0)))
677  return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL);
678 
679  return nullptr;
680 }
681 
682 /// One of Op0/Op1 is a constant expression.
683 /// Attempt to symbolically evaluate the result of a binary operator merging
684 /// these together. If target data info is available, it is provided as DL,
685 /// otherwise DL is null.
686 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
687  const DataLayout &DL) {
688  // SROA
689 
690  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
691  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
692  // bits.
693 
694  if (Opc == Instruction::And) {
695  KnownBits Known0 = computeKnownBits(Op0, DL);
696  KnownBits Known1 = computeKnownBits(Op1, DL);
697  if ((Known1.One | Known0.Zero).isAllOnesValue()) {
698  // All the bits of Op0 that the 'and' could be masking are already zero.
699  return Op0;
700  }
701  if ((Known0.One | Known1.Zero).isAllOnesValue()) {
702  // All the bits of Op1 that the 'and' could be masking are already zero.
703  return Op1;
704  }
705 
706  Known0.Zero |= Known1.Zero;
707  Known0.One &= Known1.One;
708  if (Known0.isConstant())
709  return ConstantInt::get(Op0->getType(), Known0.getConstant());
710  }
711 
712  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
713  // constant. This happens frequently when iterating over a global array.
714  if (Opc == Instruction::Sub) {
715  GlobalValue *GV1, *GV2;
716  APInt Offs1, Offs2;
717 
718  if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
719  if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
720  unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
721 
722  // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
723  // PtrToInt may change the bitwidth so we have convert to the right size
724  // first.
725  return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
726  Offs2.zextOrTrunc(OpSize));
727  }
728  }
729 
730  return nullptr;
731 }
732 
733 /// If array indices are not pointer-sized integers, explicitly cast them so
734 /// that they aren't implicitly casted by the getelementptr.
735 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
736  Type *ResultTy, Optional<unsigned> InRangeIndex,
737  const DataLayout &DL, const TargetLibraryInfo *TLI) {
738  Type *IntPtrTy = DL.getIntPtrType(ResultTy);
739  Type *IntPtrScalarTy = IntPtrTy->getScalarType();
740 
741  bool Any = false;
743  for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
744  if ((i == 1 ||
745  !isa<StructType>(GetElementPtrInst::getIndexedType(
746  SrcElemTy, Ops.slice(1, i - 1)))) &&
747  Ops[i]->getType()->getScalarType() != IntPtrScalarTy) {
748  Any = true;
749  Type *NewType = Ops[i]->getType()->isVectorTy()
750  ? IntPtrTy
751  : IntPtrTy->getScalarType();
753  true,
754  NewType,
755  true),
756  Ops[i], NewType));
757  } else
758  NewIdxs.push_back(Ops[i]);
759  }
760 
761  if (!Any)
762  return nullptr;
763 
765  SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
766  if (Constant *Folded = ConstantFoldConstant(C, DL, TLI))
767  C = Folded;
768 
769  return C;
770 }
771 
772 /// Strip the pointer casts, but preserve the address space information.
773 Constant* StripPtrCastKeepAS(Constant* Ptr, Type *&ElemTy) {
774  assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
775  auto *OldPtrTy = cast<PointerType>(Ptr->getType());
776  Ptr = Ptr->stripPointerCasts();
777  auto *NewPtrTy = cast<PointerType>(Ptr->getType());
778 
779  ElemTy = NewPtrTy->getPointerElementType();
780 
781  // Preserve the address space number of the pointer.
782  if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
783  NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace());
784  Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
785  }
786  return Ptr;
787 }
788 
789 /// If we can symbolically evaluate the GEP constant expression, do so.
790 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
792  const DataLayout &DL,
793  const TargetLibraryInfo *TLI) {
794  const GEPOperator *InnermostGEP = GEP;
795  bool InBounds = GEP->isInBounds();
796 
797  Type *SrcElemTy = GEP->getSourceElementType();
798  Type *ResElemTy = GEP->getResultElementType();
799  Type *ResTy = GEP->getType();
800  if (!SrcElemTy->isSized())
801  return nullptr;
802 
803  if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
804  GEP->getInRangeIndex(), DL, TLI))
805  return C;
806 
807  Constant *Ptr = Ops[0];
808  if (!Ptr->getType()->isPointerTy())
809  return nullptr;
810 
811  Type *IntPtrTy = DL.getIntPtrType(Ptr->getType());
812 
813  // If this is a constant expr gep that is effectively computing an
814  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
815  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
816  if (!isa<ConstantInt>(Ops[i])) {
817 
818  // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
819  // "inttoptr (sub (ptrtoint Ptr), V)"
820  if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
821  auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
822  assert((!CE || CE->getType() == IntPtrTy) &&
823  "CastGEPIndices didn't canonicalize index types!");
824  if (CE && CE->getOpcode() == Instruction::Sub &&
825  CE->getOperand(0)->isNullValue()) {
826  Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
827  Res = ConstantExpr::getSub(Res, CE->getOperand(1));
828  Res = ConstantExpr::getIntToPtr(Res, ResTy);
829  if (auto *FoldedRes = ConstantFoldConstant(Res, DL, TLI))
830  Res = FoldedRes;
831  return Res;
832  }
833  }
834  return nullptr;
835  }
836 
837  unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy);
838  APInt Offset =
839  APInt(BitWidth,
841  SrcElemTy,
842  makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
843  Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
844 
845  // If this is a GEP of a GEP, fold it all into a single GEP.
846  while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
847  InnermostGEP = GEP;
848  InBounds &= GEP->isInBounds();
849 
850  SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
851 
852  // Do not try the incorporate the sub-GEP if some index is not a number.
853  bool AllConstantInt = true;
854  for (Value *NestedOp : NestedOps)
855  if (!isa<ConstantInt>(NestedOp)) {
856  AllConstantInt = false;
857  break;
858  }
859  if (!AllConstantInt)
860  break;
861 
862  Ptr = cast<Constant>(GEP->getOperand(0));
863  SrcElemTy = GEP->getSourceElementType();
864  Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
865  Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
866  }
867 
868  // If the base value for this address is a literal integer value, fold the
869  // getelementptr to the resulting integer value casted to the pointer type.
870  APInt BasePtr(BitWidth, 0);
871  if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
872  if (CE->getOpcode() == Instruction::IntToPtr) {
873  if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
874  BasePtr = Base->getValue().zextOrTrunc(BitWidth);
875  }
876  }
877 
878  auto *PTy = cast<PointerType>(Ptr->getType());
879  if ((Ptr->isNullValue() || BasePtr != 0) &&
880  !DL.isNonIntegralPointerType(PTy)) {
881  Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
882  return ConstantExpr::getIntToPtr(C, ResTy);
883  }
884 
885  // Otherwise form a regular getelementptr. Recompute the indices so that
886  // we eliminate over-indexing of the notional static type array bounds.
887  // This makes it easy to determine if the getelementptr is "inbounds".
888  // Also, this helps GlobalOpt do SROA on GlobalVariables.
889  Type *Ty = PTy;
891 
892  do {
893  if (!Ty->isStructTy()) {
894  if (Ty->isPointerTy()) {
895  // The only pointer indexing we'll do is on the first index of the GEP.
896  if (!NewIdxs.empty())
897  break;
898 
899  Ty = SrcElemTy;
900 
901  // Only handle pointers to sized types, not pointers to functions.
902  if (!Ty->isSized())
903  return nullptr;
904  } else if (auto *ATy = dyn_cast<SequentialType>(Ty)) {
905  Ty = ATy->getElementType();
906  } else {
907  // We've reached some non-indexable type.
908  break;
909  }
910 
911  // Determine which element of the array the offset points into.
912  APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty));
913  if (ElemSize == 0) {
914  // The element size is 0. This may be [0 x Ty]*, so just use a zero
915  // index for this level and proceed to the next level to see if it can
916  // accommodate the offset.
917  NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
918  } else {
919  // The element size is non-zero divide the offset by the element
920  // size (rounding down), to compute the index at this level.
921  bool Overflow;
922  APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow);
923  if (Overflow)
924  break;
925  Offset -= NewIdx * ElemSize;
926  NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
927  }
928  } else {
929  auto *STy = cast<StructType>(Ty);
930  // If we end up with an offset that isn't valid for this struct type, we
931  // can't re-form this GEP in a regular form, so bail out. The pointer
932  // operand likely went through casts that are necessary to make the GEP
933  // sensible.
934  const StructLayout &SL = *DL.getStructLayout(STy);
935  if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes()))
936  break;
937 
938  // Determine which field of the struct the offset points into. The
939  // getZExtValue is fine as we've already ensured that the offset is
940  // within the range representable by the StructLayout API.
941  unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
943  ElIdx));
944  Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
945  Ty = STy->getTypeAtIndex(ElIdx);
946  }
947  } while (Ty != ResElemTy);
948 
949  // If we haven't used up the entire offset by descending the static
950  // type, then the offset is pointing into the middle of an indivisible
951  // member, so we can't simplify it.
952  if (Offset != 0)
953  return nullptr;
954 
955  // Preserve the inrange index from the innermost GEP if possible. We must
956  // have calculated the same indices up to and including the inrange index.
957  Optional<unsigned> InRangeIndex;
958  if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
959  if (SrcElemTy == InnermostGEP->getSourceElementType() &&
960  NewIdxs.size() > *LastIRIndex) {
961  InRangeIndex = LastIRIndex;
962  for (unsigned I = 0; I <= *LastIRIndex; ++I)
963  if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
964  return nullptr;
965  }
966 
967  // Create a GEP.
968  Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
969  InBounds, InRangeIndex);
970  assert(C->getType()->getPointerElementType() == Ty &&
971  "Computed GetElementPtr has unexpected type!");
972 
973  // If we ended up indexing a member with a type that doesn't match
974  // the type of what the original indices indexed, add a cast.
975  if (Ty != ResElemTy)
976  C = FoldBitCast(C, ResTy, DL);
977 
978  return C;
979 }
980 
981 /// Attempt to constant fold an instruction with the
982 /// specified opcode and operands. If successful, the constant result is
983 /// returned, if not, null is returned. Note that this function can fail when
984 /// attempting to fold instructions like loads and stores, which have no
985 /// constant expression form.
986 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
988  const DataLayout &DL,
989  const TargetLibraryInfo *TLI) {
990  Type *DestTy = InstOrCE->getType();
991 
992  // Handle easy binops first.
993  if (Instruction::isBinaryOp(Opcode))
994  return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
995 
996  if (Instruction::isCast(Opcode))
997  return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
998 
999  if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1000  if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1001  return C;
1002 
1004  Ops.slice(1), GEP->isInBounds(),
1005  GEP->getInRangeIndex());
1006  }
1007 
1008  if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1009  return CE->getWithOperands(Ops);
1010 
1011  switch (Opcode) {
1012  default: return nullptr;
1013  case Instruction::ICmp:
1014  case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1015  case Instruction::Call:
1016  if (auto *F = dyn_cast<Function>(Ops.back())) {
1017  ImmutableCallSite CS(cast<CallInst>(InstOrCE));
1018  if (canConstantFoldCallTo(CS, F))
1019  return ConstantFoldCall(CS, F, Ops.slice(0, Ops.size() - 1), TLI);
1020  }
1021  return nullptr;
1022  case Instruction::Select:
1023  return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1024  case Instruction::ExtractElement:
1025  return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1026  case Instruction::InsertElement:
1027  return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1028  case Instruction::ShuffleVector:
1029  return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1030  }
1031 }
1032 
1033 } // end anonymous namespace
1034 
1035 //===----------------------------------------------------------------------===//
1036 // Constant Folding public APIs
1037 //===----------------------------------------------------------------------===//
1038 
1039 namespace {
1040 
1041 Constant *
1042 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1043  const TargetLibraryInfo *TLI,
1045  if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1046  return nullptr;
1047 
1049  for (const Use &NewU : C->operands()) {
1050  auto *NewC = cast<Constant>(&NewU);
1051  // Recursively fold the ConstantExpr's operands. If we have already folded
1052  // a ConstantExpr, we don't have to process it again.
1053  if (isa<ConstantVector>(NewC) || isa<ConstantExpr>(NewC)) {
1054  auto It = FoldedOps.find(NewC);
1055  if (It == FoldedOps.end()) {
1056  if (auto *FoldedC =
1057  ConstantFoldConstantImpl(NewC, DL, TLI, FoldedOps)) {
1058  FoldedOps.insert({NewC, FoldedC});
1059  NewC = FoldedC;
1060  } else {
1061  FoldedOps.insert({NewC, NewC});
1062  }
1063  } else {
1064  NewC = It->second;
1065  }
1066  }
1067  Ops.push_back(NewC);
1068  }
1069 
1070  if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1071  if (CE->isCompare())
1072  return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1073  DL, TLI);
1074 
1075  return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
1076  }
1077 
1078  assert(isa<ConstantVector>(C));
1079  return ConstantVector::get(Ops);
1080 }
1081 
1082 } // end anonymous namespace
1083 
1085  const TargetLibraryInfo *TLI) {
1086  // Handle PHI nodes quickly here...
1087  if (auto *PN = dyn_cast<PHINode>(I)) {
1088  Constant *CommonValue = nullptr;
1089 
1091  for (Value *Incoming : PN->incoming_values()) {
1092  // If the incoming value is undef then skip it. Note that while we could
1093  // skip the value if it is equal to the phi node itself we choose not to
1094  // because that would break the rule that constant folding only applies if
1095  // all operands are constants.
1096  if (isa<UndefValue>(Incoming))
1097  continue;
1098  // If the incoming value is not a constant, then give up.
1099  auto *C = dyn_cast<Constant>(Incoming);
1100  if (!C)
1101  return nullptr;
1102  // Fold the PHI's operands.
1103  if (auto *FoldedC = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps))
1104  C = FoldedC;
1105  // If the incoming value is a different constant to
1106  // the one we saw previously, then give up.
1107  if (CommonValue && C != CommonValue)
1108  return nullptr;
1109  CommonValue = C;
1110  }
1111 
1112  // If we reach here, all incoming values are the same constant or undef.
1113  return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1114  }
1115 
1116  // Scan the operand list, checking to see if they are all constants, if so,
1117  // hand off to ConstantFoldInstOperandsImpl.
1118  if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1119  return nullptr;
1120 
1123  for (const Use &OpU : I->operands()) {
1124  auto *Op = cast<Constant>(&OpU);
1125  // Fold the Instruction's operands.
1126  if (auto *FoldedOp = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps))
1127  Op = FoldedOp;
1128 
1129  Ops.push_back(Op);
1130  }
1131 
1132  if (const auto *CI = dyn_cast<CmpInst>(I))
1133  return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
1134  DL, TLI);
1135 
1136  if (const auto *LI = dyn_cast<LoadInst>(I))
1137  return ConstantFoldLoadInst(LI, DL);
1138 
1139  if (auto *IVI = dyn_cast<InsertValueInst>(I)) {
1141  cast<Constant>(IVI->getAggregateOperand()),
1142  cast<Constant>(IVI->getInsertedValueOperand()),
1143  IVI->getIndices());
1144  }
1145 
1146  if (auto *EVI = dyn_cast<ExtractValueInst>(I)) {
1148  cast<Constant>(EVI->getAggregateOperand()),
1149  EVI->getIndices());
1150  }
1151 
1152  return ConstantFoldInstOperands(I, Ops, DL, TLI);
1153 }
1154 
1156  const TargetLibraryInfo *TLI) {
1158  return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1159 }
1160 
1163  const DataLayout &DL,
1164  const TargetLibraryInfo *TLI) {
1165  return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1166 }
1167 
1169  Constant *Ops0, Constant *Ops1,
1170  const DataLayout &DL,
1171  const TargetLibraryInfo *TLI) {
1172  // fold: icmp (inttoptr x), null -> icmp x, 0
1173  // fold: icmp null, (inttoptr x) -> icmp 0, x
1174  // fold: icmp (ptrtoint x), 0 -> icmp x, null
1175  // fold: icmp 0, (ptrtoint x) -> icmp null, x
1176  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1177  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1178  //
1179  // FIXME: The following comment is out of data and the DataLayout is here now.
1180  // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1181  // around to know if bit truncation is happening.
1182  if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1183  if (Ops1->isNullValue()) {
1184  if (CE0->getOpcode() == Instruction::IntToPtr) {
1185  Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1186  // Convert the integer value to the right size to ensure we get the
1187  // proper extension or truncation.
1188  Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1189  IntPtrTy, false);
1190  Constant *Null = Constant::getNullValue(C->getType());
1191  return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1192  }
1193 
1194  // Only do this transformation if the int is intptrty in size, otherwise
1195  // there is a truncation or extension that we aren't modeling.
1196  if (CE0->getOpcode() == Instruction::PtrToInt) {
1197  Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1198  if (CE0->getType() == IntPtrTy) {
1199  Constant *C = CE0->getOperand(0);
1200  Constant *Null = Constant::getNullValue(C->getType());
1201  return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1202  }
1203  }
1204  }
1205 
1206  if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1207  if (CE0->getOpcode() == CE1->getOpcode()) {
1208  if (CE0->getOpcode() == Instruction::IntToPtr) {
1209  Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1210 
1211  // Convert the integer value to the right size to ensure we get the
1212  // proper extension or truncation.
1213  Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1214  IntPtrTy, false);
1215  Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1216  IntPtrTy, false);
1217  return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1218  }
1219 
1220  // Only do this transformation if the int is intptrty in size, otherwise
1221  // there is a truncation or extension that we aren't modeling.
1222  if (CE0->getOpcode() == Instruction::PtrToInt) {
1223  Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1224  if (CE0->getType() == IntPtrTy &&
1225  CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1227  Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1228  }
1229  }
1230  }
1231  }
1232 
1233  // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1234  // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1235  if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1236  CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1238  Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1240  Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1241  unsigned OpC =
1242  Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1243  return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1244  }
1245  } else if (isa<ConstantExpr>(Ops1)) {
1246  // If RHS is a constant expression, but the left side isn't, swap the
1247  // operands and try again.
1248  Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
1249  return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1250  }
1251 
1252  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1253 }
1254 
1256  Constant *RHS,
1257  const DataLayout &DL) {
1259  if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1260  if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1261  return C;
1262 
1263  return ConstantExpr::get(Opcode, LHS, RHS);
1264 }
1265 
1267  Type *DestTy, const DataLayout &DL) {
1268  assert(Instruction::isCast(Opcode));
1269  switch (Opcode) {
1270  default:
1271  llvm_unreachable("Missing case");
1272  case Instruction::PtrToInt:
1273  // If the input is a inttoptr, eliminate the pair. This requires knowing
1274  // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1275  if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1276  if (CE->getOpcode() == Instruction::IntToPtr) {
1277  Constant *Input = CE->getOperand(0);
1278  unsigned InWidth = Input->getType()->getScalarSizeInBits();
1279  unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
1280  if (PtrWidth < InWidth) {
1281  Constant *Mask =
1282  ConstantInt::get(CE->getContext(),
1283  APInt::getLowBitsSet(InWidth, PtrWidth));
1284  Input = ConstantExpr::getAnd(Input, Mask);
1285  }
1286  // Do a zext or trunc to get to the dest size.
1287  return ConstantExpr::getIntegerCast(Input, DestTy, false);
1288  }
1289  }
1290  return ConstantExpr::getCast(Opcode, C, DestTy);
1291  case Instruction::IntToPtr:
1292  // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1293  // the int size is >= the ptr size and the address spaces are the same.
1294  // This requires knowing the width of a pointer, so it can't be done in
1295  // ConstantExpr::getCast.
1296  if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1297  if (CE->getOpcode() == Instruction::PtrToInt) {
1298  Constant *SrcPtr = CE->getOperand(0);
1299  unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1300  unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1301 
1302  if (MidIntSize >= SrcPtrSize) {
1303  unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1304  if (SrcAS == DestTy->getPointerAddressSpace())
1305  return FoldBitCast(CE->getOperand(0), DestTy, DL);
1306  }
1307  }
1308  }
1309 
1310  return ConstantExpr::getCast(Opcode, C, DestTy);
1311  case Instruction::Trunc:
1312  case Instruction::ZExt:
1313  case Instruction::SExt:
1314  case Instruction::FPTrunc:
1315  case Instruction::FPExt:
1316  case Instruction::UIToFP:
1317  case Instruction::SIToFP:
1318  case Instruction::FPToUI:
1319  case Instruction::FPToSI:
1320  case Instruction::AddrSpaceCast:
1321  return ConstantExpr::getCast(Opcode, C, DestTy);
1322  case Instruction::BitCast:
1323  return FoldBitCast(C, DestTy, DL);
1324  }
1325 }
1326 
1328  ConstantExpr *CE) {
1329  if (!CE->getOperand(1)->isNullValue())
1330  return nullptr; // Do not allow stepping over the value!
1331 
1332  // Loop over all of the operands, tracking down which value we are
1333  // addressing.
1334  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1335  C = C->getAggregateElement(CE->getOperand(i));
1336  if (!C)
1337  return nullptr;
1338  }
1339  return C;
1340 }
1341 
1342 Constant *
1344  ArrayRef<Constant *> Indices) {
1345  // Loop over all of the operands, tracking down which value we are
1346  // addressing.
1347  for (Constant *Index : Indices) {
1348  C = C->getAggregateElement(Index);
1349  if (!C)
1350  return nullptr;
1351  }
1352  return C;
1353 }
1354 
1355 //===----------------------------------------------------------------------===//
1356 // Constant Folding for Calls
1357 //
1358 
1360  if (CS.isNoBuiltin() || CS.isStrictFP())
1361  return false;
1362  switch (F->getIntrinsicID()) {
1363  case Intrinsic::fabs:
1364  case Intrinsic::minnum:
1365  case Intrinsic::maxnum:
1366  case Intrinsic::log:
1367  case Intrinsic::log2:
1368  case Intrinsic::log10:
1369  case Intrinsic::exp:
1370  case Intrinsic::exp2:
1371  case Intrinsic::floor:
1372  case Intrinsic::ceil:
1373  case Intrinsic::sqrt:
1374  case Intrinsic::sin:
1375  case Intrinsic::cos:
1376  case Intrinsic::trunc:
1377  case Intrinsic::rint:
1378  case Intrinsic::nearbyint:
1379  case Intrinsic::pow:
1380  case Intrinsic::powi:
1381  case Intrinsic::bswap:
1382  case Intrinsic::ctpop:
1383  case Intrinsic::ctlz:
1384  case Intrinsic::cttz:
1385  case Intrinsic::fshl:
1386  case Intrinsic::fshr:
1387  case Intrinsic::fma:
1388  case Intrinsic::fmuladd:
1389  case Intrinsic::copysign:
1390  case Intrinsic::launder_invariant_group:
1391  case Intrinsic::strip_invariant_group:
1392  case Intrinsic::round:
1393  case Intrinsic::masked_load:
1394  case Intrinsic::sadd_with_overflow:
1395  case Intrinsic::uadd_with_overflow:
1396  case Intrinsic::ssub_with_overflow:
1397  case Intrinsic::usub_with_overflow:
1398  case Intrinsic::smul_with_overflow:
1399  case Intrinsic::umul_with_overflow:
1400  case Intrinsic::convert_from_fp16:
1401  case Intrinsic::convert_to_fp16:
1402  case Intrinsic::bitreverse:
1403  case Intrinsic::x86_sse_cvtss2si:
1404  case Intrinsic::x86_sse_cvtss2si64:
1405  case Intrinsic::x86_sse_cvttss2si:
1406  case Intrinsic::x86_sse_cvttss2si64:
1407  case Intrinsic::x86_sse2_cvtsd2si:
1408  case Intrinsic::x86_sse2_cvtsd2si64:
1409  case Intrinsic::x86_sse2_cvttsd2si:
1410  case Intrinsic::x86_sse2_cvttsd2si64:
1411  case Intrinsic::x86_avx512_vcvtss2si32:
1412  case Intrinsic::x86_avx512_vcvtss2si64:
1413  case Intrinsic::x86_avx512_cvttss2si:
1414  case Intrinsic::x86_avx512_cvttss2si64:
1415  case Intrinsic::x86_avx512_vcvtsd2si32:
1416  case Intrinsic::x86_avx512_vcvtsd2si64:
1417  case Intrinsic::x86_avx512_cvttsd2si:
1418  case Intrinsic::x86_avx512_cvttsd2si64:
1419  case Intrinsic::x86_avx512_vcvtss2usi32:
1420  case Intrinsic::x86_avx512_vcvtss2usi64:
1421  case Intrinsic::x86_avx512_cvttss2usi:
1422  case Intrinsic::x86_avx512_cvttss2usi64:
1423  case Intrinsic::x86_avx512_vcvtsd2usi32:
1424  case Intrinsic::x86_avx512_vcvtsd2usi64:
1425  case Intrinsic::x86_avx512_cvttsd2usi:
1426  case Intrinsic::x86_avx512_cvttsd2usi64:
1427  return true;
1428  default:
1429  return false;
1430  case Intrinsic::not_intrinsic: break;
1431  }
1432 
1433  if (!F->hasName())
1434  return false;
1435  StringRef Name = F->getName();
1436 
1437  // In these cases, the check of the length is required. We don't want to
1438  // return true for a name like "cos\0blah" which strcmp would return equal to
1439  // "cos", but has length 8.
1440  switch (Name[0]) {
1441  default:
1442  return false;
1443  case 'a':
1444  return Name == "acos" || Name == "asin" || Name == "atan" ||
1445  Name == "atan2" || Name == "acosf" || Name == "asinf" ||
1446  Name == "atanf" || Name == "atan2f";
1447  case 'c':
1448  return Name == "ceil" || Name == "cos" || Name == "cosh" ||
1449  Name == "ceilf" || Name == "cosf" || Name == "coshf";
1450  case 'e':
1451  return Name == "exp" || Name == "exp2" || Name == "expf" || Name == "exp2f";
1452  case 'f':
1453  return Name == "fabs" || Name == "floor" || Name == "fmod" ||
1454  Name == "fabsf" || Name == "floorf" || Name == "fmodf";
1455  case 'l':
1456  return Name == "log" || Name == "log10" || Name == "logf" ||
1457  Name == "log10f";
1458  case 'p':
1459  return Name == "pow" || Name == "powf";
1460  case 'r':
1461  return Name == "round" || Name == "roundf";
1462  case 's':
1463  return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1464  Name == "sinf" || Name == "sinhf" || Name == "sqrtf";
1465  case 't':
1466  return Name == "tan" || Name == "tanh" || Name == "tanf" || Name == "tanhf";
1467  case '_':
1468 
1469  // Check for various function names that get used for the math functions
1470  // when the header files are preprocessed with the macro
1471  // __FINITE_MATH_ONLY__ enabled.
1472  // The '12' here is the length of the shortest name that can match.
1473  // We need to check the size before looking at Name[1] and Name[2]
1474  // so we may as well check a limit that will eliminate mismatches.
1475  if (Name.size() < 12 || Name[1] != '_')
1476  return false;
1477  switch (Name[2]) {
1478  default:
1479  return false;
1480  case 'a':
1481  return Name == "__acos_finite" || Name == "__acosf_finite" ||
1482  Name == "__asin_finite" || Name == "__asinf_finite" ||
1483  Name == "__atan2_finite" || Name == "__atan2f_finite";
1484  case 'c':
1485  return Name == "__cosh_finite" || Name == "__coshf_finite";
1486  case 'e':
1487  return Name == "__exp_finite" || Name == "__expf_finite" ||
1488  Name == "__exp2_finite" || Name == "__exp2f_finite";
1489  case 'l':
1490  return Name == "__log_finite" || Name == "__logf_finite" ||
1491  Name == "__log10_finite" || Name == "__log10f_finite";
1492  case 'p':
1493  return Name == "__pow_finite" || Name == "__powf_finite";
1494  case 's':
1495  return Name == "__sinh_finite" || Name == "__sinhf_finite";
1496  }
1497  }
1498 }
1499 
1500 namespace {
1501 
1502 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1503  if (Ty->isHalfTy()) {
1504  APFloat APF(V);
1505  bool unused;
1507  return ConstantFP::get(Ty->getContext(), APF);
1508  }
1509  if (Ty->isFloatTy())
1510  return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1511  if (Ty->isDoubleTy())
1512  return ConstantFP::get(Ty->getContext(), APFloat(V));
1513  llvm_unreachable("Can only constant fold half/float/double");
1514 }
1515 
1516 /// Clear the floating-point exception state.
1517 inline void llvm_fenv_clearexcept() {
1518 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1519  feclearexcept(FE_ALL_EXCEPT);
1520 #endif
1521  errno = 0;
1522 }
1523 
1524 /// Test if a floating-point exception was raised.
1525 inline bool llvm_fenv_testexcept() {
1526  int errno_val = errno;
1527  if (errno_val == ERANGE || errno_val == EDOM)
1528  return true;
1529 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1530  if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1531  return true;
1532 #endif
1533  return false;
1534 }
1535 
1536 Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) {
1537  llvm_fenv_clearexcept();
1538  V = NativeFP(V);
1539  if (llvm_fenv_testexcept()) {
1540  llvm_fenv_clearexcept();
1541  return nullptr;
1542  }
1543 
1544  return GetConstantFoldFPValue(V, Ty);
1545 }
1546 
1547 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V,
1548  double W, Type *Ty) {
1549  llvm_fenv_clearexcept();
1550  V = NativeFP(V, W);
1551  if (llvm_fenv_testexcept()) {
1552  llvm_fenv_clearexcept();
1553  return nullptr;
1554  }
1555 
1556  return GetConstantFoldFPValue(V, Ty);
1557 }
1558 
1559 /// Attempt to fold an SSE floating point to integer conversion of a constant
1560 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1561 /// used (toward nearest, ties to even). This matches the behavior of the
1562 /// non-truncating SSE instructions in the default rounding mode. The desired
1563 /// integer type Ty is used to select how many bits are available for the
1564 /// result. Returns null if the conversion cannot be performed, otherwise
1565 /// returns the Constant value resulting from the conversion.
1566 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1567  Type *Ty, bool IsSigned) {
1568  // All of these conversion intrinsics form an integer of at most 64bits.
1569  unsigned ResultWidth = Ty->getIntegerBitWidth();
1570  assert(ResultWidth <= 64 &&
1571  "Can only constant fold conversions to 64 and 32 bit ints");
1572 
1573  uint64_t UIntVal;
1574  bool isExact = false;
1578  Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
1579  IsSigned, mode, &isExact);
1580  if (status != APFloat::opOK &&
1581  (!roundTowardZero || status != APFloat::opInexact))
1582  return nullptr;
1583  return ConstantInt::get(Ty, UIntVal, IsSigned);
1584 }
1585 
1586 double getValueAsDouble(ConstantFP *Op) {
1587  Type *Ty = Op->getType();
1588 
1589  if (Ty->isFloatTy())
1590  return Op->getValueAPF().convertToFloat();
1591 
1592  if (Ty->isDoubleTy())
1593  return Op->getValueAPF().convertToDouble();
1594 
1595  bool unused;
1596  APFloat APF = Op->getValueAPF();
1598  return APF.convertToDouble();
1599 }
1600 
1601 Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, Type *Ty,
1602  ArrayRef<Constant *> Operands,
1603  const TargetLibraryInfo *TLI,
1604  ImmutableCallSite CS) {
1605  if (Operands.size() == 1) {
1606  if (isa<UndefValue>(Operands[0])) {
1607  // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN
1608  if (IntrinsicID == Intrinsic::cos)
1609  return Constant::getNullValue(Ty);
1610  if (IntrinsicID == Intrinsic::bswap ||
1611  IntrinsicID == Intrinsic::bitreverse ||
1612  IntrinsicID == Intrinsic::launder_invariant_group ||
1613  IntrinsicID == Intrinsic::strip_invariant_group)
1614  return Operands[0];
1615  }
1616 
1617  if (isa<ConstantPointerNull>(Operands[0])) {
1618  // launder(null) == null == strip(null) iff in addrspace 0
1619  if (IntrinsicID == Intrinsic::launder_invariant_group ||
1620  IntrinsicID == Intrinsic::strip_invariant_group) {
1621  // If instruction is not yet put in a basic block (e.g. when cloning
1622  // a function during inlining), CS caller may not be available.
1623  // So check CS's BB first before querying CS.getCaller.
1624  const Function *Caller = CS.getParent() ? CS.getCaller() : nullptr;
1625  if (Caller &&
1627  Caller, Operands[0]->getType()->getPointerAddressSpace())) {
1628  return Operands[0];
1629  }
1630  return nullptr;
1631  }
1632  }
1633 
1634  if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
1635  if (IntrinsicID == Intrinsic::convert_to_fp16) {
1636  APFloat Val(Op->getValueAPF());
1637 
1638  bool lost = false;
1640 
1641  return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1642  }
1643 
1644  if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1645  return nullptr;
1646 
1647  if (IntrinsicID == Intrinsic::round) {
1648  APFloat V = Op->getValueAPF();
1650  return ConstantFP::get(Ty->getContext(), V);
1651  }
1652 
1653  if (IntrinsicID == Intrinsic::floor) {
1654  APFloat V = Op->getValueAPF();
1656  return ConstantFP::get(Ty->getContext(), V);
1657  }
1658 
1659  if (IntrinsicID == Intrinsic::ceil) {
1660  APFloat V = Op->getValueAPF();
1662  return ConstantFP::get(Ty->getContext(), V);
1663  }
1664 
1665  if (IntrinsicID == Intrinsic::trunc) {
1666  APFloat V = Op->getValueAPF();
1668  return ConstantFP::get(Ty->getContext(), V);
1669  }
1670 
1671  if (IntrinsicID == Intrinsic::rint) {
1672  APFloat V = Op->getValueAPF();
1674  return ConstantFP::get(Ty->getContext(), V);
1675  }
1676 
1677  if (IntrinsicID == Intrinsic::nearbyint) {
1678  APFloat V = Op->getValueAPF();
1680  return ConstantFP::get(Ty->getContext(), V);
1681  }
1682 
1683  /// We only fold functions with finite arguments. Folding NaN and inf is
1684  /// likely to be aborted with an exception anyway, and some host libms
1685  /// have known errors raising exceptions.
1686  if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1687  return nullptr;
1688 
1689  /// Currently APFloat versions of these functions do not exist, so we use
1690  /// the host native double versions. Float versions are not called
1691  /// directly but for all these it is true (float)(f((double)arg)) ==
1692  /// f(arg). Long double not supported yet.
1693  double V = getValueAsDouble(Op);
1694 
1695  switch (IntrinsicID) {
1696  default: break;
1697  case Intrinsic::fabs:
1698  return ConstantFoldFP(fabs, V, Ty);
1699  case Intrinsic::log2:
1700  return ConstantFoldFP(Log2, V, Ty);
1701  case Intrinsic::log:
1702  return ConstantFoldFP(log, V, Ty);
1703  case Intrinsic::log10:
1704  return ConstantFoldFP(log10, V, Ty);
1705  case Intrinsic::exp:
1706  return ConstantFoldFP(exp, V, Ty);
1707  case Intrinsic::exp2:
1708  return ConstantFoldFP(exp2, V, Ty);
1709  case Intrinsic::sin:
1710  return ConstantFoldFP(sin, V, Ty);
1711  case Intrinsic::cos:
1712  return ConstantFoldFP(cos, V, Ty);
1713  case Intrinsic::sqrt:
1714  return ConstantFoldFP(sqrt, V, Ty);
1715  }
1716 
1717  if (!TLI)
1718  return nullptr;
1719 
1720  char NameKeyChar = Name[0];
1721  if (Name[0] == '_' && Name.size() > 2 && Name[1] == '_')
1722  NameKeyChar = Name[2];
1723 
1724  switch (NameKeyChar) {
1725  case 'a':
1726  if ((Name == "acos" && TLI->has(LibFunc_acos)) ||
1727  (Name == "acosf" && TLI->has(LibFunc_acosf)) ||
1728  (Name == "__acos_finite" && TLI->has(LibFunc_acos_finite)) ||
1729  (Name == "__acosf_finite" && TLI->has(LibFunc_acosf_finite)))
1730  return ConstantFoldFP(acos, V, Ty);
1731  else if ((Name == "asin" && TLI->has(LibFunc_asin)) ||
1732  (Name == "asinf" && TLI->has(LibFunc_asinf)) ||
1733  (Name == "__asin_finite" && TLI->has(LibFunc_asin_finite)) ||
1734  (Name == "__asinf_finite" && TLI->has(LibFunc_asinf_finite)))
1735  return ConstantFoldFP(asin, V, Ty);
1736  else if ((Name == "atan" && TLI->has(LibFunc_atan)) ||
1737  (Name == "atanf" && TLI->has(LibFunc_atanf)))
1738  return ConstantFoldFP(atan, V, Ty);
1739  break;
1740  case 'c':
1741  if ((Name == "ceil" && TLI->has(LibFunc_ceil)) ||
1742  (Name == "ceilf" && TLI->has(LibFunc_ceilf)))
1743  return ConstantFoldFP(ceil, V, Ty);
1744  else if ((Name == "cos" && TLI->has(LibFunc_cos)) ||
1745  (Name == "cosf" && TLI->has(LibFunc_cosf)))
1746  return ConstantFoldFP(cos, V, Ty);
1747  else if ((Name == "cosh" && TLI->has(LibFunc_cosh)) ||
1748  (Name == "coshf" && TLI->has(LibFunc_coshf)) ||
1749  (Name == "__cosh_finite" && TLI->has(LibFunc_cosh_finite)) ||
1750  (Name == "__coshf_finite" && TLI->has(LibFunc_coshf_finite)))
1751  return ConstantFoldFP(cosh, V, Ty);
1752  break;
1753  case 'e':
1754  if ((Name == "exp" && TLI->has(LibFunc_exp)) ||
1755  (Name == "expf" && TLI->has(LibFunc_expf)) ||
1756  (Name == "__exp_finite" && TLI->has(LibFunc_exp_finite)) ||
1757  (Name == "__expf_finite" && TLI->has(LibFunc_expf_finite)))
1758  return ConstantFoldFP(exp, V, Ty);
1759  if ((Name == "exp2" && TLI->has(LibFunc_exp2)) ||
1760  (Name == "exp2f" && TLI->has(LibFunc_exp2f)) ||
1761  (Name == "__exp2_finite" && TLI->has(LibFunc_exp2_finite)) ||
1762  (Name == "__exp2f_finite" && TLI->has(LibFunc_exp2f_finite)))
1763  // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1764  // C99 library.
1765  return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1766  break;
1767  case 'f':
1768  if ((Name == "fabs" && TLI->has(LibFunc_fabs)) ||
1769  (Name == "fabsf" && TLI->has(LibFunc_fabsf)))
1770  return ConstantFoldFP(fabs, V, Ty);
1771  else if ((Name == "floor" && TLI->has(LibFunc_floor)) ||
1772  (Name == "floorf" && TLI->has(LibFunc_floorf)))
1773  return ConstantFoldFP(floor, V, Ty);
1774  break;
1775  case 'l':
1776  if ((Name == "log" && V > 0 && TLI->has(LibFunc_log)) ||
1777  (Name == "logf" && V > 0 && TLI->has(LibFunc_logf)) ||
1778  (Name == "__log_finite" && V > 0 &&
1779  TLI->has(LibFunc_log_finite)) ||
1780  (Name == "__logf_finite" && V > 0 &&
1781  TLI->has(LibFunc_logf_finite)))
1782  return ConstantFoldFP(log, V, Ty);
1783  else if ((Name == "log10" && V > 0 && TLI->has(LibFunc_log10)) ||
1784  (Name == "log10f" && V > 0 && TLI->has(LibFunc_log10f)) ||
1785  (Name == "__log10_finite" && V > 0 &&
1786  TLI->has(LibFunc_log10_finite)) ||
1787  (Name == "__log10f_finite" && V > 0 &&
1788  TLI->has(LibFunc_log10f_finite)))
1789  return ConstantFoldFP(log10, V, Ty);
1790  break;
1791  case 'r':
1792  if ((Name == "round" && TLI->has(LibFunc_round)) ||
1793  (Name == "roundf" && TLI->has(LibFunc_roundf)))
1794  return ConstantFoldFP(round, V, Ty);
1795  break;
1796  case 's':
1797  if ((Name == "sin" && TLI->has(LibFunc_sin)) ||
1798  (Name == "sinf" && TLI->has(LibFunc_sinf)))
1799  return ConstantFoldFP(sin, V, Ty);
1800  else if ((Name == "sinh" && TLI->has(LibFunc_sinh)) ||
1801  (Name == "sinhf" && TLI->has(LibFunc_sinhf)) ||
1802  (Name == "__sinh_finite" && TLI->has(LibFunc_sinh_finite)) ||
1803  (Name == "__sinhf_finite" && TLI->has(LibFunc_sinhf_finite)))
1804  return ConstantFoldFP(sinh, V, Ty);
1805  else if ((Name == "sqrt" && V >= 0 && TLI->has(LibFunc_sqrt)) ||
1806  (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc_sqrtf)))
1807  return ConstantFoldFP(sqrt, V, Ty);
1808  break;
1809  case 't':
1810  if ((Name == "tan" && TLI->has(LibFunc_tan)) ||
1811  (Name == "tanf" && TLI->has(LibFunc_tanf)))
1812  return ConstantFoldFP(tan, V, Ty);
1813  else if ((Name == "tanh" && TLI->has(LibFunc_tanh)) ||
1814  (Name == "tanhf" && TLI->has(LibFunc_tanhf)))
1815  return ConstantFoldFP(tanh, V, Ty);
1816  break;
1817  default:
1818  break;
1819  }
1820  return nullptr;
1821  }
1822 
1823  if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
1824  switch (IntrinsicID) {
1825  case Intrinsic::bswap:
1826  return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
1827  case Intrinsic::ctpop:
1828  return ConstantInt::get(Ty, Op->getValue().countPopulation());
1829  case Intrinsic::bitreverse:
1830  return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
1831  case Intrinsic::convert_from_fp16: {
1832  APFloat Val(APFloat::IEEEhalf(), Op->getValue());
1833 
1834  bool lost = false;
1837 
1838  // Conversion is always precise.
1839  (void)status;
1840  assert(status == APFloat::opOK && !lost &&
1841  "Precision lost during fp16 constfolding");
1842 
1843  return ConstantFP::get(Ty->getContext(), Val);
1844  }
1845  default:
1846  return nullptr;
1847  }
1848  }
1849 
1850  // Support ConstantVector in case we have an Undef in the top.
1851  if (isa<ConstantVector>(Operands[0]) ||
1852  isa<ConstantDataVector>(Operands[0])) {
1853  auto *Op = cast<Constant>(Operands[0]);
1854  switch (IntrinsicID) {
1855  default: break;
1856  case Intrinsic::x86_sse_cvtss2si:
1857  case Intrinsic::x86_sse_cvtss2si64:
1858  case Intrinsic::x86_sse2_cvtsd2si:
1859  case Intrinsic::x86_sse2_cvtsd2si64:
1860  if (ConstantFP *FPOp =
1861  dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1862  return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
1863  /*roundTowardZero=*/false, Ty,
1864  /*IsSigned*/true);
1865  break;
1866  case Intrinsic::x86_sse_cvttss2si:
1867  case Intrinsic::x86_sse_cvttss2si64:
1868  case Intrinsic::x86_sse2_cvttsd2si:
1869  case Intrinsic::x86_sse2_cvttsd2si64:
1870  if (ConstantFP *FPOp =
1871  dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1872  return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
1873  /*roundTowardZero=*/true, Ty,
1874  /*IsSigned*/true);
1875  break;
1876  }
1877  }
1878 
1879  return nullptr;
1880  }
1881 
1882  if (Operands.size() == 2) {
1883  if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1884  if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1885  return nullptr;
1886  double Op1V = getValueAsDouble(Op1);
1887 
1888  if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1889  if (Op2->getType() != Op1->getType())
1890  return nullptr;
1891 
1892  double Op2V = getValueAsDouble(Op2);
1893  if (IntrinsicID == Intrinsic::pow) {
1894  return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1895  }
1896  if (IntrinsicID == Intrinsic::copysign) {
1897  APFloat V1 = Op1->getValueAPF();
1898  const APFloat &V2 = Op2->getValueAPF();
1899  V1.copySign(V2);
1900  return ConstantFP::get(Ty->getContext(), V1);
1901  }
1902 
1903  if (IntrinsicID == Intrinsic::minnum) {
1904  const APFloat &C1 = Op1->getValueAPF();
1905  const APFloat &C2 = Op2->getValueAPF();
1906  return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
1907  }
1908 
1909  if (IntrinsicID == Intrinsic::maxnum) {
1910  const APFloat &C1 = Op1->getValueAPF();
1911  const APFloat &C2 = Op2->getValueAPF();
1912  return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
1913  }
1914 
1915  if (!TLI)
1916  return nullptr;
1917  if ((Name == "pow" && TLI->has(LibFunc_pow)) ||
1918  (Name == "powf" && TLI->has(LibFunc_powf)) ||
1919  (Name == "__pow_finite" && TLI->has(LibFunc_pow_finite)) ||
1920  (Name == "__powf_finite" && TLI->has(LibFunc_powf_finite)))
1921  return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1922  if ((Name == "fmod" && TLI->has(LibFunc_fmod)) ||
1923  (Name == "fmodf" && TLI->has(LibFunc_fmodf)))
1924  return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1925  if ((Name == "atan2" && TLI->has(LibFunc_atan2)) ||
1926  (Name == "atan2f" && TLI->has(LibFunc_atan2f)) ||
1927  (Name == "__atan2_finite" && TLI->has(LibFunc_atan2_finite)) ||
1928  (Name == "__atan2f_finite" && TLI->has(LibFunc_atan2f_finite)))
1929  return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1930  } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1931  if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
1932  return ConstantFP::get(Ty->getContext(),
1933  APFloat((float)std::pow((float)Op1V,
1934  (int)Op2C->getZExtValue())));
1935  if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
1936  return ConstantFP::get(Ty->getContext(),
1937  APFloat((float)std::pow((float)Op1V,
1938  (int)Op2C->getZExtValue())));
1939  if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
1940  return ConstantFP::get(Ty->getContext(),
1941  APFloat((double)std::pow((double)Op1V,
1942  (int)Op2C->getZExtValue())));
1943  }
1944  return nullptr;
1945  }
1946 
1947  if (auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1948  if (auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1949  switch (IntrinsicID) {
1950  default: break;
1951  case Intrinsic::sadd_with_overflow:
1952  case Intrinsic::uadd_with_overflow:
1953  case Intrinsic::ssub_with_overflow:
1954  case Intrinsic::usub_with_overflow:
1955  case Intrinsic::smul_with_overflow:
1956  case Intrinsic::umul_with_overflow: {
1957  APInt Res;
1958  bool Overflow;
1959  switch (IntrinsicID) {
1960  default: llvm_unreachable("Invalid case");
1961  case Intrinsic::sadd_with_overflow:
1962  Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1963  break;
1964  case Intrinsic::uadd_with_overflow:
1965  Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1966  break;
1967  case Intrinsic::ssub_with_overflow:
1968  Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1969  break;
1970  case Intrinsic::usub_with_overflow:
1971  Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1972  break;
1973  case Intrinsic::smul_with_overflow:
1974  Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1975  break;
1976  case Intrinsic::umul_with_overflow:
1977  Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1978  break;
1979  }
1980  Constant *Ops[] = {
1981  ConstantInt::get(Ty->getContext(), Res),
1982  ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
1983  };
1984  return ConstantStruct::get(cast<StructType>(Ty), Ops);
1985  }
1986  case Intrinsic::cttz:
1987  if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
1988  return UndefValue::get(Ty);
1989  return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
1990  case Intrinsic::ctlz:
1991  if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
1992  return UndefValue::get(Ty);
1993  return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
1994  }
1995  }
1996 
1997  return nullptr;
1998  }
1999 
2000  // Support ConstantVector in case we have an Undef in the top.
2001  if ((isa<ConstantVector>(Operands[0]) ||
2002  isa<ConstantDataVector>(Operands[0])) &&
2003  // Check for default rounding mode.
2004  // FIXME: Support other rounding modes?
2005  isa<ConstantInt>(Operands[1]) &&
2006  cast<ConstantInt>(Operands[1])->getValue() == 4) {
2007  auto *Op = cast<Constant>(Operands[0]);
2008  switch (IntrinsicID) {
2009  default: break;
2010  case Intrinsic::x86_avx512_vcvtss2si32:
2011  case Intrinsic::x86_avx512_vcvtss2si64:
2012  case Intrinsic::x86_avx512_vcvtsd2si32:
2013  case Intrinsic::x86_avx512_vcvtsd2si64:
2014  if (ConstantFP *FPOp =
2015  dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2016  return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2017  /*roundTowardZero=*/false, Ty,
2018  /*IsSigned*/true);
2019  break;
2020  case Intrinsic::x86_avx512_vcvtss2usi32:
2021  case Intrinsic::x86_avx512_vcvtss2usi64:
2022  case Intrinsic::x86_avx512_vcvtsd2usi32:
2023  case Intrinsic::x86_avx512_vcvtsd2usi64:
2024  if (ConstantFP *FPOp =
2025  dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2026  return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2027  /*roundTowardZero=*/false, Ty,
2028  /*IsSigned*/false);
2029  break;
2030  case Intrinsic::x86_avx512_cvttss2si:
2031  case Intrinsic::x86_avx512_cvttss2si64:
2032  case Intrinsic::x86_avx512_cvttsd2si:
2033  case Intrinsic::x86_avx512_cvttsd2si64:
2034  if (ConstantFP *FPOp =
2035  dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2036  return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2037  /*roundTowardZero=*/true, Ty,
2038  /*IsSigned*/true);
2039  break;
2040  case Intrinsic::x86_avx512_cvttss2usi:
2041  case Intrinsic::x86_avx512_cvttss2usi64:
2042  case Intrinsic::x86_avx512_cvttsd2usi:
2043  case Intrinsic::x86_avx512_cvttsd2usi64:
2044  if (ConstantFP *FPOp =
2045  dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2046  return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2047  /*roundTowardZero=*/true, Ty,
2048  /*IsSigned*/false);
2049  break;
2050  }
2051  }
2052  return nullptr;
2053  }
2054 
2055  if (Operands.size() != 3)
2056  return nullptr;
2057 
2058  if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2059  if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2060  if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
2061  switch (IntrinsicID) {
2062  default: break;
2063  case Intrinsic::fma:
2064  case Intrinsic::fmuladd: {
2065  APFloat V = Op1->getValueAPF();
2066  APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
2067  Op3->getValueAPF(),
2069  if (s != APFloat::opInvalidOp)
2070  return ConstantFP::get(Ty->getContext(), V);
2071 
2072  return nullptr;
2073  }
2074  }
2075  }
2076  }
2077  }
2078 
2079  if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
2080  auto *C0 = dyn_cast<ConstantInt>(Operands[0]);
2081  auto *C1 = dyn_cast<ConstantInt>(Operands[1]);
2082  auto *C2 = dyn_cast<ConstantInt>(Operands[2]);
2083  if (!(C0 && C1 && C2))
2084  return nullptr;
2085 
2086  // The shift amount is interpreted as modulo the bitwidth. If the shift
2087  // amount is effectively 0, avoid UB due to oversized inverse shift below.
2088  unsigned BitWidth = C0->getBitWidth();
2089  unsigned ShAmt = C2->getValue().urem(BitWidth);
2090  bool IsRight = IntrinsicID == Intrinsic::fshr;
2091  if (!ShAmt)
2092  return IsRight ? C1 : C0;
2093 
2094  // (X << ShlAmt) | (Y >> LshrAmt)
2095  const APInt &X = C0->getValue();
2096  const APInt &Y = C1->getValue();
2097  unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
2098  unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
2099  return ConstantInt::get(Ty->getContext(), X.shl(ShlAmt) | Y.lshr(LshrAmt));
2100  }
2101 
2102  return nullptr;
2103 }
2104 
2105 Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
2106  VectorType *VTy, ArrayRef<Constant *> Operands,
2107  const DataLayout &DL,
2108  const TargetLibraryInfo *TLI,
2109  ImmutableCallSite CS) {
2111  SmallVector<Constant *, 4> Lane(Operands.size());
2112  Type *Ty = VTy->getElementType();
2113 
2114  if (IntrinsicID == Intrinsic::masked_load) {
2115  auto *SrcPtr = Operands[0];
2116  auto *Mask = Operands[2];
2117  auto *Passthru = Operands[3];
2118 
2119  Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL);
2120 
2121  SmallVector<Constant *, 32> NewElements;
2122  for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
2123  auto *MaskElt = Mask->getAggregateElement(I);
2124  if (!MaskElt)
2125  break;
2126  auto *PassthruElt = Passthru->getAggregateElement(I);
2127  auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
2128  if (isa<UndefValue>(MaskElt)) {
2129  if (PassthruElt)
2130  NewElements.push_back(PassthruElt);
2131  else if (VecElt)
2132  NewElements.push_back(VecElt);
2133  else
2134  return nullptr;
2135  }
2136  if (MaskElt->isNullValue()) {
2137  if (!PassthruElt)
2138  return nullptr;
2139  NewElements.push_back(PassthruElt);
2140  } else if (MaskElt->isOneValue()) {
2141  if (!VecElt)
2142  return nullptr;
2143  NewElements.push_back(VecElt);
2144  } else {
2145  return nullptr;
2146  }
2147  }
2148  if (NewElements.size() != VTy->getNumElements())
2149  return nullptr;
2150  return ConstantVector::get(NewElements);
2151  }
2152 
2153  for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
2154  // Gather a column of constants.
2155  for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
2156  // These intrinsics use a scalar type for their second argument.
2157  if (J == 1 &&
2158  (IntrinsicID == Intrinsic::cttz || IntrinsicID == Intrinsic::ctlz ||
2159  IntrinsicID == Intrinsic::powi)) {
2160  Lane[J] = Operands[J];
2161  continue;
2162  }
2163 
2164  Constant *Agg = Operands[J]->getAggregateElement(I);
2165  if (!Agg)
2166  return nullptr;
2167 
2168  Lane[J] = Agg;
2169  }
2170 
2171  // Use the regular scalar folding to simplify this column.
2172  Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, CS);
2173  if (!Folded)
2174  return nullptr;
2175  Result[I] = Folded;
2176  }
2177 
2178  return ConstantVector::get(Result);
2179 }
2180 
2181 } // end anonymous namespace
2182 
2183 Constant *
2185  ArrayRef<Constant *> Operands,
2186  const TargetLibraryInfo *TLI) {
2187  if (CS.isNoBuiltin() || CS.isStrictFP())
2188  return nullptr;
2189  if (!F->hasName())
2190  return nullptr;
2191  StringRef Name = F->getName();
2192 
2193  Type *Ty = F->getReturnType();
2194 
2195  if (auto *VTy = dyn_cast<VectorType>(Ty))
2196  return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands,
2197  F->getParent()->getDataLayout(), TLI, CS);
2198 
2199  return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, CS);
2200 }
2201 
2203  // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
2204  // (and to some extent ConstantFoldScalarCall).
2205  if (CS.isNoBuiltin() || CS.isStrictFP())
2206  return false;
2207  Function *F = CS.getCalledFunction();
2208  if (!F)
2209  return false;
2210 
2211  LibFunc Func;
2212  if (!TLI || !TLI->getLibFunc(*F, Func))
2213  return false;
2214 
2215  if (CS.getNumArgOperands() == 1) {
2216  if (ConstantFP *OpC = dyn_cast<ConstantFP>(CS.getArgOperand(0))) {
2217  const APFloat &Op = OpC->getValueAPF();
2218  switch (Func) {
2219  case LibFunc_logl:
2220  case LibFunc_log:
2221  case LibFunc_logf:
2222  case LibFunc_log2l:
2223  case LibFunc_log2:
2224  case LibFunc_log2f:
2225  case LibFunc_log10l:
2226  case LibFunc_log10:
2227  case LibFunc_log10f:
2228  return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
2229 
2230  case LibFunc_expl:
2231  case LibFunc_exp:
2232  case LibFunc_expf:
2233  // FIXME: These boundaries are slightly conservative.
2234  if (OpC->getType()->isDoubleTy())
2235  return Op.compare(APFloat(-745.0)) != APFloat::cmpLessThan &&
2236  Op.compare(APFloat(709.0)) != APFloat::cmpGreaterThan;
2237  if (OpC->getType()->isFloatTy())
2238  return Op.compare(APFloat(-103.0f)) != APFloat::cmpLessThan &&
2239  Op.compare(APFloat(88.0f)) != APFloat::cmpGreaterThan;
2240  break;
2241 
2242  case LibFunc_exp2l:
2243  case LibFunc_exp2:
2244  case LibFunc_exp2f:
2245  // FIXME: These boundaries are slightly conservative.
2246  if (OpC->getType()->isDoubleTy())
2247  return Op.compare(APFloat(-1074.0)) != APFloat::cmpLessThan &&
2248  Op.compare(APFloat(1023.0)) != APFloat::cmpGreaterThan;
2249  if (OpC->getType()->isFloatTy())
2250  return Op.compare(APFloat(-149.0f)) != APFloat::cmpLessThan &&
2251  Op.compare(APFloat(127.0f)) != APFloat::cmpGreaterThan;
2252  break;
2253 
2254  case LibFunc_sinl:
2255  case LibFunc_sin:
2256  case LibFunc_sinf:
2257  case LibFunc_cosl:
2258  case LibFunc_cos:
2259  case LibFunc_cosf:
2260  return !Op.isInfinity();
2261 
2262  case LibFunc_tanl:
2263  case LibFunc_tan:
2264  case LibFunc_tanf: {
2265  // FIXME: Stop using the host math library.
2266  // FIXME: The computation isn't done in the right precision.
2267  Type *Ty = OpC->getType();
2268  if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
2269  double OpV = getValueAsDouble(OpC);
2270  return ConstantFoldFP(tan, OpV, Ty) != nullptr;
2271  }
2272  break;
2273  }
2274 
2275  case LibFunc_asinl:
2276  case LibFunc_asin:
2277  case LibFunc_asinf:
2278  case LibFunc_acosl:
2279  case LibFunc_acos:
2280  case LibFunc_acosf:
2281  return Op.compare(APFloat(Op.getSemantics(), "-1")) !=
2283  Op.compare(APFloat(Op.getSemantics(), "1")) !=
2285 
2286  case LibFunc_sinh:
2287  case LibFunc_cosh:
2288  case LibFunc_sinhf:
2289  case LibFunc_coshf:
2290  case LibFunc_sinhl:
2291  case LibFunc_coshl:
2292  // FIXME: These boundaries are slightly conservative.
2293  if (OpC->getType()->isDoubleTy())
2294  return Op.compare(APFloat(-710.0)) != APFloat::cmpLessThan &&
2295  Op.compare(APFloat(710.0)) != APFloat::cmpGreaterThan;
2296  if (OpC->getType()->isFloatTy())
2297  return Op.compare(APFloat(-89.0f)) != APFloat::cmpLessThan &&
2298  Op.compare(APFloat(89.0f)) != APFloat::cmpGreaterThan;
2299  break;
2300 
2301  case LibFunc_sqrtl:
2302  case LibFunc_sqrt:
2303  case LibFunc_sqrtf:
2304  return Op.isNaN() || Op.isZero() || !Op.isNegative();
2305 
2306  // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
2307  // maybe others?
2308  default:
2309  break;
2310  }
2311  }
2312  }
2313 
2314  if (CS.getNumArgOperands() == 2) {
2315  ConstantFP *Op0C = dyn_cast<ConstantFP>(CS.getArgOperand(0));
2316  ConstantFP *Op1C = dyn_cast<ConstantFP>(CS.getArgOperand(1));
2317  if (Op0C && Op1C) {
2318  const APFloat &Op0 = Op0C->getValueAPF();
2319  const APFloat &Op1 = Op1C->getValueAPF();
2320 
2321  switch (Func) {
2322  case LibFunc_powl:
2323  case LibFunc_pow:
2324  case LibFunc_powf: {
2325  // FIXME: Stop using the host math library.
2326  // FIXME: The computation isn't done in the right precision.
2327  Type *Ty = Op0C->getType();
2328  if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
2329  if (Ty == Op1C->getType()) {
2330  double Op0V = getValueAsDouble(Op0C);
2331  double Op1V = getValueAsDouble(Op1C);
2332  return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr;
2333  }
2334  }
2335  break;
2336  }
2337 
2338  case LibFunc_fmodl:
2339  case LibFunc_fmod:
2340  case LibFunc_fmodf:
2341  return Op0.isNaN() || Op1.isNaN() ||
2342  (!Op0.isInfinity() && !Op1.isZero());
2343 
2344  default:
2345  break;
2346  }
2347  }
2348  }
2349 
2350  return false;
2351 }
Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
opStatus roundToIntegral(roundingMode RM)
Definition: APFloat.h:1008
Type * getVectorElementType() const
Definition: Type.h:371
uint64_t CallInst * C
static Constant * FoldBitCast(Constant *V, Type *DestTy)
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, OptimizationRemarkEmitter *ORE=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
Definition: Any.h:27
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
bool isZero() const
Definition: APFloat.h:1143
bool isAllOnesValue() const
Return true if this is the value that would be returned by getAllOnesValue.
Definition: Constants.cpp:100
static IntegerType * getInt1Ty(LLVMContext &C)
Definition: Type.cpp:173
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1557
const T & back() const
back - Get the last element.
Definition: ArrayRef.h:158
MutableArrayRef< T > makeMutableArrayRef(T &OneElt)
Construct a MutableArrayRef from a single element.
Definition: ArrayRef.h:503
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
Constant * ConstantFoldLoadThroughGEPConstantExpr(Constant *C, ConstantExpr *CE)
ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a getelementptr constantexpr, return the constant value being addressed by the constant expression, or null if something is funny and we can&#39;t decide.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant *> IdxList, bool InBounds=false, Optional< unsigned > InRangeIndex=None, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
Definition: Constants.h:1143
bool isSized(SmallPtrSetImpl< Type *> *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition: Type.h:265
const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
Definition: DataLayout.cpp:588
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE size_t size() const
size - Get the string size.
Definition: StringRef.h:138
Optional< unsigned > getInRangeIndex() const
Returns the offset of the index with an inrange attachment, or None if none.
Definition: Operator.h:457
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Get a value with low bits set.
Definition: APInt.h:648
static uint64_t round(uint64_t Acc, uint64_t Input)
Definition: xxhash.cpp:57
static Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1737
float convertToFloat() const
Definition: APFloat.h:1098
static Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
Definition: Constants.cpp:2051
bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL)
If this constant is a constant offset from a global, return the global and the constant.
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:714
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1042
F(f)
const fltSemantics & getSemantics() const
Definition: APFloat.h:1155
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: DerivedTypes.h:503
An instruction for reading from memory.
Definition: Instructions.h:168
static IntegerType * getInt64Ty(LLVMContext &C)
Definition: Type.cpp:177
APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition: APInt.cpp:876
static Constant * getCompare(unsigned short pred, Constant *C1, Constant *C2, bool OnlyIfReduced=false)
Return an ICmp or FCmp comparison operator constant expression.
Definition: Constants.cpp:1903
Hexagon Common GEP
static Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2197
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:230
static IntegerType * getInt16Ty(LLVMContext &C)
Definition: Type.cpp:175
op_iterator op_begin()
Definition: User.h:230
unsigned getBitWidth() const
getBitWidth - Return the bitwidth of this constant.
Definition: Constants.h:143
unsigned getElementContainingOffset(uint64_t Offset) const
Given a valid byte offset into the structure, returns the structure index that contains it...
Definition: DataLayout.cpp:84
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1503
static Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
Definition: Constants.cpp:2073
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:130
static Constant * getNullValue(Type *Ty)
Constructor to create a &#39;0&#39; constant of arbitrary type.
Definition: Constants.cpp:268
amode Optimize addressing mode
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Definition: APFloat.h:1069
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition: DataLayout.h:521
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Definition: Instructions.h:221
static Constant * getIntegerCast(Constant *C, Type *Ty, bool isSigned)
Create a ZExt, Bitcast or Trunc for integer -> integer casts.
Definition: Constants.cpp:1590
static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy)
This method can be used to determine if a cast from S to DstTy using Opcode op is valid or not...
Type * getPointerElementType() const
Definition: Type.h:376
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:364
unsigned getPointerTypeSizeInBits(Type *) const
Layout pointer size, in bits, based on the type.
Definition: DataLayout.cpp:638
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:451
bool isFloatingPointTy() const
Return true if this is one of the six floating-point types.
Definition: Type.h:162
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition: APInt.h:993
roundingMode
IEEE-754R 4.3: Rounding-direction attributes.
Definition: APFloat.h:174
APInt zextOrSelf(unsigned width) const
Zero extend or truncate to width.
Definition: APInt.cpp:892
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
static Constant * getLShr(Constant *C1, Constant *C2, bool isExact=false)
Definition: Constants.cpp:2264
PointerType * getPointerTo(unsigned AddrSpace=0) const
Return a pointer to the current type.
Definition: Type.cpp:639
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:197
Windows NT (Windows on ARM)
iterator_range< const unsigned char * > bytes() const
Definition: StringRef.h:116
uint64_t getNumElements() const
Definition: DerivedTypes.h:359
This file implements a class to represent arbitrary precision integral constant values and operations...
auto reverse(ContainerTy &&C, typename std::enable_if< has_rbegin< ContainerTy >::value >::type *=nullptr) -> decltype(make_range(C.rbegin(), C.rend()))
Definition: STLExtras.h:251
Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Attempt to fold the constant using the specified DataLayout.
static Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible. ...
Definition: Constants.cpp:1783
static Constant * getZExt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1642
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition: Constants.cpp:85
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:885
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1569
bool isInfinity() const
Definition: APFloat.h:1144
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition: APFloat.cpp:4444
ValTy * getArgOperand(unsigned i) const
Definition: CallSite.h:297
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Definition: CallSite.h:428
bool isInBounds() const
Test whether this is an inbounds GEP, as defined by LangRef.html.
Definition: Operator.h:451
bool has(LibFunc F) const
Tests whether a library function is available.
static Constant * getSelect(Constant *C, Constant *V1, Constant *V2, Type *OnlyIfReducedTy=nullptr)
Select constant expr.
Definition: Constants.cpp:1925
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:133
bool isMathLibCallNoop(CallSite CS, const TargetLibraryInfo *TLI)
Check whether the given call has no side-effects.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
bool isLittleEndian() const
Layout endianness...
Definition: DataLayout.h:221
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:126
static const fltSemantics & IEEEdouble() LLVM_READNONE
Definition: APFloat.cpp:123
Value * getOperand(unsigned i) const
Definition: User.h:170
Class to represent pointers.
Definition: DerivedTypes.h:467
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:338
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return &#39;this&#39;.
Definition: Type.h:304
static Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1750
bool isFloatTy() const
Return true if this is &#39;float&#39;, a 32-bit IEEE fp type.
Definition: Type.h:147
IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space...
Definition: DataLayout.cpp:742
static Constant * getInsertValue(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs, Type *OnlyIfReducedTy=nullptr)
Definition: Constants.cpp:2119
bool isNegative() const
Determine sign of this APInt.
Definition: APInt.h:364
bool isStrictFP() const
Return true if the call requires strict floating point semantics.
Definition: CallSite.h:433
Type * getReturnType() const
Returns the type of the ret val.
Definition: Function.h:169
bool isNegative() const
Definition: APFloat.h:1147
bool hasName() const
Definition: Value.h:251
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
std::error_code status(const Twine &path, file_status &result, bool follow=true)
Get file status as if by POSIX stat().
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:149
bool isNaN() const
Definition: APFloat.h:1145
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
const APInt & getConstant() const
Returns the value when all bits have a known value.
Definition: KnownBits.h:57
This file contains the declarations for the subclasses of Constant, which represent the different fla...
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:224
static Constant * getAnd(Constant *C1, Constant *C2)
Definition: Constants.cpp:2245
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:264
APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1888
Constant * ConstantFoldInstruction(Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
double convertToDouble() const
Definition: APFloat.h:1097
static Constant * getShuffleVector(Constant *V1, Constant *V2, Constant *Mask, Type *OnlyIfReducedTy=nullptr)
Definition: Constants.cpp:2096
op_iterator op_end()
Definition: User.h:232
This file declares a class to represent arbitrary precision floating point values and provide a varie...
bool isHalfTy() const
Return true if this is &#39;half&#39;, a 16-bit IEEE fp type.
Definition: Type.h:144
bool isConstant() const
Returns true if we know the value of all bits.
Definition: KnownBits.h:50
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:685
bool isBinaryOp() const
Definition: Instruction.h:130
static Constant * get(StructType *T, ArrayRef< Constant *> V)
Definition: Constants.cpp:1021
op_range operands()
Definition: User.h:238
bool isX86_MMXTy() const
Return true if this is X86 MMX.
Definition: Type.h:182
Class to represent integer types.
Definition: DerivedTypes.h:40
unsigned getIndexTypeSizeInBits(Type *Ty) const
Layout size of the index used in GEP calculation.
Definition: DataLayout.cpp:654
Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, const DataLayout &DL)
ConstantFoldLoadFromConstPtr - Return the value that a load from C would produce if it is constant an...
static double log2(double V)
static Constant * getAllOnesValue(Type *Ty)
Definition: Constants.cpp:322
static UndefValue * get(Type *T)
Static factory methods - Return an &#39;undef&#39; object of the specified type.
Definition: Constants.cpp:1392
const Constant * stripPointerCasts() const
Definition: Constant.h:173
unsigned getNumArgOperands() const
Definition: CallSite.h:293
bool isCast() const
Definition: Instruction.h:133
size_t size() const
Definition: SmallVector.h:53
Constant * ConstantFoldLoadThroughGEPIndices(Constant *C, ArrayRef< Constant *> Indices)
ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr indices (with an implied zero ...
static wasm::ValType getType(const TargetRegisterClass *RC)
APInt uadd_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1882
Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldCompareInstOperands - Attempt to constant fold a compare instruction (icmp/fcmp) with the...
Value * GetUnderlyingObject(Value *V, const DataLayout &DL, unsigned MaxLookup=6)
This method strips off any GEP address adjustments and pointer casts from the specified value...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
void copySign(const APFloat &RHS)
Definition: APFloat.h:1055
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE maxNum semantics.
Definition: APFloat.h:1238
const T * data() const
Definition: ArrayRef.h:146
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition: APInt.h:971
const APFloat & getValueAPF() const
Definition: Constants.h:299
static Constant * getPointerCast(Constant *C, Type *Ty)
Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant expression.
Definition: Constants.cpp:1564
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
Definition: Type.h:227
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:240
Type * getSequentialElementType() const
Definition: Type.h:358
unsigned getNumOperands() const
Definition: User.h:192
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
static const fltSemantics & IEEEhalf() LLVM_READNONE
Definition: APFloat.cpp:117
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type...
Definition: Type.cpp:130
double Log2(double Value)
Return the log base 2 of the specified value.
Definition: MathExtras.h:528
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
Provides information about what library functions are available for the current target.
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
Definition: PPCPredicates.h:27
bool isAggregateType() const
Return true if the type is an aggregate type.
Definition: Type.h:258
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition: Type.cpp:180
static Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1614
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:621
static Constant * get(Type *Ty, double V)
This returns a ConstantFP, or a vector containing a splat of a ConstantFP, for the specified value in...
Definition: Constants.cpp:684
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1287
bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
Definition: Function.cpp:1440
BBTy * getParent() const
Get the basic block containing the call site.
Definition: CallSite.h:97
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition: Function.h:194
unsigned getVectorNumElements() const
Definition: DerivedTypes.h:462
Class to represent vector types.
Definition: DerivedTypes.h:393
Class for arbitrary precision integers.
Definition: APInt.h:70
static Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
Definition: Constants.cpp:1507
Type * getResultElementType() const
Definition: Operator.cpp:29
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array...
Definition: ArrayRef.h:179
void append(in_iter in_start, in_iter in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:394
bool isNonIntegralPointerType(PointerType *PT) const
Definition: DataLayout.h:346
uint64_t getTypeSizeInBits(Type *Ty) const
Size examples:
Definition: DataLayout.h:560
uint64_t getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Definition: DataLayout.h:428
opStatus
IEEE-754R 7: Default exception handling.
Definition: APFloat.h:185
FunTy * getCaller() const
Return the caller function for this call site.
Definition: CallSite.h:267
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:543
static Type * getIndexedType(Type *Ty, ArrayRef< Value *> IdxList)
Returns the type of the element that would be loaded with a load instruction with the specified param...
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:176
unsigned getIntegerBitWidth() const
Definition: DerivedTypes.h:97
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:224
Establish a view to a call site for examination.
Definition: CallSite.h:714
APInt smul_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1907
static Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static Constant * getPtrToInt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1724
#define I(x, y, z)
Definition: MD5.cpp:58
static Constant * getOr(Constant *C1, Constant *C2)
Definition: Constants.cpp:2249
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
Constant * ConstantFoldInstOperands(Instruction *I, ArrayRef< Constant *> Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands...
static Constant * getShl(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2257
APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1917
bool getConstantStringInfo(const Value *V, StringRef &Str, uint64_t Offset=0, bool TrimAtNul=true)
This function computes the length of a null-terminated C string pointed to by V.
FunTy * getCalledFunction() const
Return the function being called if this is a direct call, otherwise return null (if it&#39;s an indirect...
Definition: CallSite.h:107
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
Definition: APFloat.h:995
APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1875
unsigned getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition: Type.cpp:115
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:566
LLVM Value Representation.
Definition: Value.h:73
Constant * ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, const DataLayout &DL)
ConstantFoldLoadThroughBitcast - try to cast constant to destination type returning null if unsuccess...
static VectorType * get(Type *ElementType, unsigned NumElements)
This static method is the primary way to construct an VectorType.
Definition: Type.cpp:593
bool canConstantFoldCallTo(ImmutableCallSite CS, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function...
std::underlying_type< E >::type Mask()
Get a bitmask with 1s in all places up to the high-order bit of E&#39;s largest value.
Definition: BitmaskEnum.h:81
uint64_t getTypeAllocSizeInBits(Type *Ty) const
Returns the offset in bits between successive objects of the specified type, including alignment padd...
Definition: DataLayout.h:438
Type * getElementType() const
Definition: DerivedTypes.h:360
static Constant * getExtractValue(Constant *Agg, ArrayRef< unsigned > Idxs, Type *OnlyIfReducedTy=nullptr)
Definition: Constants.cpp:2143
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition: InstrTypes.h:799
Type * getSourceElementType() const
Definition: Operator.cpp:23
APInt bitcastToAPInt() const
Definition: APFloat.h:1094
bool isDoubleTy() const
Return true if this is &#39;double&#39;, a 64-bit IEEE fp type.
Definition: Type.h:150
Constant * ConstantFoldCall(ImmutableCallSite CS, Function *F, ArrayRef< Constant *> Operands, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
static Constant * get(ArrayRef< Constant *> V)
Definition: Constants.cpp:1056
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE minNum semantics.
Definition: APFloat.h:1227
int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef< Value *> Indices) const
Returns the offset from the beginning of the type for the specified indices.
Definition: DataLayout.cpp:779
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:274
bool isNullValue() const
Determine if all bits are clear.
Definition: APInt.h:406
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:218
cmpResult compare(const APFloat &RHS) const
Definition: APFloat.h:1102
APInt sdiv_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1901
const fltSemantics & getFltSemantics() const
Definition: Type.h:169
APInt usub_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1895
Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.