LLVM  6.0.0svn
CoroSplit.cpp
Go to the documentation of this file.
1 //===- CoroSplit.cpp - Converts a coroutine into a state machine ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // This pass builds the coroutine frame and outlines resume and destroy parts
10 // of the coroutine into separate functions.
11 //
12 // We present a coroutine to an LLVM as an ordinary function with suspension
13 // points marked up with intrinsics. We let the optimizer party on the coroutine
14 // as a single function for as long as possible. Shortly before the coroutine is
15 // eligible to be inlined into its callers, we split up the coroutine into parts
16 // corresponding to an initial, resume and destroy invocations of the coroutine,
17 // add them to the current SCC and restart the IPO pipeline to optimize the
18 // coroutine subfunctions we extracted before proceeding to the caller of the
19 // coroutine.
20 //===----------------------------------------------------------------------===//
21 
22 #include "CoroInstr.h"
23 #include "CoroInternal.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Twine.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InstIterator.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/Verifier.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/Debug.h"
59 #include "llvm/Transforms/Scalar.h"
64 #include <cassert>
65 #include <cstddef>
66 #include <cstdint>
67 #include <initializer_list>
68 #include <iterator>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "coro-split"
73 
74 // Create an entry block for a resume function with a switch that will jump to
75 // suspend points.
77  LLVMContext &C = F.getContext();
78 
79  // resume.entry:
80  // %index.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i32 0,
81  // i32 2
82  // % index = load i32, i32* %index.addr
83  // switch i32 %index, label %unreachable [
84  // i32 0, label %resume.0
85  // i32 1, label %resume.1
86  // ...
87  // ]
88 
89  auto *NewEntry = BasicBlock::Create(C, "resume.entry", &F);
90  auto *UnreachBB = BasicBlock::Create(C, "unreachable", &F);
91 
92  IRBuilder<> Builder(NewEntry);
93  auto *FramePtr = Shape.FramePtr;
94  auto *FrameTy = Shape.FrameTy;
95  auto *GepIndex = Builder.CreateConstInBoundsGEP2_32(
96  FrameTy, FramePtr, 0, coro::Shape::IndexField, "index.addr");
97  auto *Index = Builder.CreateLoad(GepIndex, "index");
98  auto *Switch =
99  Builder.CreateSwitch(Index, UnreachBB, Shape.CoroSuspends.size());
100  Shape.ResumeSwitch = Switch;
101 
102  size_t SuspendIndex = 0;
103  for (CoroSuspendInst *S : Shape.CoroSuspends) {
104  ConstantInt *IndexVal = Shape.getIndex(SuspendIndex);
105 
106  // Replace CoroSave with a store to Index:
107  // %index.addr = getelementptr %f.frame... (index field number)
108  // store i32 0, i32* %index.addr1
109  auto *Save = S->getCoroSave();
110  Builder.SetInsertPoint(Save);
111  if (S->isFinal()) {
112  // Final suspend point is represented by storing zero in ResumeFnAddr.
113  auto *GepIndex = Builder.CreateConstInBoundsGEP2_32(FrameTy, FramePtr, 0,
114  0, "ResumeFn.addr");
115  auto *NullPtr = ConstantPointerNull::get(cast<PointerType>(
116  cast<PointerType>(GepIndex->getType())->getElementType()));
117  Builder.CreateStore(NullPtr, GepIndex);
118  } else {
119  auto *GepIndex = Builder.CreateConstInBoundsGEP2_32(
120  FrameTy, FramePtr, 0, coro::Shape::IndexField, "index.addr");
121  Builder.CreateStore(IndexVal, GepIndex);
122  }
124  Save->eraseFromParent();
125 
126  // Split block before and after coro.suspend and add a jump from an entry
127  // switch:
128  //
129  // whateverBB:
130  // whatever
131  // %0 = call i8 @llvm.coro.suspend(token none, i1 false)
132  // switch i8 %0, label %suspend[i8 0, label %resume
133  // i8 1, label %cleanup]
134  // becomes:
135  //
136  // whateverBB:
137  // whatever
138  // br label %resume.0.landing
139  //
140  // resume.0: ; <--- jump from the switch in the resume.entry
141  // %0 = tail call i8 @llvm.coro.suspend(token none, i1 false)
142  // br label %resume.0.landing
143  //
144  // resume.0.landing:
145  // %1 = phi i8[-1, %whateverBB], [%0, %resume.0]
146  // switch i8 % 1, label %suspend [i8 0, label %resume
147  // i8 1, label %cleanup]
148 
149  auto *SuspendBB = S->getParent();
150  auto *ResumeBB =
151  SuspendBB->splitBasicBlock(S, "resume." + Twine(SuspendIndex));
152  auto *LandingBB = ResumeBB->splitBasicBlock(
153  S->getNextNode(), ResumeBB->getName() + Twine(".landing"));
154  Switch->addCase(IndexVal, ResumeBB);
155 
156  cast<BranchInst>(SuspendBB->getTerminator())->setSuccessor(0, LandingBB);
157  auto *PN = PHINode::Create(Builder.getInt8Ty(), 2, "", &LandingBB->front());
158  S->replaceAllUsesWith(PN);
159  PN->addIncoming(Builder.getInt8(-1), SuspendBB);
160  PN->addIncoming(S, ResumeBB);
161 
162  ++SuspendIndex;
163  }
164 
165  Builder.SetInsertPoint(UnreachBB);
166  Builder.CreateUnreachable();
167 
168  return NewEntry;
169 }
170 
171 // In Resumers, we replace fallthrough coro.end with ret void and delete the
172 // rest of the block.
174  ValueToValueMapTy &VMap) {
175  auto *NewE = cast<IntrinsicInst>(VMap[End]);
176  ReturnInst::Create(NewE->getContext(), nullptr, NewE);
177 
178  // Remove the rest of the block, by splitting it into an unreachable block.
179  auto *BB = NewE->getParent();
180  BB->splitBasicBlock(NewE);
182 }
183 
184 // In Resumers, we replace unwind coro.end with True to force the immediate
185 // unwind to caller.
187  if (Shape.CoroEnds.empty())
188  return;
189 
190  LLVMContext &Context = Shape.CoroEnds.front()->getContext();
191  auto *True = ConstantInt::getTrue(Context);
192  for (CoroEndInst *CE : Shape.CoroEnds) {
193  if (!CE->isUnwind())
194  continue;
195 
196  auto *NewCE = cast<IntrinsicInst>(VMap[CE]);
197 
198  // If coro.end has an associated bundle, add cleanupret instruction.
199  if (auto Bundle = NewCE->getOperandBundle(LLVMContext::OB_funclet)) {
200  Value *FromPad = Bundle->Inputs[0];
201  auto *CleanupRet = CleanupReturnInst::Create(FromPad, nullptr, NewCE);
202  NewCE->getParent()->splitBasicBlock(NewCE);
203  CleanupRet->getParent()->getTerminator()->eraseFromParent();
204  }
205 
206  NewCE->replaceAllUsesWith(True);
207  NewCE->eraseFromParent();
208  }
209 }
210 
211 // Rewrite final suspend point handling. We do not use suspend index to
212 // represent the final suspend point. Instead we zero-out ResumeFnAddr in the
213 // coroutine frame, since it is undefined behavior to resume a coroutine
214 // suspended at the final suspend point. Thus, in the resume function, we can
215 // simply remove the last case (when coro::Shape is built, the final suspend
216 // point (if present) is always the last element of CoroSuspends array).
217 // In the destroy function, we add a code sequence to check if ResumeFnAddress
218 // is Null, and if so, jump to the appropriate label to handle cleanup from the
219 // final suspend point.
221  coro::Shape &Shape, SwitchInst *Switch,
222  bool IsDestroy) {
223  assert(Shape.HasFinalSuspend);
224  auto FinalCaseIt = std::prev(Switch->case_end());
225  BasicBlock *ResumeBB = FinalCaseIt->getCaseSuccessor();
226  Switch->removeCase(FinalCaseIt);
227  if (IsDestroy) {
228  BasicBlock *OldSwitchBB = Switch->getParent();
229  auto *NewSwitchBB = OldSwitchBB->splitBasicBlock(Switch, "Switch");
230  Builder.SetInsertPoint(OldSwitchBB->getTerminator());
231  auto *GepIndex = Builder.CreateConstInBoundsGEP2_32(Shape.FrameTy, FramePtr,
232  0, 0, "ResumeFn.addr");
233  auto *Load = Builder.CreateLoad(GepIndex);
234  auto *NullPtr =
235  ConstantPointerNull::get(cast<PointerType>(Load->getType()));
236  auto *Cond = Builder.CreateICmpEQ(Load, NullPtr);
237  Builder.CreateCondBr(Cond, ResumeBB, NewSwitchBB);
238  OldSwitchBB->getTerminator()->eraseFromParent();
239  }
240 }
241 
242 // Create a resume clone by cloning the body of the original function, setting
243 // new entry block and replacing coro.suspend an appropriate value to force
244 // resume or cleanup pass for every suspend point.
245 static Function *createClone(Function &F, Twine Suffix, coro::Shape &Shape,
246  BasicBlock *ResumeEntry, int8_t FnIndex) {
247  Module *M = F.getParent();
248  auto *FrameTy = Shape.FrameTy;
249  auto *FnPtrTy = cast<PointerType>(FrameTy->getElementType(0));
250  auto *FnTy = cast<FunctionType>(FnPtrTy->getElementType());
251 
252  Function *NewF =
253  Function::Create(FnTy, GlobalValue::LinkageTypes::InternalLinkage,
254  F.getName() + Suffix, M);
255  NewF->addParamAttr(0, Attribute::NonNull);
256  NewF->addParamAttr(0, Attribute::NoAlias);
257 
258  ValueToValueMapTy VMap;
259  // Replace all args with undefs. The buildCoroutineFrame algorithm already
260  // rewritten access to the args that occurs after suspend points with loads
261  // and stores to/from the coroutine frame.
262  for (Argument &A : F.args())
263  VMap[&A] = UndefValue::get(A.getType());
264 
266 
267  CloneFunctionInto(NewF, &F, VMap, /*ModuleLevelChanges=*/true, Returns);
268 
269  // Remove old returns.
270  for (ReturnInst *Return : Returns)
271  changeToUnreachable(Return, /*UseLLVMTrap=*/false);
272 
273  // Remove old return attributes.
274  NewF->removeAttributes(
276  AttributeFuncs::typeIncompatible(NewF->getReturnType()));
277 
278  // Make AllocaSpillBlock the new entry block.
279  auto *SwitchBB = cast<BasicBlock>(VMap[ResumeEntry]);
280  auto *Entry = cast<BasicBlock>(VMap[Shape.AllocaSpillBlock]);
281  Entry->moveBefore(&NewF->getEntryBlock());
282  Entry->getTerminator()->eraseFromParent();
283  BranchInst::Create(SwitchBB, Entry);
284  Entry->setName("entry" + Suffix);
285 
286  // Clear all predecessors of the new entry block.
287  auto *Switch = cast<SwitchInst>(VMap[Shape.ResumeSwitch]);
288  Entry->replaceAllUsesWith(Switch->getDefaultDest());
289 
290  IRBuilder<> Builder(&NewF->getEntryBlock().front());
291 
292  // Remap frame pointer.
293  Argument *NewFramePtr = &*NewF->arg_begin();
294  Value *OldFramePtr = cast<Value>(VMap[Shape.FramePtr]);
295  NewFramePtr->takeName(OldFramePtr);
296  OldFramePtr->replaceAllUsesWith(NewFramePtr);
297 
298  // Remap vFrame pointer.
299  auto *NewVFrame = Builder.CreateBitCast(
300  NewFramePtr, Type::getInt8PtrTy(Builder.getContext()), "vFrame");
301  Value *OldVFrame = cast<Value>(VMap[Shape.CoroBegin]);
302  OldVFrame->replaceAllUsesWith(NewVFrame);
303 
304  // Rewrite final suspend handling as it is not done via switch (allows to
305  // remove final case from the switch, since it is undefined behavior to resume
306  // the coroutine suspended at the final suspend point.
307  if (Shape.HasFinalSuspend) {
308  auto *Switch = cast<SwitchInst>(VMap[Shape.ResumeSwitch]);
309  bool IsDestroy = FnIndex != 0;
310  handleFinalSuspend(Builder, NewFramePtr, Shape, Switch, IsDestroy);
311  }
312 
313  // Replace coro suspend with the appropriate resume index.
314  // Replacing coro.suspend with (0) will result in control flow proceeding to
315  // a resume label associated with a suspend point, replacing it with (1) will
316  // result in control flow proceeding to a cleanup label associated with this
317  // suspend point.
318  auto *NewValue = Builder.getInt8(FnIndex ? 1 : 0);
319  for (CoroSuspendInst *CS : Shape.CoroSuspends) {
320  auto *MappedCS = cast<CoroSuspendInst>(VMap[CS]);
321  MappedCS->replaceAllUsesWith(NewValue);
322  MappedCS->eraseFromParent();
323  }
324 
325  // Remove coro.end intrinsics.
326  replaceFallthroughCoroEnd(Shape.CoroEnds.front(), VMap);
327  replaceUnwindCoroEnds(Shape, VMap);
328  // Eliminate coro.free from the clones, replacing it with 'null' in cleanup,
329  // to suppress deallocation code.
330  coro::replaceCoroFree(cast<CoroIdInst>(VMap[Shape.CoroBegin->getId()]),
331  /*Elide=*/FnIndex == 2);
332 
333  NewF->setCallingConv(CallingConv::Fast);
334 
335  return NewF;
336 }
337 
338 static void removeCoroEnds(coro::Shape &Shape) {
339  if (Shape.CoroEnds.empty())
340  return;
341 
342  LLVMContext &Context = Shape.CoroEnds.front()->getContext();
343  auto *False = ConstantInt::getFalse(Context);
344 
345  for (CoroEndInst *CE : Shape.CoroEnds) {
346  CE->replaceAllUsesWith(False);
347  CE->eraseFromParent();
348  }
349 }
350 
351 static void replaceFrameSize(coro::Shape &Shape) {
352  if (Shape.CoroSizes.empty())
353  return;
354 
355  // In the same function all coro.sizes should have the same result type.
356  auto *SizeIntrin = Shape.CoroSizes.back();
357  Module *M = SizeIntrin->getModule();
358  const DataLayout &DL = M->getDataLayout();
359  auto Size = DL.getTypeAllocSize(Shape.FrameTy);
360  auto *SizeConstant = ConstantInt::get(SizeIntrin->getType(), Size);
361 
362  for (CoroSizeInst *CS : Shape.CoroSizes) {
363  CS->replaceAllUsesWith(SizeConstant);
364  CS->eraseFromParent();
365  }
366 }
367 
368 // Create a global constant array containing pointers to functions provided and
369 // set Info parameter of CoroBegin to point at this constant. Example:
370 //
371 // @f.resumers = internal constant [2 x void(%f.frame*)*]
372 // [void(%f.frame*)* @f.resume, void(%f.frame*)* @f.destroy]
373 // define void @f() {
374 // ...
375 // call i8* @llvm.coro.begin(i8* null, i32 0, i8* null,
376 // i8* bitcast([2 x void(%f.frame*)*] * @f.resumers to i8*))
377 //
378 // Assumes that all the functions have the same signature.
379 static void setCoroInfo(Function &F, CoroBeginInst *CoroBegin,
380  std::initializer_list<Function *> Fns) {
381  SmallVector<Constant *, 4> Args(Fns.begin(), Fns.end());
382  assert(!Args.empty());
383  Function *Part = *Fns.begin();
384  Module *M = Part->getParent();
385  auto *ArrTy = ArrayType::get(Part->getType(), Args.size());
386 
387  auto *ConstVal = ConstantArray::get(ArrTy, Args);
388  auto *GV = new GlobalVariable(*M, ConstVal->getType(), /*isConstant=*/true,
390  F.getName() + Twine(".resumers"));
391 
392  // Update coro.begin instruction to refer to this constant.
393  LLVMContext &C = F.getContext();
395  CoroBegin->getId()->setInfo(BC);
396 }
397 
398 // Store addresses of Resume/Destroy/Cleanup functions in the coroutine frame.
399 static void updateCoroFrame(coro::Shape &Shape, Function *ResumeFn,
400  Function *DestroyFn, Function *CleanupFn) {
401  IRBuilder<> Builder(Shape.FramePtr->getNextNode());
402  auto *ResumeAddr = Builder.CreateConstInBoundsGEP2_32(
403  Shape.FrameTy, Shape.FramePtr, 0, coro::Shape::ResumeField,
404  "resume.addr");
405  Builder.CreateStore(ResumeFn, ResumeAddr);
406 
407  Value *DestroyOrCleanupFn = DestroyFn;
408 
409  CoroIdInst *CoroId = Shape.CoroBegin->getId();
410  if (CoroAllocInst *CA = CoroId->getCoroAlloc()) {
411  // If there is a CoroAlloc and it returns false (meaning we elide the
412  // allocation, use CleanupFn instead of DestroyFn).
413  DestroyOrCleanupFn = Builder.CreateSelect(CA, DestroyFn, CleanupFn);
414  }
415 
416  auto *DestroyAddr = Builder.CreateConstInBoundsGEP2_32(
417  Shape.FrameTy, Shape.FramePtr, 0, coro::Shape::DestroyField,
418  "destroy.addr");
419  Builder.CreateStore(DestroyOrCleanupFn, DestroyAddr);
420 }
421 
422 static void postSplitCleanup(Function &F) {
425 
426  FPM.add(createVerifierPass());
427  FPM.add(createSCCPPass());
428  FPM.add(createCFGSimplificationPass());
429  FPM.add(createEarlyCSEPass());
430  FPM.add(createCFGSimplificationPass());
431 
432  FPM.doInitialization();
433  FPM.run(F);
434  FPM.doFinalization();
435 }
436 
437 // Assuming we arrived at the block NewBlock from Prev instruction, store
438 // PHI's incoming values in the ResolvedValues map.
439 static void
441  DenseMap<Value *, Value *> &ResolvedValues) {
442  auto *PrevBB = Prev->getParent();
443  auto *I = &*NewBlock->begin();
444  while (auto PN = dyn_cast<PHINode>(I)) {
445  auto V = PN->getIncomingValueForBlock(PrevBB);
446  // See if we already resolved it.
447  auto VI = ResolvedValues.find(V);
448  if (VI != ResolvedValues.end())
449  V = VI->second;
450  // Remember the value.
451  ResolvedValues[PN] = V;
452  I = I->getNextNode();
453  }
454 }
455 
456 // Replace a sequence of branches leading to a ret, with a clone of a ret
457 // instruction. Suspend instruction represented by a switch, track the PHI
458 // values and select the correct case successor when possible.
459 static bool simplifyTerminatorLeadingToRet(Instruction *InitialInst) {
460  DenseMap<Value *, Value *> ResolvedValues;
461 
462  Instruction *I = InitialInst;
463  while (isa<TerminatorInst>(I)) {
464  if (isa<ReturnInst>(I)) {
465  if (I != InitialInst)
466  ReplaceInstWithInst(InitialInst, I->clone());
467  return true;
468  }
469  if (auto *BR = dyn_cast<BranchInst>(I)) {
470  if (BR->isUnconditional()) {
471  BasicBlock *BB = BR->getSuccessor(0);
472  scanPHIsAndUpdateValueMap(I, BB, ResolvedValues);
474  continue;
475  }
476  } else if (auto *SI = dyn_cast<SwitchInst>(I)) {
477  Value *V = SI->getCondition();
478  auto it = ResolvedValues.find(V);
479  if (it != ResolvedValues.end())
480  V = it->second;
481  if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
482  BasicBlock *BB = SI->findCaseValue(Cond)->getCaseSuccessor();
483  scanPHIsAndUpdateValueMap(I, BB, ResolvedValues);
485  continue;
486  }
487  }
488  return false;
489  }
490  return false;
491 }
492 
493 // Add musttail to any resume instructions that is immediately followed by a
494 // suspend (i.e. ret). We do this even in -O0 to support guaranteed tail call
495 // for symmetrical coroutine control transfer (C++ Coroutines TS extension).
496 // This transformation is done only in the resume part of the coroutine that has
497 // identical signature and calling convention as the coro.resume call.
499  bool changed = false;
500 
501  // Collect potential resume instructions.
503  for (auto &I : instructions(F))
504  if (auto *Call = dyn_cast<CallInst>(&I))
505  if (auto *CalledValue = Call->getCalledValue())
506  // CoroEarly pass replaced coro resumes with indirect calls to an
507  // address return by CoroSubFnInst intrinsic. See if it is one of those.
508  if (isa<CoroSubFnInst>(CalledValue->stripPointerCasts()))
509  Resumes.push_back(Call);
510 
511  // Set musttail on those that are followed by a ret instruction.
512  for (CallInst *Call : Resumes)
513  if (simplifyTerminatorLeadingToRet(Call->getNextNode())) {
514  Call->setTailCallKind(CallInst::TCK_MustTail);
515  changed = true;
516  }
517 
518  if (changed)
520 }
521 
522 // Coroutine has no suspend points. Remove heap allocation for the coroutine
523 // frame if possible.
524 static void handleNoSuspendCoroutine(CoroBeginInst *CoroBegin, Type *FrameTy) {
525  auto *CoroId = CoroBegin->getId();
526  auto *AllocInst = CoroId->getCoroAlloc();
527  coro::replaceCoroFree(CoroId, /*Elide=*/AllocInst != nullptr);
528  if (AllocInst) {
529  IRBuilder<> Builder(AllocInst);
530  // FIXME: Need to handle overaligned members.
531  auto *Frame = Builder.CreateAlloca(FrameTy);
532  auto *VFrame = Builder.CreateBitCast(Frame, Builder.getInt8PtrTy());
533  AllocInst->replaceAllUsesWith(Builder.getFalse());
534  AllocInst->eraseFromParent();
535  CoroBegin->replaceAllUsesWith(VFrame);
536  } else {
537  CoroBegin->replaceAllUsesWith(CoroBegin->getMem());
538  }
539  CoroBegin->eraseFromParent();
540 }
541 
542 // look for a very simple pattern
543 // coro.save
544 // no other calls
545 // resume or destroy call
546 // coro.suspend
547 //
548 // If there are other calls between coro.save and coro.suspend, they can
549 // potentially resume or destroy the coroutine, so it is unsafe to eliminate a
550 // suspend point.
552  CoroBeginInst *CoroBegin) {
553  auto *Save = Suspend->getCoroSave();
554  auto *BB = Suspend->getParent();
555  if (BB != Save->getParent())
556  return false;
557 
558  CallSite SingleCallSite;
559 
560  // Check that we have only one CallSite.
561  for (Instruction *I = Save->getNextNode(); I != Suspend;
562  I = I->getNextNode()) {
563  if (isa<CoroFrameInst>(I))
564  continue;
565  if (isa<CoroSubFnInst>(I))
566  continue;
567  if (CallSite CS = CallSite(I)) {
568  if (SingleCallSite)
569  return false;
570  else
571  SingleCallSite = CS;
572  }
573  }
574  auto *CallInstr = SingleCallSite.getInstruction();
575  if (!CallInstr)
576  return false;
577 
578  auto *Callee = SingleCallSite.getCalledValue()->stripPointerCasts();
579 
580  // See if the callsite is for resumption or destruction of the coroutine.
581  auto *SubFn = dyn_cast<CoroSubFnInst>(Callee);
582  if (!SubFn)
583  return false;
584 
585  // Does not refer to the current coroutine, we cannot do anything with it.
586  if (SubFn->getFrame() != CoroBegin)
587  return false;
588 
589  // Replace llvm.coro.suspend with the value that results in resumption over
590  // the resume or cleanup path.
591  Suspend->replaceAllUsesWith(SubFn->getRawIndex());
592  Suspend->eraseFromParent();
593  Save->eraseFromParent();
594 
595  // No longer need a call to coro.resume or coro.destroy.
596  CallInstr->eraseFromParent();
597 
598  if (SubFn->user_empty())
599  SubFn->eraseFromParent();
600 
601  return true;
602 }
603 
604 // Remove suspend points that are simplified.
605 static void simplifySuspendPoints(coro::Shape &Shape) {
606  auto &S = Shape.CoroSuspends;
607  size_t I = 0, N = S.size();
608  if (N == 0)
609  return;
610  while (true) {
611  if (simplifySuspendPoint(S[I], Shape.CoroBegin)) {
612  if (--N == I)
613  break;
614  std::swap(S[I], S[N]);
615  continue;
616  }
617  if (++I == N)
618  break;
619  }
620  S.resize(N);
621 }
622 
624  // Collect all blocks that we need to look for instructions to relocate.
625  SmallPtrSet<BasicBlock *, 4> RelocBlocks;
627  Work.push_back(CB->getParent());
628 
629  do {
630  BasicBlock *Current = Work.pop_back_val();
631  for (BasicBlock *BB : predecessors(Current))
632  if (RelocBlocks.count(BB) == 0) {
633  RelocBlocks.insert(BB);
634  Work.push_back(BB);
635  }
636  } while (!Work.empty());
637  return RelocBlocks;
638 }
639 
642  SmallPtrSetImpl<BasicBlock *> &RelocBlocks) {
643  SmallPtrSet<Instruction *, 8> DoNotRelocate;
644  // Collect all instructions that we should not relocate
646 
647  // Start with CoroBegin and terminators of all preceding blocks.
648  Work.push_back(CoroBegin);
649  BasicBlock *CoroBeginBB = CoroBegin->getParent();
650  for (BasicBlock *BB : RelocBlocks)
651  if (BB != CoroBeginBB)
652  Work.push_back(BB->getTerminator());
653 
654  // For every instruction in the Work list, place its operands in DoNotRelocate
655  // set.
656  do {
657  Instruction *Current = Work.pop_back_val();
658  DoNotRelocate.insert(Current);
659  for (Value *U : Current->operands()) {
660  auto *I = dyn_cast<Instruction>(U);
661  if (!I)
662  continue;
663  if (isa<AllocaInst>(U))
664  continue;
665  if (DoNotRelocate.count(I) == 0) {
666  Work.push_back(I);
667  DoNotRelocate.insert(I);
668  }
669  }
670  } while (!Work.empty());
671  return DoNotRelocate;
672 }
673 
675  // Analyze which non-alloca instructions are needed for allocation and
676  // relocate the rest to after coro.begin. We need to do it, since some of the
677  // targets of those instructions may be placed into coroutine frame memory
678  // for which becomes available after coro.begin intrinsic.
679 
680  auto BlockSet = getCoroBeginPredBlocks(CoroBegin);
681  auto DoNotRelocateSet = getNotRelocatableInstructions(CoroBegin, BlockSet);
682 
683  Instruction *InsertPt = CoroBegin->getNextNode();
684  BasicBlock &BB = F.getEntryBlock(); // TODO: Look at other blocks as well.
685  for (auto B = BB.begin(), E = BB.end(); B != E;) {
686  Instruction &I = *B++;
687  if (isa<AllocaInst>(&I))
688  continue;
689  if (&I == CoroBegin)
690  break;
691  if (DoNotRelocateSet.count(&I))
692  continue;
693  I.moveBefore(InsertPt);
694  }
695 }
696 
697 static void splitCoroutine(Function &F, CallGraph &CG, CallGraphSCC &SCC) {
698  coro::Shape Shape(F);
699  if (!Shape.CoroBegin)
700  return;
701 
702  simplifySuspendPoints(Shape);
704  buildCoroutineFrame(F, Shape);
705  replaceFrameSize(Shape);
706 
707  // If there are no suspend points, no split required, just remove
708  // the allocation and deallocation blocks, they are not needed.
709  if (Shape.CoroSuspends.empty()) {
711  removeCoroEnds(Shape);
712  postSplitCleanup(F);
713  coro::updateCallGraph(F, {}, CG, SCC);
714  return;
715  }
716 
717  auto *ResumeEntry = createResumeEntryBlock(F, Shape);
718  auto ResumeClone = createClone(F, ".resume", Shape, ResumeEntry, 0);
719  auto DestroyClone = createClone(F, ".destroy", Shape, ResumeEntry, 1);
720  auto CleanupClone = createClone(F, ".cleanup", Shape, ResumeEntry, 2);
721 
722  // We no longer need coro.end in F.
723  removeCoroEnds(Shape);
724 
725  postSplitCleanup(F);
726  postSplitCleanup(*ResumeClone);
727  postSplitCleanup(*DestroyClone);
728  postSplitCleanup(*CleanupClone);
729 
730  addMustTailToCoroResumes(*ResumeClone);
731 
732  // Store addresses resume/destroy/cleanup functions in the coroutine frame.
733  updateCoroFrame(Shape, ResumeClone, DestroyClone, CleanupClone);
734 
735  // Create a constant array referring to resume/destroy/clone functions pointed
736  // by the last argument of @llvm.coro.info, so that CoroElide pass can
737  // determined correct function to call.
738  setCoroInfo(F, Shape.CoroBegin, {ResumeClone, DestroyClone, CleanupClone});
739 
740  // Update call graph and add the functions we created to the SCC.
741  coro::updateCallGraph(F, {ResumeClone, DestroyClone, CleanupClone}, CG, SCC);
742 }
743 
744 // When we see the coroutine the first time, we insert an indirect call to a
745 // devirt trigger function and mark the coroutine that it is now ready for
746 // split.
747 static void prepareForSplit(Function &F, CallGraph &CG) {
748  Module &M = *F.getParent();
749 #ifndef NDEBUG
751  assert(DevirtFn && "coro.devirt.trigger function not found");
752 #endif
753 
755 
756  // Insert an indirect call sequence that will be devirtualized by CoroElide
757  // pass:
758  // %0 = call i8* @llvm.coro.subfn.addr(i8* null, i8 -1)
759  // %1 = bitcast i8* %0 to void(i8*)*
760  // call void %1(i8* null)
761  coro::LowererBase Lowerer(M);
762  Instruction *InsertPt = F.getEntryBlock().getTerminator();
764  auto *DevirtFnAddr =
765  Lowerer.makeSubFnCall(Null, CoroSubFnInst::RestartTrigger, InsertPt);
766  auto *IndirectCall = CallInst::Create(DevirtFnAddr, Null, "", InsertPt);
767 
768  // Update CG graph with an indirect call we just added.
769  CG[&F]->addCalledFunction(IndirectCall, CG.getCallsExternalNode());
770 }
771 
772 // Make sure that there is a devirtualization trigger function that CoroSplit
773 // pass uses the force restart CGSCC pipeline. If devirt trigger function is not
774 // found, we will create one and add it to the current SCC.
776  Module &M = CG.getModule();
778  return;
779 
780  LLVMContext &C = M.getContext();
782  /*IsVarArgs=*/false);
783  Function *DevirtFn =
784  Function::Create(FnTy, GlobalValue::LinkageTypes::PrivateLinkage,
786  DevirtFn->addFnAttr(Attribute::AlwaysInline);
787  auto *Entry = BasicBlock::Create(C, "entry", DevirtFn);
788  ReturnInst::Create(C, Entry);
789 
790  auto *Node = CG.getOrInsertFunction(DevirtFn);
791 
792  SmallVector<CallGraphNode *, 8> Nodes(SCC.begin(), SCC.end());
793  Nodes.push_back(Node);
794  SCC.initialize(Nodes);
795 }
796 
797 //===----------------------------------------------------------------------===//
798 // Top Level Driver
799 //===----------------------------------------------------------------------===//
800 
801 namespace {
802 
803 struct CoroSplit : public CallGraphSCCPass {
804  static char ID; // Pass identification, replacement for typeid
805 
806  CoroSplit() : CallGraphSCCPass(ID) {
808  }
809 
810  bool Run = false;
811 
812  // A coroutine is identified by the presence of coro.begin intrinsic, if
813  // we don't have any, this pass has nothing to do.
814  bool doInitialization(CallGraph &CG) override {
815  Run = coro::declaresIntrinsics(CG.getModule(), {"llvm.coro.begin"});
817  }
818 
819  bool runOnSCC(CallGraphSCC &SCC) override {
820  if (!Run)
821  return false;
822 
823  // Find coroutines for processing.
824  SmallVector<Function *, 4> Coroutines;
825  for (CallGraphNode *CGN : SCC)
826  if (auto *F = CGN->getFunction())
827  if (F->hasFnAttribute(CORO_PRESPLIT_ATTR))
828  Coroutines.push_back(F);
829 
830  if (Coroutines.empty())
831  return false;
832 
833  CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
834  createDevirtTriggerFunc(CG, SCC);
835 
836  for (Function *F : Coroutines) {
837  Attribute Attr = F->getFnAttribute(CORO_PRESPLIT_ATTR);
839  DEBUG(dbgs() << "CoroSplit: Processing coroutine '" << F->getName()
840  << "' state: " << Value << "\n");
841  if (Value == UNPREPARED_FOR_SPLIT) {
842  prepareForSplit(*F, CG);
843  continue;
844  }
845  F->removeFnAttr(CORO_PRESPLIT_ATTR);
846  splitCoroutine(*F, CG, SCC);
847  }
848  return true;
849  }
850 
851  void getAnalysisUsage(AnalysisUsage &AU) const override {
853  }
854 
855  StringRef getPassName() const override { return "Coroutine Splitting"; }
856 };
857 
858 } // end anonymous namespace
859 
860 char CoroSplit::ID = 0;
861 
863  CoroSplit, "coro-split",
864  "Split coroutine into a set of functions driving its state machine", false,
865  false)
866 
867 Pass *llvm::createCoroSplitPass() { return new CoroSplit(); }
Pass interface - Implemented by all &#39;passes&#39;.
Definition: Pass.h:81
uint64_t CallInst * C
Return a value (possibly void), from a function.
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks &#39;this&#39; from the containing basic block and deletes it.
Definition: Instruction.cpp:69
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:109
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:523
static void createDevirtTriggerFunc(CallGraph &CG, CallGraphSCC &SCC)
Definition: CoroSplit.cpp:775
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional &#39;br Cond, TrueDest, FalseDest&#39; instruction.
Definition: IRBuilder.h:775
CaseIt case_end()
Returns a read/write iterator that points one past the last in the SwitchInst.
void ReplaceInstWithInst(BasicBlock::InstListType &BIL, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
Instruction * FramePtr
Definition: CoroInternal.h:83
static void setCoroInfo(Function &F, CoroBeginInst *CoroBegin, std::initializer_list< Function *> Fns)
Definition: CoroSplit.cpp:379
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
LLVMContext & Context
AllocaInst * CreateAlloca(Type *Ty, unsigned AddrSpace, Value *ArraySize=nullptr, const Twine &Name="")
Definition: IRBuilder.h:1152
CoroBeginInst * CoroBegin
Definition: CoroInternal.h:68
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:289
This represents the llvm.coro.alloc instruction.
Definition: CoroInstr.h:82
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
static void addMustTailToCoroResumes(Function &F)
Definition: CoroSplit.cpp:498
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
adds the attribute to the list of attributes for the given arg.
Definition: Function.cpp:365
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:63
static void splitCoroutine(Function &F, CallGraph &CG, CallGraphSCC &SCC)
Definition: CoroSplit.cpp:697
iterator end() const
Pass * createCoroSplitPass()
Split up coroutines into multiple functions driving their state machines.
static void relocateInstructionBefore(CoroBeginInst *CoroBegin, Function &F)
Definition: CoroSplit.cpp:674
This class represents a function call, abstracting a target machine&#39;s calling convention.
virtual bool doInitialization(CallGraph &CG)
doInitialization - This method is called before the SCC&#39;s of the program has been processed...
FunctionPass * createVerifierPass(bool FatalErrors=true)
Definition: Verifier.cpp:4977
Like Internal, but omit from symbol table.
Definition: GlobalValue.h:57
The two locations do not alias at all.
Definition: AliasAnalysis.h:85
F(f)
static CallInst * Create(Value *Func, ArrayRef< Value *> Args, ArrayRef< OperandBundleDef > Bundles=None, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
static void replaceFrameSize(coro::Shape &Shape)
Definition: CoroSplit.cpp:351
unsigned changeToUnreachable(Instruction *I, bool UseLLVMTrap, bool PreserveLCSSA=false)
Insert an unreachable instruction before the specified instruction, making it and the rest of the cod...
Definition: Local.cpp:1429
A node in the call graph for a module.
Definition: CallGraph.h:165
void getAnalysisUsage(AnalysisUsage &Info) const override
getAnalysisUsage - For this class, we declare that we require and preserve the call graph...
Module & getModule() const
Returns the module the call graph corresponds to.
Definition: CallGraph.h:114
static Constant * get(ArrayType *T, ArrayRef< Constant *> V)
Definition: Constants.cpp:888
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:344
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:252
static ReturnInst * Create(LLVMContext &C, Value *retVal=nullptr, Instruction *InsertBefore=nullptr)
static bool simplifySuspendPoint(CoroSuspendInst *Suspend, CoroBeginInst *CoroBegin)
Definition: CoroSplit.cpp:551
Fast - This calling convention attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:43
void CloneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst *> &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Clone OldFunc into NewFunc, transforming the old arguments into references to VMap values...
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:361
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
static void handleNoSuspendCoroutine(CoroBeginInst *CoroBegin, Type *FrameTy)
Definition: CoroSplit.cpp:524
LLVMContext & getContext() const
Get the global data context.
Definition: Module.h:237
This represents the llvm.coro.suspend instruction.
Definition: CoroInstr.h:266
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:664
This file contains the simple types necessary to represent the attributes associated with functions a...
InstrTy * getInstruction() const
Definition: CallSite.h:92
static void scanPHIsAndUpdateValueMap(Instruction *Prev, BasicBlock *NewBlock, DenseMap< Value *, Value *> &ResolvedValues)
Definition: CoroSplit.cpp:440
FunctionPass * createSCCPPass()
Definition: SCCP.cpp:1707
This class represents the llvm.coro.subfn.addr instruction.
Definition: CoroInstr.h:35
#define PREPARED_FOR_SPLIT
Definition: CoroInternal.h:40
FunctionPass * createCFGSimplificationPass(int Threshold=-1, std::function< bool(const Function &)> Ftor=nullptr)
StoreInst * CreateStore(Value *Val, Value *Ptr, bool isVolatile=false)
Definition: IRBuilder.h:1176
ValTy * getCalledValue() const
Return the pointer to function that is being called.
Definition: CallSite.h:100
Instruction * clone() const
Create a copy of &#39;this&#39; instruction that is identical in all ways except the following: ...
const Instruction * getFirstNonPHIOrDbgOrLifetime() const
Returns a pointer to the first instruction in this block that is not a PHINode, a debug intrinsic...
Definition: BasicBlock.cpp:185
This file provides interfaces used to build and manipulate a call graph, which is a very useful tool ...
ConstantInt * getIndex(uint64_t Value) const
Definition: CoroInternal.h:93
void initializeCoroSplitPass(PassRegistry &)
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1444
static void replaceFallthroughCoroEnd(IntrinsicInst *End, ValueToValueMapTy &VMap)
Definition: CoroSplit.cpp:173
This represents the llvm.coro.alloc instruction.
Definition: CoroInstr.h:70
SmallVector< CoroSizeInst *, 2 > CoroSizes
Definition: CoroInternal.h:70
void add(Pass *P) override
Add a pass to the queue of passes to run.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:428
static void simplifySuspendPoints(coro::Shape &Shape)
Definition: CoroSplit.cpp:605
SmallVector< CoroSuspendInst *, 4 > CoroSuspends
Definition: CoroInternal.h:71
iterator begin()
Definition: Function.h:588
amdgpu Simplify well known AMD library false Value * Callee
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block...
Definition: IRBuilder.h:128
const BasicBlock & getEntryBlock() const
Definition: Function.h:572
LoadInst * CreateLoad(Value *Ptr, const char *Name)
Definition: IRBuilder.h:1164
iterator begin() const
This represents the llvm.coro.size instruction.
Definition: CoroInstr.h:291
static void postSplitCleanup(Function &F)
Definition: CoroSplit.cpp:422
Control flow instructions. These all have token chains.
Definition: ISDOpcodes.h:596
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
* if(!EatIfPresent(lltok::kw_thread_local)) return false
ParseOptionalThreadLocal := /*empty.
static ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
Definition: Constants.cpp:1306
CallGraphNode * getCallsExternalNode() const
Definition: CallGraph.h:139
LLVM Basic Block Representation.
Definition: BasicBlock.h:59
#define CORO_PRESPLIT_ATTR
Definition: CoroInternal.h:38
bool isFinal() const
Definition: CoroInstr.h:277
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:69
UnreachableInst * CreateUnreachable()
Definition: IRBuilder.h:859
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:371
Value * getMem() const
Definition: CoroInstr.h:221
static void prepareForSplit(Function &F, CallGraph &CG)
Definition: CoroSplit.cpp:747
Represent the analysis usage information of a pass.
static Type * getVoidTy(LLVMContext &C)
Definition: Type.cpp:161
This represents the llvm.coro.end instruction.
Definition: CoroInstr.h:303
static const unsigned End
static FunctionType * get(Type *Result, ArrayRef< Type *> Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
Definition: Type.cpp:297
op_range operands()
Definition: User.h:222
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:101
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1546
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:382
void initialize(ArrayRef< CallGraphNode *> NewNodes)
CaseIt removeCase(CaseIt I)
This method removes the specified case and its successor from the switch instruction.
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function. ...
Definition: Function.cpp:194
static void replaceUnwindCoroEnds(coro::Shape &Shape, ValueToValueMapTy &VMap)
Definition: CoroSplit.cpp:186
FunctionPassManager manages FunctionPasses and BasicBlockPassManagers.
static Function * createClone(Function &F, Twine Suffix, coro::Shape &Shape, BasicBlock *ResumeEntry, int8_t FnIndex)
Definition: CoroSplit.cpp:245
static UndefValue * get(Type *T)
Static factory methods - Return an &#39;undef&#39; object of the specified type.
Definition: Constants.cpp:1320
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs, and aliases.
Definition: Value.cpp:527
PointerType * getInt8PtrTy(unsigned AddrSpace=0)
Fetch the type representing a pointer to an 8-bit integer value.
Definition: IRBuilder.h:386
static PointerType * getInt8PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:220
static SmallPtrSet< BasicBlock *, 4 > getCoroBeginPredBlocks(CoroBeginInst *CB)
Definition: CoroSplit.cpp:623
static Constant * getPointerCast(Constant *C, Type *Ty)
Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant expression.
Definition: Constants.cpp:1492
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:418
StructType * FrameTy
Definition: CoroInternal.h:82
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
iterator end()
Definition: BasicBlock.h:254
bool removeUnreachableBlocks(Function &F, LazyValueInfo *LVI=nullptr)
Remove all blocks that can not be reached from the function&#39;s entry.
Definition: Local.cpp:1707
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:864
Module.h This file contains the declarations for the Module class.
LLVM_NODISCARD T pop_back_val()
Definition: SmallVector.h:385
void buildCoroutineFrame(Function &F, Shape &Shape)
Definition: CoroFrame.cpp:784
#define UNPREPARED_FOR_SPLIT
Definition: CoroInternal.h:39
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:560
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=nullptr)
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
pred_range predecessors(BasicBlock *BB)
Definition: CFG.h:110
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:516
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:132
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition: Module.cpp:172
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:923
This class represents the llvm.coro.begin instruction.
Definition: CoroInstr.h:215
Value * makeSubFnCall(Value *Arg, int Index, Instruction *InsertPt)
Definition: Coroutines.cpp:107
bool isUnwind() const
Definition: CoroInstr.h:308
IntegerType * getInt8Ty()
Fetch the type representing an 8-bit integer.
Definition: IRBuilder.h:338
static void updateCoroFrame(coro::Shape &Shape, Function *ResumeFn, Function *DestroyFn, Function *CleanupFn)
Definition: CoroSplit.cpp:399
static BasicBlock * createResumeEntryBlock(Function &F, coro::Shape &Shape)
Definition: CoroSplit.cpp:76
ConstantInt * getFalse()
Get the constant value for i1 false.
Definition: IRBuilder.h:293
SwitchInst * CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases=10, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a switch instruction with the specified value, default dest, and with a hint for the number of...
Definition: IRBuilder.h:798
uint64_t getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Definition: DataLayout.h:405
The basic data container for the call graph of a Module of IR.
Definition: CallGraph.h:74
INITIALIZE_PASS(CoroSplit, "coro-split", "Split coroutine into a set of functions driving its state machine", false, false) Pass *llvm
Definition: CoroSplit.cpp:862
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:61
StringRef getValueAsString() const
Return the attribute&#39;s value as a string.
Definition: Attributes.cpp:195
SwitchInst * ResumeSwitch
Definition: CoroInternal.h:85
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:218
static void handleFinalSuspend(IRBuilder<> &Builder, Value *FramePtr, coro::Shape &Shape, SwitchInst *Switch, bool IsDestroy)
Definition: CoroSplit.cpp:220
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
Value * CreateConstInBoundsGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0, unsigned Idx1, const Twine &Name="")
Definition: IRBuilder.h:1307
static ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
Definition: Type.cpp:568
#define CORO_DEVIRT_TRIGGER_FN
Definition: CoroInternal.h:42
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
static ConstantTokenNone * get(LLVMContext &Context)
Return the ConstantTokenNone.
Definition: Constants.cpp:1035
BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="")
Split the basic block into two basic blocks at the specified instruction.
Definition: BasicBlock.cpp:382
CoroIdInst * getId() const
Definition: CoroInstr.h:219
void replaceCoroFree(CoroIdInst *CoroId, bool Elide)
Definition: Coroutines.cpp:151
static SmallPtrSet< Instruction *, 8 > getNotRelocatableInstructions(CoroBeginInst *CoroBegin, SmallPtrSetImpl< BasicBlock *> &RelocBlocks)
Definition: CoroSplit.cpp:641
Multiway switch.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
SmallVector< CoroEndInst *, 4 > CoroEnds
Definition: CoroInternal.h:69
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:545
LLVM Value Representation.
Definition: Value.h:73
void setInfo(Constant *C)
Definition: CoroInstr.h:164
CallGraphSCC - This is a single SCC that a CallGraphSCCPass is run on.
CallGraphNode * getOrInsertFunction(const Function *F)
Similar to operator[], but this will insert a new CallGraphNode for F if one does not already exist...
Definition: CallGraph.cpp:149
constexpr char Size[]
Key for Kernel::Arg::Metadata::mSize.
static CleanupReturnInst * Create(Value *CleanupPad, BasicBlock *UnwindBB=nullptr, Instruction *InsertBefore=nullptr)
AttrBuilder typeIncompatible(Type *Ty)
Which attributes cannot be applied to a type.
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
Definition: Instruction.cpp:88
static bool simplifyTerminatorLeadingToRet(Instruction *InitialInst)
Definition: CoroSplit.cpp:459
static const unsigned FramePtr
bool declaresIntrinsics(Module &M, std::initializer_list< StringRef >)
Definition: Coroutines.cpp:138
#define DEBUG(X)
Definition: Debug.h:118
void addFnAttr(Attribute::AttrKind Kind)
Add function attributes to this function.
Definition: Function.h:211
FunctionPass * createEarlyCSEPass(bool UseMemorySSA=false)
Definition: EarlyCSE.cpp:1134
ConstantInt * getInt8(uint8_t C)
Get a constant 8-bit value.
Definition: IRBuilder.h:298
static void removeCoroEnds(coro::Shape &Shape)
Definition: CoroSplit.cpp:338
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
inst_range instructions(Function *F)
Definition: InstIterator.h:134
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, const Twine &N="", Module *M=nullptr)
Definition: Function.h:136
CoroAllocInst * getCoroAlloc()
Definition: CoroInstr.h:86
BasicBlock * AllocaSpillBlock
Definition: CoroInternal.h:84
const TerminatorInst * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
CoroSaveInst * getCoroSave() const
Definition: CoroInstr.h:270
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
void updateCallGraph(Function &Caller, ArrayRef< Function *> Funcs, CallGraph &CG, CallGraphSCC &SCC)
Definition: Coroutines.cpp:192
iterator_range< arg_iterator > args()
Definition: Function.h:621
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:44
const BasicBlock * getParent() const
Definition: Instruction.h:66