LLVM  6.0.0svn
FunctionComparator.cpp
Go to the documentation of this file.
1 //===- FunctionComparator.h - Function Comparator -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the FunctionComparator and GlobalNumberState classes
11 // which are used by the MergeFunctions pass for comparing functions.
12 //
13 //===----------------------------------------------------------------------===//
14 
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/IR/Attributes.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalValue.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/Compiler.h"
44 #include "llvm/Support/Debug.h"
47 #include <cassert>
48 #include <cstddef>
49 #include <cstdint>
50 #include <utility>
51 
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "functioncomparator"
55 
56 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
57  if (L < R) return -1;
58  if (L > R) return 1;
59  return 0;
60 }
61 
62 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
63  if ((int)L < (int)R) return -1;
64  if ((int)L > (int)R) return 1;
65  return 0;
66 }
67 
68 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
69  if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
70  return Res;
71  if (L.ugt(R)) return 1;
72  if (R.ugt(L)) return -1;
73  return 0;
74 }
75 
76 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
77  // Floats are ordered first by semantics (i.e. float, double, half, etc.),
78  // then by value interpreted as a bitstring (aka APInt).
79  const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
80  if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
82  return Res;
83  if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
85  return Res;
86  if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
88  return Res;
89  if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
91  return Res;
92  return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
93 }
94 
96  // Prevent heavy comparison, compare sizes first.
97  if (int Res = cmpNumbers(L.size(), R.size()))
98  return Res;
99 
100  // Compare strings lexicographically only when it is necessary: only when
101  // strings are equal in size.
102  return L.compare(R);
103 }
104 
105 int FunctionComparator::cmpAttrs(const AttributeList L,
106  const AttributeList R) const {
107  if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets()))
108  return Res;
109 
110  for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) {
111  AttributeSet LAS = L.getAttributes(i);
112  AttributeSet RAS = R.getAttributes(i);
113  AttributeSet::iterator LI = LAS.begin(), LE = LAS.end();
114  AttributeSet::iterator RI = RAS.begin(), RE = RAS.end();
115  for (; LI != LE && RI != RE; ++LI, ++RI) {
116  Attribute LA = *LI;
117  Attribute RA = *RI;
118  if (LA < RA)
119  return -1;
120  if (RA < LA)
121  return 1;
122  }
123  if (LI != LE)
124  return 1;
125  if (RI != RE)
126  return -1;
127  }
128  return 0;
129 }
130 
131 int FunctionComparator::cmpRangeMetadata(const MDNode *L,
132  const MDNode *R) const {
133  if (L == R)
134  return 0;
135  if (!L)
136  return -1;
137  if (!R)
138  return 1;
139  // Range metadata is a sequence of numbers. Make sure they are the same
140  // sequence.
141  // TODO: Note that as this is metadata, it is possible to drop and/or merge
142  // this data when considering functions to merge. Thus this comparison would
143  // return 0 (i.e. equivalent), but merging would become more complicated
144  // because the ranges would need to be unioned. It is not likely that
145  // functions differ ONLY in this metadata if they are actually the same
146  // function semantically.
147  if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
148  return Res;
149  for (size_t I = 0; I < L->getNumOperands(); ++I) {
150  ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
151  ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
152  if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
153  return Res;
154  }
155  return 0;
156 }
157 
158 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L,
159  const Instruction *R) const {
160  ImmutableCallSite LCS(L);
161  ImmutableCallSite RCS(R);
162 
163  assert(LCS && RCS && "Must be calls or invokes!");
164  assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!");
165 
166  if (int Res =
168  return Res;
169 
170  for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) {
171  auto OBL = LCS.getOperandBundleAt(i);
172  auto OBR = RCS.getOperandBundleAt(i);
173 
174  if (int Res = OBL.getTagName().compare(OBR.getTagName()))
175  return Res;
176 
177  if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
178  return Res;
179  }
180 
181  return 0;
182 }
183 
184 /// Constants comparison:
185 /// 1. Check whether type of L constant could be losslessly bitcasted to R
186 /// type.
187 /// 2. Compare constant contents.
188 /// For more details see declaration comments.
190  const Constant *R) const {
191  Type *TyL = L->getType();
192  Type *TyR = R->getType();
193 
194  // Check whether types are bitcastable. This part is just re-factored
195  // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
196  // we also pack into result which type is "less" for us.
197  int TypesRes = cmpTypes(TyL, TyR);
198  if (TypesRes != 0) {
199  // Types are different, but check whether we can bitcast them.
200  if (!TyL->isFirstClassType()) {
201  if (TyR->isFirstClassType())
202  return -1;
203  // Neither TyL nor TyR are values of first class type. Return the result
204  // of comparing the types
205  return TypesRes;
206  }
207  if (!TyR->isFirstClassType()) {
208  if (TyL->isFirstClassType())
209  return 1;
210  return TypesRes;
211  }
212 
213  // Vector -> Vector conversions are always lossless if the two vector types
214  // have the same size, otherwise not.
215  unsigned TyLWidth = 0;
216  unsigned TyRWidth = 0;
217 
218  if (auto *VecTyL = dyn_cast<VectorType>(TyL))
219  TyLWidth = VecTyL->getBitWidth();
220  if (auto *VecTyR = dyn_cast<VectorType>(TyR))
221  TyRWidth = VecTyR->getBitWidth();
222 
223  if (TyLWidth != TyRWidth)
224  return cmpNumbers(TyLWidth, TyRWidth);
225 
226  // Zero bit-width means neither TyL nor TyR are vectors.
227  if (!TyLWidth) {
228  PointerType *PTyL = dyn_cast<PointerType>(TyL);
229  PointerType *PTyR = dyn_cast<PointerType>(TyR);
230  if (PTyL && PTyR) {
231  unsigned AddrSpaceL = PTyL->getAddressSpace();
232  unsigned AddrSpaceR = PTyR->getAddressSpace();
233  if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
234  return Res;
235  }
236  if (PTyL)
237  return 1;
238  if (PTyR)
239  return -1;
240 
241  // TyL and TyR aren't vectors, nor pointers. We don't know how to
242  // bitcast them.
243  return TypesRes;
244  }
245  }
246 
247  // OK, types are bitcastable, now check constant contents.
248 
249  if (L->isNullValue() && R->isNullValue())
250  return TypesRes;
251  if (L->isNullValue() && !R->isNullValue())
252  return 1;
253  if (!L->isNullValue() && R->isNullValue())
254  return -1;
255 
256  auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L));
257  auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R));
258  if (GlobalValueL && GlobalValueR) {
259  return cmpGlobalValues(GlobalValueL, GlobalValueR);
260  }
261 
262  if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
263  return Res;
264 
265  if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
266  const auto *SeqR = cast<ConstantDataSequential>(R);
267  // This handles ConstantDataArray and ConstantDataVector. Note that we
268  // compare the two raw data arrays, which might differ depending on the host
269  // endianness. This isn't a problem though, because the endiness of a module
270  // will affect the order of the constants, but this order is the same
271  // for a given input module and host platform.
272  return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
273  }
274 
275  switch (L->getValueID()) {
276  case Value::UndefValueVal:
277  case Value::ConstantTokenNoneVal:
278  return TypesRes;
279  case Value::ConstantIntVal: {
280  const APInt &LInt = cast<ConstantInt>(L)->getValue();
281  const APInt &RInt = cast<ConstantInt>(R)->getValue();
282  return cmpAPInts(LInt, RInt);
283  }
284  case Value::ConstantFPVal: {
285  const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
286  const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
287  return cmpAPFloats(LAPF, RAPF);
288  }
289  case Value::ConstantArrayVal: {
290  const ConstantArray *LA = cast<ConstantArray>(L);
291  const ConstantArray *RA = cast<ConstantArray>(R);
292  uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
293  uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
294  if (int Res = cmpNumbers(NumElementsL, NumElementsR))
295  return Res;
296  for (uint64_t i = 0; i < NumElementsL; ++i) {
297  if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
298  cast<Constant>(RA->getOperand(i))))
299  return Res;
300  }
301  return 0;
302  }
303  case Value::ConstantStructVal: {
304  const ConstantStruct *LS = cast<ConstantStruct>(L);
305  const ConstantStruct *RS = cast<ConstantStruct>(R);
306  unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
307  unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
308  if (int Res = cmpNumbers(NumElementsL, NumElementsR))
309  return Res;
310  for (unsigned i = 0; i != NumElementsL; ++i) {
311  if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
312  cast<Constant>(RS->getOperand(i))))
313  return Res;
314  }
315  return 0;
316  }
317  case Value::ConstantVectorVal: {
318  const ConstantVector *LV = cast<ConstantVector>(L);
319  const ConstantVector *RV = cast<ConstantVector>(R);
320  unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
321  unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
322  if (int Res = cmpNumbers(NumElementsL, NumElementsR))
323  return Res;
324  for (uint64_t i = 0; i < NumElementsL; ++i) {
325  if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
326  cast<Constant>(RV->getOperand(i))))
327  return Res;
328  }
329  return 0;
330  }
331  case Value::ConstantExprVal: {
332  const ConstantExpr *LE = cast<ConstantExpr>(L);
333  const ConstantExpr *RE = cast<ConstantExpr>(R);
334  unsigned NumOperandsL = LE->getNumOperands();
335  unsigned NumOperandsR = RE->getNumOperands();
336  if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
337  return Res;
338  for (unsigned i = 0; i < NumOperandsL; ++i) {
339  if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
340  cast<Constant>(RE->getOperand(i))))
341  return Res;
342  }
343  return 0;
344  }
345  case Value::BlockAddressVal: {
346  const BlockAddress *LBA = cast<BlockAddress>(L);
347  const BlockAddress *RBA = cast<BlockAddress>(R);
348  if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
349  return Res;
350  if (LBA->getFunction() == RBA->getFunction()) {
351  // They are BBs in the same function. Order by which comes first in the
352  // BB order of the function. This order is deterministic.
353  Function* F = LBA->getFunction();
354  BasicBlock *LBB = LBA->getBasicBlock();
355  BasicBlock *RBB = RBA->getBasicBlock();
356  if (LBB == RBB)
357  return 0;
358  for(BasicBlock &BB : F->getBasicBlockList()) {
359  if (&BB == LBB) {
360  assert(&BB != RBB);
361  return -1;
362  }
363  if (&BB == RBB)
364  return 1;
365  }
366  llvm_unreachable("Basic Block Address does not point to a basic block in "
367  "its function.");
368  return -1;
369  } else {
370  // cmpValues said the functions are the same. So because they aren't
371  // literally the same pointer, they must respectively be the left and
372  // right functions.
373  assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
374  // cmpValues will tell us if these are equivalent BasicBlocks, in the
375  // context of their respective functions.
376  return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
377  }
378  }
379  default: // Unknown constant, abort.
380  DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
381  llvm_unreachable("Constant ValueID not recognized.");
382  return -1;
383  }
384 }
385 
387  uint64_t LNumber = GlobalNumbers->getNumber(L);
388  uint64_t RNumber = GlobalNumbers->getNumber(R);
389  return cmpNumbers(LNumber, RNumber);
390 }
391 
392 /// cmpType - compares two types,
393 /// defines total ordering among the types set.
394 /// See method declaration comments for more details.
395 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
396  PointerType *PTyL = dyn_cast<PointerType>(TyL);
397  PointerType *PTyR = dyn_cast<PointerType>(TyR);
398 
399  const DataLayout &DL = FnL->getParent()->getDataLayout();
400  if (PTyL && PTyL->getAddressSpace() == 0)
401  TyL = DL.getIntPtrType(TyL);
402  if (PTyR && PTyR->getAddressSpace() == 0)
403  TyR = DL.getIntPtrType(TyR);
404 
405  if (TyL == TyR)
406  return 0;
407 
408  if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
409  return Res;
410 
411  switch (TyL->getTypeID()) {
412  default:
413  llvm_unreachable("Unknown type!");
414  // Fall through in Release mode.
416  case Type::IntegerTyID:
417  return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
418  cast<IntegerType>(TyR)->getBitWidth());
419  // TyL == TyR would have returned true earlier, because types are uniqued.
420  case Type::VoidTyID:
421  case Type::FloatTyID:
422  case Type::DoubleTyID:
423  case Type::X86_FP80TyID:
424  case Type::FP128TyID:
425  case Type::PPC_FP128TyID:
426  case Type::LabelTyID:
427  case Type::MetadataTyID:
428  case Type::TokenTyID:
429  return 0;
430 
431  case Type::PointerTyID:
432  assert(PTyL && PTyR && "Both types must be pointers here.");
433  return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
434 
435  case Type::StructTyID: {
436  StructType *STyL = cast<StructType>(TyL);
437  StructType *STyR = cast<StructType>(TyR);
438  if (STyL->getNumElements() != STyR->getNumElements())
439  return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
440 
441  if (STyL->isPacked() != STyR->isPacked())
442  return cmpNumbers(STyL->isPacked(), STyR->isPacked());
443 
444  for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
445  if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
446  return Res;
447  }
448  return 0;
449  }
450 
451  case Type::FunctionTyID: {
452  FunctionType *FTyL = cast<FunctionType>(TyL);
453  FunctionType *FTyR = cast<FunctionType>(TyR);
454  if (FTyL->getNumParams() != FTyR->getNumParams())
455  return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
456 
457  if (FTyL->isVarArg() != FTyR->isVarArg())
458  return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
459 
460  if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
461  return Res;
462 
463  for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
464  if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
465  return Res;
466  }
467  return 0;
468  }
469 
470  case Type::ArrayTyID:
471  case Type::VectorTyID: {
472  auto *STyL = cast<SequentialType>(TyL);
473  auto *STyR = cast<SequentialType>(TyR);
474  if (STyL->getNumElements() != STyR->getNumElements())
475  return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
476  return cmpTypes(STyL->getElementType(), STyR->getElementType());
477  }
478  }
479 }
480 
481 // Determine whether the two operations are the same except that pointer-to-A
482 // and pointer-to-B are equivalent. This should be kept in sync with
483 // Instruction::isSameOperationAs.
484 // Read method declaration comments for more details.
486  const Instruction *R,
487  bool &needToCmpOperands) const {
488  needToCmpOperands = true;
489  if (int Res = cmpValues(L, R))
490  return Res;
491 
492  // Differences from Instruction::isSameOperationAs:
493  // * replace type comparison with calls to cmpTypes.
494  // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
495  // * because of the above, we don't test for the tail bit on calls later on.
496  if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
497  return Res;
498 
499  if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
500  needToCmpOperands = false;
501  const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
502  if (int Res =
503  cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
504  return Res;
505  return cmpGEPs(GEPL, GEPR);
506  }
507 
508  if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
509  return Res;
510 
511  if (int Res = cmpTypes(L->getType(), R->getType()))
512  return Res;
513 
514  if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
516  return Res;
517 
518  // We have two instructions of identical opcode and #operands. Check to see
519  // if all operands are the same type
520  for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
521  if (int Res =
522  cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
523  return Res;
524  }
525 
526  // Check special state that is a part of some instructions.
527  if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
528  if (int Res = cmpTypes(AI->getAllocatedType(),
529  cast<AllocaInst>(R)->getAllocatedType()))
530  return Res;
531  return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment());
532  }
533  if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
534  if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
535  return Res;
536  if (int Res =
537  cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
538  return Res;
539  if (int Res =
540  cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
541  return Res;
542  if (int Res = cmpNumbers(LI->getSyncScopeID(),
543  cast<LoadInst>(R)->getSyncScopeID()))
544  return Res;
545  return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range),
546  cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
547  }
548  if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
549  if (int Res =
550  cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
551  return Res;
552  if (int Res =
553  cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
554  return Res;
555  if (int Res =
556  cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
557  return Res;
558  return cmpNumbers(SI->getSyncScopeID(),
559  cast<StoreInst>(R)->getSyncScopeID());
560  }
561  if (const CmpInst *CI = dyn_cast<CmpInst>(L))
562  return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
563  if (const CallInst *CI = dyn_cast<CallInst>(L)) {
564  if (int Res = cmpNumbers(CI->getCallingConv(),
565  cast<CallInst>(R)->getCallingConv()))
566  return Res;
567  if (int Res =
568  cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes()))
569  return Res;
570  if (int Res = cmpOperandBundlesSchema(CI, R))
571  return Res;
572  return cmpRangeMetadata(
573  CI->getMetadata(LLVMContext::MD_range),
574  cast<CallInst>(R)->getMetadata(LLVMContext::MD_range));
575  }
576  if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) {
577  if (int Res = cmpNumbers(II->getCallingConv(),
578  cast<InvokeInst>(R)->getCallingConv()))
579  return Res;
580  if (int Res =
581  cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes()))
582  return Res;
583  if (int Res = cmpOperandBundlesSchema(II, R))
584  return Res;
585  return cmpRangeMetadata(
586  II->getMetadata(LLVMContext::MD_range),
587  cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range));
588  }
589  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
590  ArrayRef<unsigned> LIndices = IVI->getIndices();
591  ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
592  if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
593  return Res;
594  for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
595  if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
596  return Res;
597  }
598  return 0;
599  }
600  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
601  ArrayRef<unsigned> LIndices = EVI->getIndices();
602  ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
603  if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
604  return Res;
605  for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
606  if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
607  return Res;
608  }
609  }
610  if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
611  if (int Res =
612  cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
613  return Res;
614  return cmpNumbers(FI->getSyncScopeID(),
615  cast<FenceInst>(R)->getSyncScopeID());
616  }
617  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
618  if (int Res = cmpNumbers(CXI->isVolatile(),
619  cast<AtomicCmpXchgInst>(R)->isVolatile()))
620  return Res;
621  if (int Res = cmpNumbers(CXI->isWeak(),
622  cast<AtomicCmpXchgInst>(R)->isWeak()))
623  return Res;
624  if (int Res =
625  cmpOrderings(CXI->getSuccessOrdering(),
626  cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
627  return Res;
628  if (int Res =
629  cmpOrderings(CXI->getFailureOrdering(),
630  cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
631  return Res;
632  return cmpNumbers(CXI->getSyncScopeID(),
633  cast<AtomicCmpXchgInst>(R)->getSyncScopeID());
634  }
635  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
636  if (int Res = cmpNumbers(RMWI->getOperation(),
637  cast<AtomicRMWInst>(R)->getOperation()))
638  return Res;
639  if (int Res = cmpNumbers(RMWI->isVolatile(),
640  cast<AtomicRMWInst>(R)->isVolatile()))
641  return Res;
642  if (int Res = cmpOrderings(RMWI->getOrdering(),
643  cast<AtomicRMWInst>(R)->getOrdering()))
644  return Res;
645  return cmpNumbers(RMWI->getSyncScopeID(),
646  cast<AtomicRMWInst>(R)->getSyncScopeID());
647  }
648  if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
649  const PHINode *PNR = cast<PHINode>(R);
650  // Ensure that in addition to the incoming values being identical
651  // (checked by the caller of this function), the incoming blocks
652  // are also identical.
653  for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
654  if (int Res =
655  cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
656  return Res;
657  }
658  }
659  return 0;
660 }
661 
662 // Determine whether two GEP operations perform the same underlying arithmetic.
663 // Read method declaration comments for more details.
664 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
665  const GEPOperator *GEPR) const {
666  unsigned int ASL = GEPL->getPointerAddressSpace();
667  unsigned int ASR = GEPR->getPointerAddressSpace();
668 
669  if (int Res = cmpNumbers(ASL, ASR))
670  return Res;
671 
672  // When we have target data, we can reduce the GEP down to the value in bytes
673  // added to the address.
674  const DataLayout &DL = FnL->getParent()->getDataLayout();
675  unsigned BitWidth = DL.getPointerSizeInBits(ASL);
676  APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
677  if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
678  GEPR->accumulateConstantOffset(DL, OffsetR))
679  return cmpAPInts(OffsetL, OffsetR);
680  if (int Res = cmpTypes(GEPL->getSourceElementType(),
681  GEPR->getSourceElementType()))
682  return Res;
683 
684  if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
685  return Res;
686 
687  for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
688  if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
689  return Res;
690  }
691 
692  return 0;
693 }
694 
695 int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
696  const InlineAsm *R) const {
697  // InlineAsm's are uniqued. If they are the same pointer, obviously they are
698  // the same, otherwise compare the fields.
699  if (L == R)
700  return 0;
701  if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
702  return Res;
703  if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
704  return Res;
705  if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
706  return Res;
707  if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
708  return Res;
709  if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
710  return Res;
711  if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
712  return Res;
713  llvm_unreachable("InlineAsm blocks were not uniqued.");
714  return 0;
715 }
716 
717 /// Compare two values used by the two functions under pair-wise comparison. If
718 /// this is the first time the values are seen, they're added to the mapping so
719 /// that we will detect mismatches on next use.
720 /// See comments in declaration for more details.
721 int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
722  // Catch self-reference case.
723  if (L == FnL) {
724  if (R == FnR)
725  return 0;
726  return -1;
727  }
728  if (R == FnR) {
729  if (L == FnL)
730  return 0;
731  return 1;
732  }
733 
734  const Constant *ConstL = dyn_cast<Constant>(L);
735  const Constant *ConstR = dyn_cast<Constant>(R);
736  if (ConstL && ConstR) {
737  if (L == R)
738  return 0;
739  return cmpConstants(ConstL, ConstR);
740  }
741 
742  if (ConstL)
743  return 1;
744  if (ConstR)
745  return -1;
746 
747  const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
748  const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
749 
750  if (InlineAsmL && InlineAsmR)
751  return cmpInlineAsm(InlineAsmL, InlineAsmR);
752  if (InlineAsmL)
753  return 1;
754  if (InlineAsmR)
755  return -1;
756 
757  auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
758  RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
759 
760  return cmpNumbers(LeftSN.first->second, RightSN.first->second);
761 }
762 
763 // Test whether two basic blocks have equivalent behaviour.
765  const BasicBlock *BBR) const {
766  BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
767  BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
768 
769  do {
770  bool needToCmpOperands = true;
771  if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
772  return Res;
773  if (needToCmpOperands) {
774  assert(InstL->getNumOperands() == InstR->getNumOperands());
775 
776  for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
777  Value *OpL = InstL->getOperand(i);
778  Value *OpR = InstR->getOperand(i);
779  if (int Res = cmpValues(OpL, OpR))
780  return Res;
781  // cmpValues should ensure this is true.
782  assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
783  }
784  }
785 
786  ++InstL;
787  ++InstR;
788  } while (InstL != InstLE && InstR != InstRE);
789 
790  if (InstL != InstLE && InstR == InstRE)
791  return 1;
792  if (InstL == InstLE && InstR != InstRE)
793  return -1;
794  return 0;
795 }
796 
798  if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
799  return Res;
800 
801  if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
802  return Res;
803 
804  if (FnL->hasGC()) {
805  if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
806  return Res;
807  }
808 
809  if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
810  return Res;
811 
812  if (FnL->hasSection()) {
813  if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
814  return Res;
815  }
816 
817  if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
818  return Res;
819 
820  // TODO: if it's internal and only used in direct calls, we could handle this
821  // case too.
822  if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
823  return Res;
824 
825  if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
826  return Res;
827 
828  assert(FnL->arg_size() == FnR->arg_size() &&
829  "Identically typed functions have different numbers of args!");
830 
831  // Visit the arguments so that they get enumerated in the order they're
832  // passed in.
834  ArgRI = FnR->arg_begin(),
835  ArgLE = FnL->arg_end();
836  ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
837  if (cmpValues(&*ArgLI, &*ArgRI) != 0)
838  llvm_unreachable("Arguments repeat!");
839  }
840  return 0;
841 }
842 
843 // Test whether the two functions have equivalent behaviour.
845  beginCompare();
846 
847  if (int Res = compareSignature())
848  return Res;
849 
850  // We do a CFG-ordered walk since the actual ordering of the blocks in the
851  // linked list is immaterial. Our walk starts at the entry block for both
852  // functions, then takes each block from each terminator in order. As an
853  // artifact, this also means that unreachable blocks are ignored.
854  SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
855  SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
856 
857  FnLBBs.push_back(&FnL->getEntryBlock());
858  FnRBBs.push_back(&FnR->getEntryBlock());
859 
860  VisitedBBs.insert(FnLBBs[0]);
861  while (!FnLBBs.empty()) {
862  const BasicBlock *BBL = FnLBBs.pop_back_val();
863  const BasicBlock *BBR = FnRBBs.pop_back_val();
864 
865  if (int Res = cmpValues(BBL, BBR))
866  return Res;
867 
868  if (int Res = cmpBasicBlocks(BBL, BBR))
869  return Res;
870 
871  const TerminatorInst *TermL = BBL->getTerminator();
872  const TerminatorInst *TermR = BBR->getTerminator();
873 
874  assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
875  for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
876  if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
877  continue;
878 
879  FnLBBs.push_back(TermL->getSuccessor(i));
880  FnRBBs.push_back(TermR->getSuccessor(i));
881  }
882  }
883  return 0;
884 }
885 
886 namespace {
887 
888 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
889 // hash of a sequence of 64bit ints, but the entire input does not need to be
890 // available at once. This interface is necessary for functionHash because it
891 // needs to accumulate the hash as the structure of the function is traversed
892 // without saving these values to an intermediate buffer. This form of hashing
893 // is not often needed, as usually the object to hash is just read from a
894 // buffer.
895 class HashAccumulator64 {
896  uint64_t Hash;
897 
898 public:
899  // Initialize to random constant, so the state isn't zero.
900  HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
901 
902  void add(uint64_t V) {
903  Hash = hashing::detail::hash_16_bytes(Hash, V);
904  }
905 
906  // No finishing is required, because the entire hash value is used.
907  uint64_t getHash() { return Hash; }
908 };
909 
910 } // end anonymous namespace
911 
912 // A function hash is calculated by considering only the number of arguments and
913 // whether a function is varargs, the order of basic blocks (given by the
914 // successors of each basic block in depth first order), and the order of
915 // opcodes of each instruction within each of these basic blocks. This mirrors
916 // the strategy compare() uses to compare functions by walking the BBs in depth
917 // first order and comparing each instruction in sequence. Because this hash
918 // does not look at the operands, it is insensitive to things such as the
919 // target of calls and the constants used in the function, which makes it useful
920 // when possibly merging functions which are the same modulo constants and call
921 // targets.
923  HashAccumulator64 H;
924  H.add(F.isVarArg());
925  H.add(F.arg_size());
926 
929 
930  // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
931  // accumulating the hash of the function "structure." (BB and opcode sequence)
932  BBs.push_back(&F.getEntryBlock());
933  VisitedBBs.insert(BBs[0]);
934  while (!BBs.empty()) {
935  const BasicBlock *BB = BBs.pop_back_val();
936  // This random value acts as a block header, as otherwise the partition of
937  // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
938  H.add(45798);
939  for (auto &Inst : *BB) {
940  H.add(Inst.getOpcode());
941  }
942  const TerminatorInst *Term = BB->getTerminator();
943  for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
944  if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
945  continue;
946  BBs.push_back(Term->getSuccessor(i));
947  }
948  }
949  return H.getHash();
950 }
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
bool isVarArg() const
isVarArg - Return true if this function takes a variable number of arguments.
Definition: Function.h:158
int cmpGlobalValues(GlobalValue *L, GlobalValue *R) const
Compares two global values by number.
StringRef getSection() const
Get the custom section of this global if it has one.
Definition: GlobalObject.h:90
7: Labels
Definition: Type.h:64
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:109
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:843
This instruction extracts a struct member or array element value from an aggregate value...
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
unsigned getValueID() const
Return an ID for the concrete type of this object.
Definition: Value.h:465
int cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR) const
Test whether two basic blocks have equivalent behaviour.
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:135
Type * getElementType(unsigned N) const
Definition: DerivedTypes.h:314
BasicBlock * getSuccessor(unsigned idx) const
Return the specified successor.
int compareSignature() const
Compares the signature and other general attributes of the two functions.
2: 32-bit floating point type
Definition: Type.h:59
An instruction for ordering other memory operations.
Definition: Instructions.h:440
an instruction that atomically checks whether a specified value is in a memory location, and, if it is, stores a new value there.
Definition: Instructions.h:514
unsigned getNumElements() const
Random access to the elements.
Definition: DerivedTypes.h:313
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE size_t size() const
size - Get the string size.
Definition: StringRef.h:138
This class represents a function call, abstracting a target machine&#39;s calling convention.
This file contains the declarations for metadata subclasses.
const std::string & getAsmString() const
Definition: InlineAsm.h:81
unsigned getPointerAddressSpace() const
Method to return the address space of the pointer operand.
Definition: Operator.h:468
unsigned second
arg_iterator arg_end()
Definition: Function.h:612
unsigned getPointerSizeInBits(unsigned AS=0) const
Layout pointer size, in bits FIXME: The defaults need to be removed once all of the backends/clients ...
Definition: DataLayout.h:344
13: Structures
Definition: Type.h:73
Metadata node.
Definition: Metadata.h:862
F(f)
4: 80-bit floating point type (X87)
Definition: Type.h:61
int cmpAPInts(const APInt &L, const APInt &R) const
const MDOperand & getOperand(unsigned I) const
Definition: Metadata.h:1067
const fltSemantics & getSemantics() const
Definition: APFloat.h:1155
An instruction for reading from memory.
Definition: Instructions.h:164
an instruction that atomically reads a memory location, combines it with another value, and then stores the result back.
Definition: Instructions.h:677
unsigned index_end() const
Definition: Attributes.h:634
15: Pointers
Definition: Type.h:75
12: Functions
Definition: Type.h:72
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1488
bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const
Accumulate the constant address offset of this GEP if possible.
Definition: Operator.cpp:35
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:252
bool hasSideEffects() const
Definition: InlineAsm.h:67
Function * getFunction() const
Definition: Constants.h:839
int cmpAPFloats(const APFloat &L, const APFloat &R) const
SI optimize exec mask operations pre RA
The address of a basic block.
Definition: Constants.h:813
static uint32_t getAlignment(const MCSectionCOFF &Sec)
uint64_t FunctionHash
Hash a function.
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:361
TypeID getTypeID() const
Return the type id for the type.
Definition: Type.h:138
Class to represent struct types.
Definition: DerivedTypes.h:201
This file contains the simple types necessary to represent the attributes associated with functions a...
static ExponentType semanticsMaxExponent(const fltSemantics &)
Definition: APFloat.cpp:158
This file implements a class to represent arbitrary precision integral constant values and operations...
AtomicOrdering
Atomic ordering for LLVM&#39;s memory model.
AttributeList getAttributes(LLVMContext &C, ID id)
Return the attributes for an intrinsic.
void beginCompare()
Start the comparison.
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition: Constants.cpp:86
Class to represent function types.
Definition: DerivedTypes.h:103
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:862
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
bool isFirstClassType() const
Return true if the type is "first class", meaning it is a valid type for a Value. ...
Definition: Type.h:241
static unsigned int semanticsSizeInBits(const fltSemantics &)
Definition: APFloat.cpp:165
int cmpOperations(const Instruction *L, const Instruction *R, bool &needToCmpOperands) const
Compare two Instructions for equivalence, similar to Instruction::isSameOperationAs.
bool isVarArg() const
Definition: DerivedTypes.h:123
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:138
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:125
BasicBlock * getBasicBlock() const
Definition: Constants.h:840
const std::string & getGC() const
Definition: Function.cpp:444
uint64_t hash_16_bytes(uint64_t low, uint64_t high)
Definition: Hashing.h:179
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:205
An instruction for storing to memory.
Definition: Instructions.h:306
uint64_t getNumber(GlobalValue *Global)
static ExponentType semanticsMinExponent(const fltSemantics &)
Definition: APFloat.cpp:162
Value * getOperand(unsigned i) const
Definition: User.h:154
Class to represent pointers.
Definition: DerivedTypes.h:467
bool isCall() const
Return true if a CallInst is enclosed.
Definition: CallSite.h:87
static FunctionHash functionHash(Function &)
AttributeSet getAttributes(unsigned Index) const
The attributes for the specified index are returned.
unsigned getRawSubclassOptionalData() const
Return the raw optional flags value contained in this value.
Definition: Value.h:472
11: Arbitrary bit width integers
Definition: Type.h:71
const BasicBlock & getEntryBlock() const
Definition: Function.h:572
an instruction for type-safe pointer arithmetic to access elements of arrays and structs ...
Definition: Instructions.h:837
0: type with no size
Definition: Type.h:57
Subclasses of this class are all able to terminate a basic block.
Definition: InstrTypes.h:54
LLVM Basic Block Representation.
Definition: BasicBlock.h:59
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:149
This is an important base class in LLVM.
Definition: Constant.h:42
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:36
This file contains the declarations for the subclasses of Constant, which represent the different fla...
10: Tokens
Definition: Type.h:67
#define H(x, y, z)
Definition: MD5.cpp:57
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Definition: DerivedTypes.h:139
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:371
This file declares a class to represent arbitrary precision floating point values and provide a varie...
iterator begin() const
Definition: Attributes.cpp:614
6: 128-bit floating point type (two 64-bits, PowerPC)
Definition: Type.h:63
size_t arg_size() const
Definition: Function.h:630
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:495
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE int compare(StringRef RHS) const
compare - Compare two strings; the result is -1, 0, or 1 if this string is lexicographically less tha...
Definition: StringRef.h:184
arg_iterator arg_begin()
Definition: Function.h:603
std::pair< NoneType, bool > insert(const T &V)
insert - Insert an element into the set if it isn&#39;t already there.
Definition: SmallSet.h:81
Constant Vector Declarations.
Definition: Constants.h:491
int cmpMem(StringRef L, StringRef R) const
bool isAlignStack() const
Definition: InlineAsm.h:68
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const std::string & getConstraintString() const
Definition: InlineAsm.h:82
14: Arrays
Definition: Type.h:74
Predicate getPredicate(unsigned Condition, unsigned Hint)
Return predicate consisting of specified condition and hint bits.
Definition: PPCPredicates.h:85
Iterator for intrusive lists based on ilist_node.
unsigned getNumOperands() const
Definition: User.h:176
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:418
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
16: SIMD &#39;packed&#39; format, or other vector type
Definition: Type.h:76
OperandBundleUse getOperandBundleAt(unsigned Index) const
Definition: CallSite.h:551
iterator end()
Definition: BasicBlock.h:254
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition: Function.h:194
bool hasSection() const
Check if this global has a custom object file section.
Definition: GlobalObject.h:82
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:864
Module.h This file contains the declarations for the Module class.
Type * getReturnType() const
Definition: DerivedTypes.h:124
LLVM_NODISCARD T pop_back_val()
Definition: SmallVector.h:385
static unsigned int semanticsPrecision(const fltSemantics &)
Definition: APFloat.cpp:154
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:132
8: Metadata
Definition: Type.h:65
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:145
ConstantArray - Constant Array Declarations.
Definition: Constants.h:405
Class for arbitrary precision integers.
Definition: APInt.h:69
unsigned getNumAttrSets() const
static bool isWeak(const MCSymbolELF &Sym)
int compare()
Test whether the two functions have equivalent behaviour.
int cmpTypes(Type *TyL, Type *TyR) const
cmpType - compares two types, defines total ordering among the types set.
bool ugt(const APInt &RHS) const
Unsigned greather than comparison.
Definition: APInt.h:1234
bool isPacked() const
Definition: DerivedTypes.h:261
bool hasGC() const
hasGC/getGC/setGC/clearGC - The name of the garbage collection algorithm to use during code generatio...
Definition: Function.h:286
iterator end() const
Definition: Attributes.cpp:618
unsigned getNumOperandBundles() const
Definition: CallSite.h:531
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:61
Establish a view to a call site for examination.
Definition: CallSite.h:713
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
#define I(x, y, z)
Definition: MD5.cpp:58
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
const BasicBlockListType & getBasicBlockList() const
Get the underlying elements of the Function...
Definition: Function.h:565
FunctionType * getFunctionType() const
getFunctionType - InlineAsm&#39;s are always pointers to functions.
Definition: InlineAsm.cpp:57
AsmDialect getDialect() const
Definition: InlineAsm.h:69
3: 64-bit floating point type
Definition: Type.h:60
const Function * getFunction() const
Definition: Function.h:134
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
unsigned getNumSuccessors() const
Return the number of successors that this terminator has.
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:556
LLVM Value Representation.
Definition: Value.h:73
#define LLVM_FALLTHROUGH
LLVM_FALLTHROUGH - Mark fallthrough cases in switch statements.
Definition: Compiler.h:235
int cmpValues(const Value *L, const Value *R) const
Assign or look up previously assigned numbers for the two values, and return whether the numbers are ...
Invoke instruction.
#define DEBUG(X)
Definition: Debug.h:118
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
int cmpConstants(const Constant *L, const Constant *R) const
Constants comparison.
Type * getSourceElementType() const
Definition: Operator.cpp:23
APInt bitcastToAPInt() const
Definition: APFloat.h:1094
static bool isVolatile(Instruction *Inst)
const TerminatorInst * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
unsigned getNumOperands() const
Return number of MDNode operands.
Definition: Metadata.h:1073
unsigned index_begin() const
Use these to iterate over the valid attribute indices.
Definition: Attributes.h:633
an instruction to allocate memory on the stack
Definition: Instructions.h:60
This instruction inserts a struct field of array element value into an aggregate value.
5: 128-bit floating point type (112-bit mantissa)
Definition: Type.h:62
int cmpNumbers(uint64_t L, uint64_t R) const