LLVM  9.0.0svn
FunctionComparator.cpp
Go to the documentation of this file.
1 //===- FunctionComparator.h - Function Comparator -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the FunctionComparator and GlobalNumberState classes
10 // which are used by the MergeFunctions pass for comparing functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CallSite.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InlineAsm.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/Debug.h"
45 #include <cassert>
46 #include <cstddef>
47 #include <cstdint>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "functioncomparator"
53 
54 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
55  if (L < R) return -1;
56  if (L > R) return 1;
57  return 0;
58 }
59 
60 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
61  if ((int)L < (int)R) return -1;
62  if ((int)L > (int)R) return 1;
63  return 0;
64 }
65 
66 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
67  if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
68  return Res;
69  if (L.ugt(R)) return 1;
70  if (R.ugt(L)) return -1;
71  return 0;
72 }
73 
74 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
75  // Floats are ordered first by semantics (i.e. float, double, half, etc.),
76  // then by value interpreted as a bitstring (aka APInt).
77  const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
78  if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
80  return Res;
81  if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
83  return Res;
84  if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
86  return Res;
87  if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
89  return Res;
90  return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
91 }
92 
94  // Prevent heavy comparison, compare sizes first.
95  if (int Res = cmpNumbers(L.size(), R.size()))
96  return Res;
97 
98  // Compare strings lexicographically only when it is necessary: only when
99  // strings are equal in size.
100  return L.compare(R);
101 }
102 
103 int FunctionComparator::cmpAttrs(const AttributeList L,
104  const AttributeList R) const {
105  if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets()))
106  return Res;
107 
108  for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) {
109  AttributeSet LAS = L.getAttributes(i);
110  AttributeSet RAS = R.getAttributes(i);
111  AttributeSet::iterator LI = LAS.begin(), LE = LAS.end();
112  AttributeSet::iterator RI = RAS.begin(), RE = RAS.end();
113  for (; LI != LE && RI != RE; ++LI, ++RI) {
114  Attribute LA = *LI;
115  Attribute RA = *RI;
116  if (LA < RA)
117  return -1;
118  if (RA < LA)
119  return 1;
120  }
121  if (LI != LE)
122  return 1;
123  if (RI != RE)
124  return -1;
125  }
126  return 0;
127 }
128 
129 int FunctionComparator::cmpRangeMetadata(const MDNode *L,
130  const MDNode *R) const {
131  if (L == R)
132  return 0;
133  if (!L)
134  return -1;
135  if (!R)
136  return 1;
137  // Range metadata is a sequence of numbers. Make sure they are the same
138  // sequence.
139  // TODO: Note that as this is metadata, it is possible to drop and/or merge
140  // this data when considering functions to merge. Thus this comparison would
141  // return 0 (i.e. equivalent), but merging would become more complicated
142  // because the ranges would need to be unioned. It is not likely that
143  // functions differ ONLY in this metadata if they are actually the same
144  // function semantically.
145  if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
146  return Res;
147  for (size_t I = 0; I < L->getNumOperands(); ++I) {
148  ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
149  ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
150  if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
151  return Res;
152  }
153  return 0;
154 }
155 
156 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L,
157  const Instruction *R) const {
158  ImmutableCallSite LCS(L);
159  ImmutableCallSite RCS(R);
160 
161  assert(LCS && RCS && "Must be calls or invokes!");
162  assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!");
163 
164  if (int Res =
166  return Res;
167 
168  for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) {
169  auto OBL = LCS.getOperandBundleAt(i);
170  auto OBR = RCS.getOperandBundleAt(i);
171 
172  if (int Res = OBL.getTagName().compare(OBR.getTagName()))
173  return Res;
174 
175  if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
176  return Res;
177  }
178 
179  return 0;
180 }
181 
182 /// Constants comparison:
183 /// 1. Check whether type of L constant could be losslessly bitcasted to R
184 /// type.
185 /// 2. Compare constant contents.
186 /// For more details see declaration comments.
188  const Constant *R) const {
189  Type *TyL = L->getType();
190  Type *TyR = R->getType();
191 
192  // Check whether types are bitcastable. This part is just re-factored
193  // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
194  // we also pack into result which type is "less" for us.
195  int TypesRes = cmpTypes(TyL, TyR);
196  if (TypesRes != 0) {
197  // Types are different, but check whether we can bitcast them.
198  if (!TyL->isFirstClassType()) {
199  if (TyR->isFirstClassType())
200  return -1;
201  // Neither TyL nor TyR are values of first class type. Return the result
202  // of comparing the types
203  return TypesRes;
204  }
205  if (!TyR->isFirstClassType()) {
206  if (TyL->isFirstClassType())
207  return 1;
208  return TypesRes;
209  }
210 
211  // Vector -> Vector conversions are always lossless if the two vector types
212  // have the same size, otherwise not.
213  unsigned TyLWidth = 0;
214  unsigned TyRWidth = 0;
215 
216  if (auto *VecTyL = dyn_cast<VectorType>(TyL))
217  TyLWidth = VecTyL->getBitWidth();
218  if (auto *VecTyR = dyn_cast<VectorType>(TyR))
219  TyRWidth = VecTyR->getBitWidth();
220 
221  if (TyLWidth != TyRWidth)
222  return cmpNumbers(TyLWidth, TyRWidth);
223 
224  // Zero bit-width means neither TyL nor TyR are vectors.
225  if (!TyLWidth) {
226  PointerType *PTyL = dyn_cast<PointerType>(TyL);
227  PointerType *PTyR = dyn_cast<PointerType>(TyR);
228  if (PTyL && PTyR) {
229  unsigned AddrSpaceL = PTyL->getAddressSpace();
230  unsigned AddrSpaceR = PTyR->getAddressSpace();
231  if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
232  return Res;
233  }
234  if (PTyL)
235  return 1;
236  if (PTyR)
237  return -1;
238 
239  // TyL and TyR aren't vectors, nor pointers. We don't know how to
240  // bitcast them.
241  return TypesRes;
242  }
243  }
244 
245  // OK, types are bitcastable, now check constant contents.
246 
247  if (L->isNullValue() && R->isNullValue())
248  return TypesRes;
249  if (L->isNullValue() && !R->isNullValue())
250  return 1;
251  if (!L->isNullValue() && R->isNullValue())
252  return -1;
253 
254  auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L));
255  auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R));
256  if (GlobalValueL && GlobalValueR) {
257  return cmpGlobalValues(GlobalValueL, GlobalValueR);
258  }
259 
260  if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
261  return Res;
262 
263  if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
264  const auto *SeqR = cast<ConstantDataSequential>(R);
265  // This handles ConstantDataArray and ConstantDataVector. Note that we
266  // compare the two raw data arrays, which might differ depending on the host
267  // endianness. This isn't a problem though, because the endiness of a module
268  // will affect the order of the constants, but this order is the same
269  // for a given input module and host platform.
270  return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
271  }
272 
273  switch (L->getValueID()) {
274  case Value::UndefValueVal:
275  case Value::ConstantTokenNoneVal:
276  return TypesRes;
277  case Value::ConstantIntVal: {
278  const APInt &LInt = cast<ConstantInt>(L)->getValue();
279  const APInt &RInt = cast<ConstantInt>(R)->getValue();
280  return cmpAPInts(LInt, RInt);
281  }
282  case Value::ConstantFPVal: {
283  const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
284  const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
285  return cmpAPFloats(LAPF, RAPF);
286  }
287  case Value::ConstantArrayVal: {
288  const ConstantArray *LA = cast<ConstantArray>(L);
289  const ConstantArray *RA = cast<ConstantArray>(R);
290  uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
291  uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
292  if (int Res = cmpNumbers(NumElementsL, NumElementsR))
293  return Res;
294  for (uint64_t i = 0; i < NumElementsL; ++i) {
295  if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
296  cast<Constant>(RA->getOperand(i))))
297  return Res;
298  }
299  return 0;
300  }
301  case Value::ConstantStructVal: {
302  const ConstantStruct *LS = cast<ConstantStruct>(L);
303  const ConstantStruct *RS = cast<ConstantStruct>(R);
304  unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
305  unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
306  if (int Res = cmpNumbers(NumElementsL, NumElementsR))
307  return Res;
308  for (unsigned i = 0; i != NumElementsL; ++i) {
309  if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
310  cast<Constant>(RS->getOperand(i))))
311  return Res;
312  }
313  return 0;
314  }
315  case Value::ConstantVectorVal: {
316  const ConstantVector *LV = cast<ConstantVector>(L);
317  const ConstantVector *RV = cast<ConstantVector>(R);
318  unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
319  unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
320  if (int Res = cmpNumbers(NumElementsL, NumElementsR))
321  return Res;
322  for (uint64_t i = 0; i < NumElementsL; ++i) {
323  if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
324  cast<Constant>(RV->getOperand(i))))
325  return Res;
326  }
327  return 0;
328  }
329  case Value::ConstantExprVal: {
330  const ConstantExpr *LE = cast<ConstantExpr>(L);
331  const ConstantExpr *RE = cast<ConstantExpr>(R);
332  unsigned NumOperandsL = LE->getNumOperands();
333  unsigned NumOperandsR = RE->getNumOperands();
334  if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
335  return Res;
336  for (unsigned i = 0; i < NumOperandsL; ++i) {
337  if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
338  cast<Constant>(RE->getOperand(i))))
339  return Res;
340  }
341  return 0;
342  }
343  case Value::BlockAddressVal: {
344  const BlockAddress *LBA = cast<BlockAddress>(L);
345  const BlockAddress *RBA = cast<BlockAddress>(R);
346  if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
347  return Res;
348  if (LBA->getFunction() == RBA->getFunction()) {
349  // They are BBs in the same function. Order by which comes first in the
350  // BB order of the function. This order is deterministic.
351  Function* F = LBA->getFunction();
352  BasicBlock *LBB = LBA->getBasicBlock();
353  BasicBlock *RBB = RBA->getBasicBlock();
354  if (LBB == RBB)
355  return 0;
356  for(BasicBlock &BB : F->getBasicBlockList()) {
357  if (&BB == LBB) {
358  assert(&BB != RBB);
359  return -1;
360  }
361  if (&BB == RBB)
362  return 1;
363  }
364  llvm_unreachable("Basic Block Address does not point to a basic block in "
365  "its function.");
366  return -1;
367  } else {
368  // cmpValues said the functions are the same. So because they aren't
369  // literally the same pointer, they must respectively be the left and
370  // right functions.
371  assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
372  // cmpValues will tell us if these are equivalent BasicBlocks, in the
373  // context of their respective functions.
374  return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
375  }
376  }
377  default: // Unknown constant, abort.
378  LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
379  llvm_unreachable("Constant ValueID not recognized.");
380  return -1;
381  }
382 }
383 
385  uint64_t LNumber = GlobalNumbers->getNumber(L);
386  uint64_t RNumber = GlobalNumbers->getNumber(R);
387  return cmpNumbers(LNumber, RNumber);
388 }
389 
390 /// cmpType - compares two types,
391 /// defines total ordering among the types set.
392 /// See method declaration comments for more details.
393 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
394  PointerType *PTyL = dyn_cast<PointerType>(TyL);
395  PointerType *PTyR = dyn_cast<PointerType>(TyR);
396 
397  const DataLayout &DL = FnL->getParent()->getDataLayout();
398  if (PTyL && PTyL->getAddressSpace() == 0)
399  TyL = DL.getIntPtrType(TyL);
400  if (PTyR && PTyR->getAddressSpace() == 0)
401  TyR = DL.getIntPtrType(TyR);
402 
403  if (TyL == TyR)
404  return 0;
405 
406  if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
407  return Res;
408 
409  switch (TyL->getTypeID()) {
410  default:
411  llvm_unreachable("Unknown type!");
412  case Type::IntegerTyID:
413  return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
414  cast<IntegerType>(TyR)->getBitWidth());
415  // TyL == TyR would have returned true earlier, because types are uniqued.
416  case Type::VoidTyID:
417  case Type::FloatTyID:
418  case Type::DoubleTyID:
419  case Type::X86_FP80TyID:
420  case Type::FP128TyID:
421  case Type::PPC_FP128TyID:
422  case Type::LabelTyID:
423  case Type::MetadataTyID:
424  case Type::TokenTyID:
425  return 0;
426 
427  case Type::PointerTyID:
428  assert(PTyL && PTyR && "Both types must be pointers here.");
429  return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
430 
431  case Type::StructTyID: {
432  StructType *STyL = cast<StructType>(TyL);
433  StructType *STyR = cast<StructType>(TyR);
434  if (STyL->getNumElements() != STyR->getNumElements())
435  return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
436 
437  if (STyL->isPacked() != STyR->isPacked())
438  return cmpNumbers(STyL->isPacked(), STyR->isPacked());
439 
440  for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
441  if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
442  return Res;
443  }
444  return 0;
445  }
446 
447  case Type::FunctionTyID: {
448  FunctionType *FTyL = cast<FunctionType>(TyL);
449  FunctionType *FTyR = cast<FunctionType>(TyR);
450  if (FTyL->getNumParams() != FTyR->getNumParams())
451  return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
452 
453  if (FTyL->isVarArg() != FTyR->isVarArg())
454  return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
455 
456  if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
457  return Res;
458 
459  for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
460  if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
461  return Res;
462  }
463  return 0;
464  }
465 
466  case Type::ArrayTyID:
467  case Type::VectorTyID: {
468  auto *STyL = cast<SequentialType>(TyL);
469  auto *STyR = cast<SequentialType>(TyR);
470  if (STyL->getNumElements() != STyR->getNumElements())
471  return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
472  return cmpTypes(STyL->getElementType(), STyR->getElementType());
473  }
474  }
475 }
476 
477 // Determine whether the two operations are the same except that pointer-to-A
478 // and pointer-to-B are equivalent. This should be kept in sync with
479 // Instruction::isSameOperationAs.
480 // Read method declaration comments for more details.
482  const Instruction *R,
483  bool &needToCmpOperands) const {
484  needToCmpOperands = true;
485  if (int Res = cmpValues(L, R))
486  return Res;
487 
488  // Differences from Instruction::isSameOperationAs:
489  // * replace type comparison with calls to cmpTypes.
490  // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
491  // * because of the above, we don't test for the tail bit on calls later on.
492  if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
493  return Res;
494 
495  if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
496  needToCmpOperands = false;
497  const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
498  if (int Res =
499  cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
500  return Res;
501  return cmpGEPs(GEPL, GEPR);
502  }
503 
504  if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
505  return Res;
506 
507  if (int Res = cmpTypes(L->getType(), R->getType()))
508  return Res;
509 
510  if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
512  return Res;
513 
514  // We have two instructions of identical opcode and #operands. Check to see
515  // if all operands are the same type
516  for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
517  if (int Res =
518  cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
519  return Res;
520  }
521 
522  // Check special state that is a part of some instructions.
523  if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
524  if (int Res = cmpTypes(AI->getAllocatedType(),
525  cast<AllocaInst>(R)->getAllocatedType()))
526  return Res;
527  return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment());
528  }
529  if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
530  if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
531  return Res;
532  if (int Res =
533  cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
534  return Res;
535  if (int Res =
536  cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
537  return Res;
538  if (int Res = cmpNumbers(LI->getSyncScopeID(),
539  cast<LoadInst>(R)->getSyncScopeID()))
540  return Res;
541  return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range),
542  cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
543  }
544  if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
545  if (int Res =
546  cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
547  return Res;
548  if (int Res =
549  cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
550  return Res;
551  if (int Res =
552  cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
553  return Res;
554  return cmpNumbers(SI->getSyncScopeID(),
555  cast<StoreInst>(R)->getSyncScopeID());
556  }
557  if (const CmpInst *CI = dyn_cast<CmpInst>(L))
558  return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
559  if (auto CSL = CallSite(const_cast<Instruction *>(L))) {
560  auto CSR = CallSite(const_cast<Instruction *>(R));
561  if (int Res = cmpNumbers(CSL.getCallingConv(), CSR.getCallingConv()))
562  return Res;
563  if (int Res = cmpAttrs(CSL.getAttributes(), CSR.getAttributes()))
564  return Res;
565  if (int Res = cmpOperandBundlesSchema(L, R))
566  return Res;
567  if (const CallInst *CI = dyn_cast<CallInst>(L))
568  if (int Res = cmpNumbers(CI->getTailCallKind(),
569  cast<CallInst>(R)->getTailCallKind()))
570  return Res;
571  return cmpRangeMetadata(L->getMetadata(LLVMContext::MD_range),
573  }
574  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
575  ArrayRef<unsigned> LIndices = IVI->getIndices();
576  ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
577  if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
578  return Res;
579  for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
580  if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
581  return Res;
582  }
583  return 0;
584  }
585  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
586  ArrayRef<unsigned> LIndices = EVI->getIndices();
587  ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
588  if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
589  return Res;
590  for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
591  if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
592  return Res;
593  }
594  }
595  if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
596  if (int Res =
597  cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
598  return Res;
599  return cmpNumbers(FI->getSyncScopeID(),
600  cast<FenceInst>(R)->getSyncScopeID());
601  }
602  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
603  if (int Res = cmpNumbers(CXI->isVolatile(),
604  cast<AtomicCmpXchgInst>(R)->isVolatile()))
605  return Res;
606  if (int Res = cmpNumbers(CXI->isWeak(),
607  cast<AtomicCmpXchgInst>(R)->isWeak()))
608  return Res;
609  if (int Res =
610  cmpOrderings(CXI->getSuccessOrdering(),
611  cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
612  return Res;
613  if (int Res =
614  cmpOrderings(CXI->getFailureOrdering(),
615  cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
616  return Res;
617  return cmpNumbers(CXI->getSyncScopeID(),
618  cast<AtomicCmpXchgInst>(R)->getSyncScopeID());
619  }
620  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
621  if (int Res = cmpNumbers(RMWI->getOperation(),
622  cast<AtomicRMWInst>(R)->getOperation()))
623  return Res;
624  if (int Res = cmpNumbers(RMWI->isVolatile(),
625  cast<AtomicRMWInst>(R)->isVolatile()))
626  return Res;
627  if (int Res = cmpOrderings(RMWI->getOrdering(),
628  cast<AtomicRMWInst>(R)->getOrdering()))
629  return Res;
630  return cmpNumbers(RMWI->getSyncScopeID(),
631  cast<AtomicRMWInst>(R)->getSyncScopeID());
632  }
633  if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
634  const PHINode *PNR = cast<PHINode>(R);
635  // Ensure that in addition to the incoming values being identical
636  // (checked by the caller of this function), the incoming blocks
637  // are also identical.
638  for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
639  if (int Res =
640  cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
641  return Res;
642  }
643  }
644  return 0;
645 }
646 
647 // Determine whether two GEP operations perform the same underlying arithmetic.
648 // Read method declaration comments for more details.
649 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
650  const GEPOperator *GEPR) const {
651  unsigned int ASL = GEPL->getPointerAddressSpace();
652  unsigned int ASR = GEPR->getPointerAddressSpace();
653 
654  if (int Res = cmpNumbers(ASL, ASR))
655  return Res;
656 
657  // When we have target data, we can reduce the GEP down to the value in bytes
658  // added to the address.
659  const DataLayout &DL = FnL->getParent()->getDataLayout();
660  unsigned BitWidth = DL.getPointerSizeInBits(ASL);
661  APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
662  if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
663  GEPR->accumulateConstantOffset(DL, OffsetR))
664  return cmpAPInts(OffsetL, OffsetR);
665  if (int Res = cmpTypes(GEPL->getSourceElementType(),
666  GEPR->getSourceElementType()))
667  return Res;
668 
669  if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
670  return Res;
671 
672  for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
673  if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
674  return Res;
675  }
676 
677  return 0;
678 }
679 
680 int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
681  const InlineAsm *R) const {
682  // InlineAsm's are uniqued. If they are the same pointer, obviously they are
683  // the same, otherwise compare the fields.
684  if (L == R)
685  return 0;
686  if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
687  return Res;
688  if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
689  return Res;
690  if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
691  return Res;
692  if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
693  return Res;
694  if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
695  return Res;
696  if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
697  return Res;
698  assert(L->getFunctionType() != R->getFunctionType());
699  return 0;
700 }
701 
702 /// Compare two values used by the two functions under pair-wise comparison. If
703 /// this is the first time the values are seen, they're added to the mapping so
704 /// that we will detect mismatches on next use.
705 /// See comments in declaration for more details.
706 int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
707  // Catch self-reference case.
708  if (L == FnL) {
709  if (R == FnR)
710  return 0;
711  return -1;
712  }
713  if (R == FnR) {
714  if (L == FnL)
715  return 0;
716  return 1;
717  }
718 
719  const Constant *ConstL = dyn_cast<Constant>(L);
720  const Constant *ConstR = dyn_cast<Constant>(R);
721  if (ConstL && ConstR) {
722  if (L == R)
723  return 0;
724  return cmpConstants(ConstL, ConstR);
725  }
726 
727  if (ConstL)
728  return 1;
729  if (ConstR)
730  return -1;
731 
732  const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
733  const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
734 
735  if (InlineAsmL && InlineAsmR)
736  return cmpInlineAsm(InlineAsmL, InlineAsmR);
737  if (InlineAsmL)
738  return 1;
739  if (InlineAsmR)
740  return -1;
741 
742  auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
743  RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
744 
745  return cmpNumbers(LeftSN.first->second, RightSN.first->second);
746 }
747 
748 // Test whether two basic blocks have equivalent behaviour.
750  const BasicBlock *BBR) const {
751  BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
752  BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
753 
754  do {
755  bool needToCmpOperands = true;
756  if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
757  return Res;
758  if (needToCmpOperands) {
759  assert(InstL->getNumOperands() == InstR->getNumOperands());
760 
761  for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
762  Value *OpL = InstL->getOperand(i);
763  Value *OpR = InstR->getOperand(i);
764  if (int Res = cmpValues(OpL, OpR))
765  return Res;
766  // cmpValues should ensure this is true.
767  assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
768  }
769  }
770 
771  ++InstL;
772  ++InstR;
773  } while (InstL != InstLE && InstR != InstRE);
774 
775  if (InstL != InstLE && InstR == InstRE)
776  return 1;
777  if (InstL == InstLE && InstR != InstRE)
778  return -1;
779  return 0;
780 }
781 
783  if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
784  return Res;
785 
786  if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
787  return Res;
788 
789  if (FnL->hasGC()) {
790  if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
791  return Res;
792  }
793 
794  if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
795  return Res;
796 
797  if (FnL->hasSection()) {
798  if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
799  return Res;
800  }
801 
802  if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
803  return Res;
804 
805  // TODO: if it's internal and only used in direct calls, we could handle this
806  // case too.
807  if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
808  return Res;
809 
810  if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
811  return Res;
812 
813  assert(FnL->arg_size() == FnR->arg_size() &&
814  "Identically typed functions have different numbers of args!");
815 
816  // Visit the arguments so that they get enumerated in the order they're
817  // passed in.
819  ArgRI = FnR->arg_begin(),
820  ArgLE = FnL->arg_end();
821  ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
822  if (cmpValues(&*ArgLI, &*ArgRI) != 0)
823  llvm_unreachable("Arguments repeat!");
824  }
825  return 0;
826 }
827 
828 // Test whether the two functions have equivalent behaviour.
830  beginCompare();
831 
832  if (int Res = compareSignature())
833  return Res;
834 
835  // We do a CFG-ordered walk since the actual ordering of the blocks in the
836  // linked list is immaterial. Our walk starts at the entry block for both
837  // functions, then takes each block from each terminator in order. As an
838  // artifact, this also means that unreachable blocks are ignored.
839  SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
840  SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
841 
842  FnLBBs.push_back(&FnL->getEntryBlock());
843  FnRBBs.push_back(&FnR->getEntryBlock());
844 
845  VisitedBBs.insert(FnLBBs[0]);
846  while (!FnLBBs.empty()) {
847  const BasicBlock *BBL = FnLBBs.pop_back_val();
848  const BasicBlock *BBR = FnRBBs.pop_back_val();
849 
850  if (int Res = cmpValues(BBL, BBR))
851  return Res;
852 
853  if (int Res = cmpBasicBlocks(BBL, BBR))
854  return Res;
855 
856  const Instruction *TermL = BBL->getTerminator();
857  const Instruction *TermR = BBR->getTerminator();
858 
859  assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
860  for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
861  if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
862  continue;
863 
864  FnLBBs.push_back(TermL->getSuccessor(i));
865  FnRBBs.push_back(TermR->getSuccessor(i));
866  }
867  }
868  return 0;
869 }
870 
871 namespace {
872 
873 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
874 // hash of a sequence of 64bit ints, but the entire input does not need to be
875 // available at once. This interface is necessary for functionHash because it
876 // needs to accumulate the hash as the structure of the function is traversed
877 // without saving these values to an intermediate buffer. This form of hashing
878 // is not often needed, as usually the object to hash is just read from a
879 // buffer.
880 class HashAccumulator64 {
881  uint64_t Hash;
882 
883 public:
884  // Initialize to random constant, so the state isn't zero.
885  HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
886 
887  void add(uint64_t V) {
888  Hash = hashing::detail::hash_16_bytes(Hash, V);
889  }
890 
891  // No finishing is required, because the entire hash value is used.
892  uint64_t getHash() { return Hash; }
893 };
894 
895 } // end anonymous namespace
896 
897 // A function hash is calculated by considering only the number of arguments and
898 // whether a function is varargs, the order of basic blocks (given by the
899 // successors of each basic block in depth first order), and the order of
900 // opcodes of each instruction within each of these basic blocks. This mirrors
901 // the strategy compare() uses to compare functions by walking the BBs in depth
902 // first order and comparing each instruction in sequence. Because this hash
903 // does not look at the operands, it is insensitive to things such as the
904 // target of calls and the constants used in the function, which makes it useful
905 // when possibly merging functions which are the same modulo constants and call
906 // targets.
908  HashAccumulator64 H;
909  H.add(F.isVarArg());
910  H.add(F.arg_size());
911 
914 
915  // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
916  // accumulating the hash of the function "structure." (BB and opcode sequence)
917  BBs.push_back(&F.getEntryBlock());
918  VisitedBBs.insert(BBs[0]);
919  while (!BBs.empty()) {
920  const BasicBlock *BB = BBs.pop_back_val();
921  // This random value acts as a block header, as otherwise the partition of
922  // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
923  H.add(45798);
924  for (auto &Inst : *BB) {
925  H.add(Inst.getOpcode());
926  }
927  const Instruction *Term = BB->getTerminator();
928  for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
929  if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
930  continue;
931  BBs.push_back(Term->getSuccessor(i));
932  }
933  }
934  return H.getHash();
935 }
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
const Function & getFunction() const
Definition: Function.h:133
bool isVarArg() const
isVarArg - Return true if this function takes a variable number of arguments.
Definition: Function.h:176
int cmpGlobalValues(GlobalValue *L, GlobalValue *R) const
Compares two global values by number.
StringRef getSection() const
Get the custom section of this global if it has one.
Definition: GlobalObject.h:89
7: Labels
Definition: Type.h:63
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:110
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:636
This instruction extracts a struct member or array element value from an aggregate value...
This class represents an incoming formal argument to a Function.
Definition: Argument.h:29
unsigned getValueID() const
Return an ID for the concrete type of this object.
Definition: Value.h:463
int cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR) const
Test whether two basic blocks have equivalent behaviour.
This class represents lattice values for constants.
Definition: AllocatorList.h:23
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:134
Type * getElementType(unsigned N) const
Definition: DerivedTypes.h:345
int compareSignature() const
Compares the signature and other general attributes of the two functions.
2: 32-bit floating point type
Definition: Type.h:58
BasicBlock * getSuccessor(unsigned Idx) const
Return the specified successor. This instruction must be a terminator.
An instruction for ordering other memory operations.
Definition: Instructions.h:454
an instruction that atomically checks whether a specified value is in a memory location, and, if it is, stores a new value there.
Definition: Instructions.h:528
unsigned getNumElements() const
Random access to the elements.
Definition: DerivedTypes.h:344
LLVM_NODISCARD int compare(StringRef RHS) const
compare - Compare two strings; the result is -1, 0, or 1 if this string is lexicographically less tha...
Definition: StringRef.h:174
This class represents a function call, abstracting a target machine&#39;s calling convention.
This file contains the declarations for metadata subclasses.
const std::string & getAsmString() const
Definition: InlineAsm.h:80
unsigned getPointerAddressSpace() const
Method to return the address space of the pointer operand.
Definition: Operator.h:492
unsigned second
arg_iterator arg_end()
Definition: Function.h:679
unsigned getPointerSizeInBits(unsigned AS=0) const
Layout pointer size, in bits FIXME: The defaults need to be removed once all of the backends/clients ...
Definition: DataLayout.h:388
13: Structures
Definition: Type.h:72
Metadata node.
Definition: Metadata.h:863
F(f)
4: 80-bit floating point type (X87)
Definition: Type.h:60
int cmpAPInts(const APInt &L, const APInt &R) const
const MDOperand & getOperand(unsigned I) const
Definition: Metadata.h:1068
const fltSemantics & getSemantics() const
Definition: APFloat.h:1154
An instruction for reading from memory.
Definition: Instructions.h:167
an instruction that atomically reads a memory location, combines it with another value, and then stores the result back.
Definition: Instructions.h:691
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:137
unsigned index_end() const
Definition: Attributes.h:643
15: Pointers
Definition: Type.h:74
12: Functions
Definition: Type.h:71
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1508
bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const
Accumulate the constant address offset of this GEP if possible.
Definition: Operator.cpp:34
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:268
bool hasSideEffects() const
Definition: InlineAsm.h:66
Function * getFunction() const
Definition: Constants.h:865
int cmpAPFloats(const APFloat &L, const APFloat &R) const
SI optimize exec mask operations pre RA
The address of a basic block.
Definition: Constants.h:839
static uint32_t getAlignment(const MCSectionCOFF &Sec)
uint64_t FunctionHash
Hash a function.
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:369
TypeID getTypeID() const
Return the type id for the type.
Definition: Type.h:137
Class to represent struct types.
Definition: DerivedTypes.h:232
This file contains the simple types necessary to represent the attributes associated with functions a...
static ExponentType semanticsMaxExponent(const fltSemantics &)
Definition: APFloat.cpp:158
This file implements a class to represent arbitrary precision integral constant values and operations...
AtomicOrdering
Atomic ordering for LLVM&#39;s memory model.
void beginCompare()
Start the comparison.
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition: Constants.cpp:84
Class to represent function types.
Definition: DerivedTypes.h:102
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:888
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:244
bool isFirstClassType() const
Return true if the type is "first class", meaning it is a valid type for a Value. ...
Definition: Type.h:243
static unsigned int semanticsSizeInBits(const fltSemantics &)
Definition: APFloat.cpp:165
int cmpOperations(const Instruction *L, const Instruction *R, bool &needToCmpOperands) const
Compare two Instructions for equivalence, similar to Instruction::isSameOperationAs.
bool isVarArg() const
Definition: DerivedTypes.h:122
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:234
LLVM_NODISCARD size_t size() const
size - Get the string size.
Definition: StringRef.h:130
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:137
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:125
BasicBlock * getBasicBlock() const
Definition: Constants.h:866
const std::string & getGC() const
Definition: Function.cpp:464
uint64_t hash_16_bytes(uint64_t low, uint64_t high)
Definition: Hashing.h:178
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:223
An instruction for storing to memory.
Definition: Instructions.h:320
uint64_t getNumber(GlobalValue *Global)
static ExponentType semanticsMinExponent(const fltSemantics &)
Definition: APFloat.cpp:162
unsigned getNumSuccessors() const
Return the number of successors that this instruction has.
Value * getOperand(unsigned i) const
Definition: User.h:169
Class to represent pointers.
Definition: DerivedTypes.h:498
static FunctionHash functionHash(Function &)
AttributeSet getAttributes(unsigned Index) const
The attributes for the specified index are returned.
unsigned getRawSubclassOptionalData() const
Return the raw optional flags value contained in this value.
Definition: Value.h:470
11: Arbitrary bit width integers
Definition: Type.h:70
const BasicBlock & getEntryBlock() const
Definition: Function.h:639
an instruction for type-safe pointer arithmetic to access elements of arrays and structs ...
Definition: Instructions.h:873
0: type with no size
Definition: Type.h:56
LLVM Basic Block Representation.
Definition: BasicBlock.h:57
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:45
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:148
This is an important base class in LLVM.
Definition: Constant.h:41
This file contains the declarations for the subclasses of Constant, which represent the different fla...
10: Tokens
Definition: Type.h:66
#define H(x, y, z)
Definition: MD5.cpp:57
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Definition: DerivedTypes.h:138
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:370
This file declares a class to represent arbitrary precision floating point values and provide a varie...
iterator begin() const
Definition: Attributes.cpp:620
6: 128-bit floating point type (two 64-bits, PowerPC)
Definition: Type.h:62
size_t arg_size() const
Definition: Function.h:697
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:526
arg_iterator arg_begin()
Definition: Function.h:670
Constant Vector Declarations.
Definition: Constants.h:499
int cmpMem(StringRef L, StringRef R) const
bool isAlignStack() const
Definition: InlineAsm.h:67
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const std::string & getConstraintString() const
Definition: InlineAsm.h:81
14: Arrays
Definition: Type.h:73
Predicate getPredicate(unsigned Condition, unsigned Hint)
Return predicate consisting of specified condition and hint bits.
Definition: PPCPredicates.h:87
Iterator for intrusive lists based on ilist_node.
unsigned getNumOperands() const
Definition: User.h:191
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:417
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
16: SIMD &#39;packed&#39; format, or other vector type
Definition: Type.h:75
iterator end()
Definition: BasicBlock.h:270
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition: Function.h:212
bool hasSection() const
Check if this global has a custom object file section.
Definition: GlobalObject.h:81
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:841
Module.h This file contains the declarations for the Module class.
unsigned getNumOperandBundles() const
Definition: CallSite.h:539
Type * getReturnType() const
Definition: DerivedTypes.h:123
LLVM_NODISCARD T pop_back_val()
Definition: SmallVector.h:374
static unsigned int semanticsPrecision(const fltSemantics &)
Definition: APFloat.cpp:154
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:132
8: Metadata
Definition: Type.h:64
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:163
ConstantArray - Constant Array Declarations.
Definition: Constants.h:413
Class for arbitrary precision integers.
Definition: APInt.h:69
unsigned getNumAttrSets() const
static bool isWeak(const MCSymbolELF &Sym)
int compare()
Test whether the two functions have equivalent behaviour.
int cmpTypes(Type *TyL, Type *TyR) const
cmpType - compares two types, defines total ordering among the types set.
bool ugt(const APInt &RHS) const
Unsigned greather than comparison.
Definition: APInt.h:1254
bool isPacked() const
Definition: DerivedTypes.h:292
bool hasGC() const
hasGC/getGC/setGC/clearGC - The name of the garbage collection algorithm to use during code generatio...
Definition: Function.h:348
iterator end() const
Definition: Attributes.cpp:624
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:55
Establish a view to a call site for examination.
Definition: CallSite.h:892
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
#define I(x, y, z)
Definition: MD5.cpp:58
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:322
const BasicBlockListType & getBasicBlockList() const
Get the underlying elements of the Function...
Definition: Function.h:632
FunctionType * getFunctionType() const
getFunctionType - InlineAsm&#39;s are always pointers to functions.
Definition: InlineAsm.cpp:56
AsmDialect getDialect() const
Definition: InlineAsm.h:68
3: 64-bit floating point type
Definition: Type.h:59
bool isCall() const
Return true if a CallInst is enclosed.
Definition: CallSite.h:87
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:565
LLVM Value Representation.
Definition: Value.h:72
int cmpValues(const Value *L, const Value *R) const
Assign or look up previously assigned numbers for the two values, and return whether the numbers are ...
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:48
int cmpConstants(const Constant *L, const Constant *R) const
Constants comparison.
Type * getSourceElementType() const
Definition: Operator.cpp:22
APInt bitcastToAPInt() const
Definition: APFloat.h:1093
OperandBundleUse getOperandBundleAt(unsigned Index) const
Definition: CallSite.h:559
static bool isVolatile(Instruction *Inst)
unsigned getNumOperands() const
Return number of MDNode operands.
Definition: Metadata.h:1074
#define LLVM_DEBUG(X)
Definition: Debug.h:122
unsigned index_begin() const
Use these to iterate over the valid attribute indices.
Definition: Attributes.h:642
an instruction to allocate memory on the stack
Definition: Instructions.h:59
This instruction inserts a struct field of array element value into an aggregate value.
5: 128-bit floating point type (112-bit mantissa)
Definition: Type.h:61
int cmpNumbers(uint64_t L, uint64_t R) const