LLVM 19.0.0git
HexagonAsmPrinter.cpp
Go to the documentation of this file.
1//===- HexagonAsmPrinter.cpp - Print machine instrs to Hexagon assembly ---===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains a printer that converts from our internal representation
10// of machine-dependent LLVM code to Hexagon assembly language. This printer is
11// the output mechanism used by `llc'.
12//
13//===----------------------------------------------------------------------===//
14
15#include "HexagonAsmPrinter.h"
16#include "Hexagon.h"
17#include "HexagonInstrInfo.h"
18#include "HexagonRegisterInfo.h"
19#include "HexagonSubtarget.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/ADT/Twine.h"
36#include "llvm/MC/MCContext.h"
38#include "llvm/MC/MCExpr.h"
39#include "llvm/MC/MCInst.h"
42#include "llvm/MC/MCStreamer.h"
43#include "llvm/MC/MCSymbol.h"
49#include <algorithm>
50#include <cassert>
51#include <cstdint>
52#include <string>
53
54using namespace llvm;
55
56namespace llvm {
57
58void HexagonLowerToMC(const MCInstrInfo &MCII, const MachineInstr *MI,
59 MCInst &MCB, HexagonAsmPrinter &AP);
60
61} // end namespace llvm
62
63#define DEBUG_TYPE "asm-printer"
64
65// Given a scalar register return its pair.
66inline static unsigned getHexagonRegisterPair(unsigned Reg,
67 const MCRegisterInfo *RI) {
68 assert(Hexagon::IntRegsRegClass.contains(Reg));
69 unsigned Pair = *RI->superregs(Reg).begin();
70 assert(Hexagon::DoubleRegsRegClass.contains(Pair));
71 return Pair;
72}
73
75 raw_ostream &O) {
76 const MachineOperand &MO = MI->getOperand(OpNo);
77
78 switch (MO.getType()) {
79 default:
80 llvm_unreachable ("<unknown operand type>");
83 return;
85 O << MO.getImm();
86 return;
88 MO.getMBB()->getSymbol()->print(O, MAI);
89 return;
91 GetCPISymbol(MO.getIndex())->print(O, MAI);
92 return;
94 PrintSymbolOperand(MO, O);
95 return;
96 }
97}
98
99// isBlockOnlyReachableByFallthrough - We need to override this since the
100// default AsmPrinter does not print labels for any basic block that
101// is only reachable by a fall through. That works for all cases except
102// for the case in which the basic block is reachable by a fall through but
103// through an indirect from a jump table. In this case, the jump table
104// will contain a label not defined by AsmPrinter.
106 const MachineBasicBlock *MBB) const {
107 if (MBB->hasAddressTaken())
108 return false;
110}
111
112/// PrintAsmOperand - Print out an operand for an inline asm expression.
114 const char *ExtraCode,
115 raw_ostream &OS) {
116 // Does this asm operand have a single letter operand modifier?
117 if (ExtraCode && ExtraCode[0]) {
118 if (ExtraCode[1] != 0)
119 return true; // Unknown modifier.
120
121 switch (ExtraCode[0]) {
122 default:
123 // See if this is a generic print operand
124 return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, OS);
125 case 'L':
126 case 'H': { // The highest-numbered register of a pair.
127 const MachineOperand &MO = MI->getOperand(OpNo);
128 const MachineFunction &MF = *MI->getParent()->getParent();
130 if (!MO.isReg())
131 return true;
132 Register RegNumber = MO.getReg();
133 // This should be an assert in the frontend.
134 if (Hexagon::DoubleRegsRegClass.contains(RegNumber))
135 RegNumber = TRI->getSubReg(RegNumber, ExtraCode[0] == 'L' ?
136 Hexagon::isub_lo :
137 Hexagon::isub_hi);
139 return false;
140 }
141 case 'I':
142 // Write 'i' if an integer constant, otherwise nothing. Used to print
143 // addi vs add, etc.
144 if (MI->getOperand(OpNo).isImm())
145 OS << "i";
146 return false;
147 }
148 }
149
150 printOperand(MI, OpNo, OS);
151 return false;
152}
153
155 unsigned OpNo,
156 const char *ExtraCode,
157 raw_ostream &O) {
158 if (ExtraCode && ExtraCode[0])
159 return true; // Unknown modifier.
160
161 const MachineOperand &Base = MI->getOperand(OpNo);
162 const MachineOperand &Offset = MI->getOperand(OpNo+1);
163
164 if (Base.isReg())
165 printOperand(MI, OpNo, O);
166 else
167 llvm_unreachable("Unimplemented");
168
169 if (Offset.isImm()) {
170 if (Offset.getImm())
171 O << "+#" << Offset.getImm();
172 } else {
173 llvm_unreachable("Unimplemented");
174 }
175
176 return false;
177}
178
180 MCStreamer &OutStreamer, const MCOperand &Imm,
181 int AlignSize, const MCSubtargetInfo& STI) {
182 MCSymbol *Sym;
183 int64_t Value;
184 if (Imm.getExpr()->evaluateAsAbsolute(Value)) {
185 StringRef sectionPrefix;
186 std::string ImmString;
188 if (AlignSize == 8) {
189 Name = ".CONST_0000000000000000";
190 sectionPrefix = ".gnu.linkonce.l8";
191 ImmString = utohexstr(Value);
192 } else {
193 Name = ".CONST_00000000";
194 sectionPrefix = ".gnu.linkonce.l4";
195 ImmString = utohexstr(static_cast<uint32_t>(Value));
196 }
197
198 std::string symbolName = // Yes, leading zeros are kept.
199 Name.drop_back(ImmString.size()).str() + ImmString;
200 std::string sectionName = sectionPrefix.str() + symbolName;
201
202 MCSectionELF *Section = OutStreamer.getContext().getELFSection(
204 OutStreamer.switchSection(Section);
205
206 Sym = AP.OutContext.getOrCreateSymbol(Twine(symbolName));
207 if (Sym->isUndefined()) {
208 OutStreamer.emitLabel(Sym);
209 OutStreamer.emitSymbolAttribute(Sym, MCSA_Global);
210 OutStreamer.emitIntValue(Value, AlignSize);
211 OutStreamer.emitCodeAlignment(Align(AlignSize), &STI);
212 }
213 } else {
214 assert(Imm.isExpr() && "Expected expression and found none");
215 const MachineOperand &MO = MI.getOperand(1);
216 assert(MO.isGlobal() || MO.isCPI() || MO.isJTI());
217 MCSymbol *MOSymbol = nullptr;
218 if (MO.isGlobal())
219 MOSymbol = AP.getSymbol(MO.getGlobal());
220 else if (MO.isCPI())
221 MOSymbol = AP.GetCPISymbol(MO.getIndex());
222 else if (MO.isJTI())
223 MOSymbol = AP.GetJTISymbol(MO.getIndex());
224 else
225 llvm_unreachable("Unknown operand type!");
226
227 StringRef SymbolName = MOSymbol->getName();
228 std::string LitaName = ".CONST_" + SymbolName.str();
229
230 MCSectionELF *Section = OutStreamer.getContext().getELFSection(
232
233 OutStreamer.switchSection(Section);
234 Sym = AP.OutContext.getOrCreateSymbol(Twine(LitaName));
235 if (Sym->isUndefined()) {
236 OutStreamer.emitLabel(Sym);
237 OutStreamer.emitSymbolAttribute(Sym, MCSA_Local);
238 OutStreamer.emitValue(Imm.getExpr(), AlignSize);
239 OutStreamer.emitCodeAlignment(Align(AlignSize), &STI);
240 }
241 }
242 return Sym;
243}
244
245static MCInst ScaleVectorOffset(MCInst &Inst, unsigned OpNo,
246 unsigned VectorSize, MCContext &Ctx) {
247 MCInst T;
248 T.setOpcode(Inst.getOpcode());
249 for (unsigned i = 0, n = Inst.getNumOperands(); i != n; ++i) {
250 if (i != OpNo) {
251 T.addOperand(Inst.getOperand(i));
252 continue;
253 }
254 MCOperand &ImmOp = Inst.getOperand(i);
255 const auto *HE = static_cast<const HexagonMCExpr*>(ImmOp.getExpr());
256 int32_t V = cast<MCConstantExpr>(HE->getExpr())->getValue();
257 auto *NewCE = MCConstantExpr::create(V / int32_t(VectorSize), Ctx);
258 auto *NewHE = HexagonMCExpr::create(NewCE, Ctx);
259 T.addOperand(MCOperand::createExpr(NewHE));
260 }
261 return T;
262}
263
265 const MachineInstr &MI) {
266 MCInst &MappedInst = static_cast <MCInst &>(Inst);
267 const MCRegisterInfo *RI = OutStreamer->getContext().getRegisterInfo();
268 const MachineFunction &MF = *MI.getParent()->getParent();
269 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
270 unsigned VectorSize = HRI.getRegSizeInBits(Hexagon::HvxVRRegClass) / 8;
271
272 switch (Inst.getOpcode()) {
273 default:
274 return;
275
276 case Hexagon::A2_iconst: {
277 Inst.setOpcode(Hexagon::A2_addi);
278 MCOperand Reg = Inst.getOperand(0);
279 MCOperand S16 = Inst.getOperand(1);
282 Inst.clear();
283 Inst.addOperand(Reg);
284 Inst.addOperand(MCOperand::createReg(Hexagon::R0));
285 Inst.addOperand(S16);
286 break;
287 }
288
289 case Hexagon::A2_tfrf: {
291 Inst.setOpcode(Hexagon::A2_paddif);
293 break;
294 }
295
296 case Hexagon::A2_tfrt: {
298 Inst.setOpcode(Hexagon::A2_paddit);
300 break;
301 }
302
303 case Hexagon::A2_tfrfnew: {
305 Inst.setOpcode(Hexagon::A2_paddifnew);
307 break;
308 }
309
310 case Hexagon::A2_tfrtnew: {
312 Inst.setOpcode(Hexagon::A2_padditnew);
314 break;
315 }
316
317 case Hexagon::A2_zxtb: {
319 Inst.setOpcode(Hexagon::A2_andir);
321 break;
322 }
323
324 // "$dst = CONST64(#$src1)",
325 case Hexagon::CONST64:
326 if (!OutStreamer->hasRawTextSupport()) {
327 const MCOperand &Imm = MappedInst.getOperand(1);
328 MCSectionSubPair Current = OutStreamer->getCurrentSection();
329
330 MCSymbol *Sym =
331 smallData(*this, MI, *OutStreamer, Imm, 8, getSubtargetInfo());
332
333 OutStreamer->switchSection(Current.first, Current.second);
334 MCInst TmpInst;
335 MCOperand &Reg = MappedInst.getOperand(0);
336 TmpInst.setOpcode(Hexagon::L2_loadrdgp);
337 TmpInst.addOperand(Reg);
340 MappedInst = TmpInst;
341
342 }
343 break;
344 case Hexagon::CONST32:
345 if (!OutStreamer->hasRawTextSupport()) {
346 MCOperand &Imm = MappedInst.getOperand(1);
347 MCSectionSubPair Current = OutStreamer->getCurrentSection();
348 MCSymbol *Sym =
349 smallData(*this, MI, *OutStreamer, Imm, 4, getSubtargetInfo());
350 OutStreamer->switchSection(Current.first, Current.second);
351 MCInst TmpInst;
352 MCOperand &Reg = MappedInst.getOperand(0);
353 TmpInst.setOpcode(Hexagon::L2_loadrigp);
354 TmpInst.addOperand(Reg);
357 MappedInst = TmpInst;
358 }
359 break;
360
361 // C2_pxfer_map maps to C2_or instruction. Though, it's possible to use
362 // C2_or during instruction selection itself but it results
363 // into suboptimal code.
364 case Hexagon::C2_pxfer_map: {
365 MCOperand &Ps = Inst.getOperand(1);
366 MappedInst.setOpcode(Hexagon::C2_or);
367 MappedInst.addOperand(Ps);
368 return;
369 }
370
371 // Vector reduce complex multiply by scalar, Rt & 1 map to :hi else :lo
372 // The insn is mapped from the 4 operand to the 3 operand raw form taking
373 // 3 register pairs.
374 case Hexagon::M2_vrcmpys_acc_s1: {
375 MCOperand &Rt = Inst.getOperand(3);
376 assert(Rt.isReg() && "Expected register and none was found");
377 unsigned Reg = RI->getEncodingValue(Rt.getReg());
378 if (Reg & 1)
379 MappedInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_h);
380 else
381 MappedInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_l);
383 return;
384 }
385 case Hexagon::M2_vrcmpys_s1: {
386 MCOperand &Rt = Inst.getOperand(2);
387 assert(Rt.isReg() && "Expected register and none was found");
388 unsigned Reg = RI->getEncodingValue(Rt.getReg());
389 if (Reg & 1)
390 MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1_h);
391 else
392 MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1_l);
394 return;
395 }
396
397 case Hexagon::M2_vrcmpys_s1rp: {
398 MCOperand &Rt = Inst.getOperand(2);
399 assert(Rt.isReg() && "Expected register and none was found");
400 unsigned Reg = RI->getEncodingValue(Rt.getReg());
401 if (Reg & 1)
402 MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1rp_h);
403 else
404 MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1rp_l);
406 return;
407 }
408
409 case Hexagon::A4_boundscheck: {
410 MCOperand &Rs = Inst.getOperand(1);
411 assert(Rs.isReg() && "Expected register and none was found");
412 unsigned Reg = RI->getEncodingValue(Rs.getReg());
413 if (Reg & 1) // Odd mapped to raw:hi, regpair is rodd:odd-1, like r3:2
414 MappedInst.setOpcode(Hexagon::A4_boundscheck_hi);
415 else // raw:lo
416 MappedInst.setOpcode(Hexagon::A4_boundscheck_lo);
418 return;
419 }
420
421 case Hexagon::PS_call_nr:
422 Inst.setOpcode(Hexagon::J2_call);
423 break;
424
425 case Hexagon::S5_asrhub_rnd_sat_goodsyntax: {
426 MCOperand &MO = MappedInst.getOperand(2);
427 int64_t Imm;
428 MCExpr const *Expr = MO.getExpr();
429 bool Success = Expr->evaluateAsAbsolute(Imm);
430 assert(Success && "Expected immediate and none was found");
431 (void)Success;
432 MCInst TmpInst;
433 if (Imm == 0) {
434 TmpInst.setOpcode(Hexagon::S2_vsathub);
435 TmpInst.addOperand(MappedInst.getOperand(0));
436 TmpInst.addOperand(MappedInst.getOperand(1));
437 MappedInst = TmpInst;
438 return;
439 }
440 TmpInst.setOpcode(Hexagon::S5_asrhub_rnd_sat);
441 TmpInst.addOperand(MappedInst.getOperand(0));
442 TmpInst.addOperand(MappedInst.getOperand(1));
444 const MCExpr *Sub = MCBinaryExpr::createSub(Expr, One, OutContext);
445 TmpInst.addOperand(
447 MappedInst = TmpInst;
448 return;
449 }
450
451 case Hexagon::S5_vasrhrnd_goodsyntax:
452 case Hexagon::S2_asr_i_p_rnd_goodsyntax: {
453 MCOperand &MO2 = MappedInst.getOperand(2);
454 MCExpr const *Expr = MO2.getExpr();
455 int64_t Imm;
456 bool Success = Expr->evaluateAsAbsolute(Imm);
457 assert(Success && "Expected immediate and none was found");
458 (void)Success;
459 MCInst TmpInst;
460 if (Imm == 0) {
461 TmpInst.setOpcode(Hexagon::A2_combinew);
462 TmpInst.addOperand(MappedInst.getOperand(0));
463 MCOperand &MO1 = MappedInst.getOperand(1);
464 unsigned High = RI->getSubReg(MO1.getReg(), Hexagon::isub_hi);
465 unsigned Low = RI->getSubReg(MO1.getReg(), Hexagon::isub_lo);
466 // Add a new operand for the second register in the pair.
469 MappedInst = TmpInst;
470 return;
471 }
472
473 if (Inst.getOpcode() == Hexagon::S2_asr_i_p_rnd_goodsyntax)
474 TmpInst.setOpcode(Hexagon::S2_asr_i_p_rnd);
475 else
476 TmpInst.setOpcode(Hexagon::S5_vasrhrnd);
477 TmpInst.addOperand(MappedInst.getOperand(0));
478 TmpInst.addOperand(MappedInst.getOperand(1));
480 const MCExpr *Sub = MCBinaryExpr::createSub(Expr, One, OutContext);
481 TmpInst.addOperand(
483 MappedInst = TmpInst;
484 return;
485 }
486
487 // if ("#u5==0") Assembler mapped to: "Rd=Rs"; else Rd=asr(Rs,#u5-1):rnd
488 case Hexagon::S2_asr_i_r_rnd_goodsyntax: {
489 MCOperand &MO = Inst.getOperand(2);
490 MCExpr const *Expr = MO.getExpr();
491 int64_t Imm;
492 bool Success = Expr->evaluateAsAbsolute(Imm);
493 assert(Success && "Expected immediate and none was found");
494 (void)Success;
495 MCInst TmpInst;
496 if (Imm == 0) {
497 TmpInst.setOpcode(Hexagon::A2_tfr);
498 TmpInst.addOperand(MappedInst.getOperand(0));
499 TmpInst.addOperand(MappedInst.getOperand(1));
500 MappedInst = TmpInst;
501 return;
502 }
503 TmpInst.setOpcode(Hexagon::S2_asr_i_r_rnd);
504 TmpInst.addOperand(MappedInst.getOperand(0));
505 TmpInst.addOperand(MappedInst.getOperand(1));
507 const MCExpr *Sub = MCBinaryExpr::createSub(Expr, One, OutContext);
508 TmpInst.addOperand(
510 MappedInst = TmpInst;
511 return;
512 }
513
514 // Translate a "$Rdd = #imm" to "$Rdd = combine(#[-1,0], #imm)"
515 case Hexagon::A2_tfrpi: {
516 MCInst TmpInst;
517 MCOperand &Rdd = MappedInst.getOperand(0);
518 MCOperand &MO = MappedInst.getOperand(1);
519
520 TmpInst.setOpcode(Hexagon::A2_combineii);
521 TmpInst.addOperand(Rdd);
522 int64_t Imm;
523 bool Success = MO.getExpr()->evaluateAsAbsolute(Imm);
524 if (Success && Imm < 0) {
525 const MCExpr *MOne = MCConstantExpr::create(-1, OutContext);
528 } else {
529 const MCExpr *Zero = MCConstantExpr::create(0, OutContext);
532 }
533 TmpInst.addOperand(MO);
534 MappedInst = TmpInst;
535 return;
536 }
537
538 // Translate a "$Rdd = $Rss" to "$Rdd = combine($Rs, $Rt)"
539 case Hexagon::A2_tfrp: {
540 MCOperand &MO = MappedInst.getOperand(1);
541 unsigned High = RI->getSubReg(MO.getReg(), Hexagon::isub_hi);
542 unsigned Low = RI->getSubReg(MO.getReg(), Hexagon::isub_lo);
543 MO.setReg(High);
544 // Add a new operand for the second register in the pair.
546 MappedInst.setOpcode(Hexagon::A2_combinew);
547 return;
548 }
549
550 case Hexagon::A2_tfrpt:
551 case Hexagon::A2_tfrpf: {
552 MCOperand &MO = MappedInst.getOperand(2);
553 unsigned High = RI->getSubReg(MO.getReg(), Hexagon::isub_hi);
554 unsigned Low = RI->getSubReg(MO.getReg(), Hexagon::isub_lo);
555 MO.setReg(High);
556 // Add a new operand for the second register in the pair.
558 MappedInst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrpt)
559 ? Hexagon::C2_ccombinewt
560 : Hexagon::C2_ccombinewf);
561 return;
562 }
563
564 case Hexagon::A2_tfrptnew:
565 case Hexagon::A2_tfrpfnew: {
566 MCOperand &MO = MappedInst.getOperand(2);
567 unsigned High = RI->getSubReg(MO.getReg(), Hexagon::isub_hi);
568 unsigned Low = RI->getSubReg(MO.getReg(), Hexagon::isub_lo);
569 MO.setReg(High);
570 // Add a new operand for the second register in the pair.
572 MappedInst.setOpcode(Inst.getOpcode() == Hexagon::A2_tfrptnew
573 ? Hexagon::C2_ccombinewnewt
574 : Hexagon::C2_ccombinewnewf);
575 return;
576 }
577
578 case Hexagon::M2_mpysmi: {
579 MCOperand &Imm = MappedInst.getOperand(2);
580 MCExpr const *Expr = Imm.getExpr();
581 int64_t Value;
582 bool Success = Expr->evaluateAsAbsolute(Value);
584 (void)Success;
585 if (Value < 0 && Value > -256) {
586 MappedInst.setOpcode(Hexagon::M2_mpysin);
587 Imm.setExpr(HexagonMCExpr::create(
589 } else
590 MappedInst.setOpcode(Hexagon::M2_mpysip);
591 return;
592 }
593
594 case Hexagon::A2_addsp: {
595 MCOperand &Rt = Inst.getOperand(1);
596 assert(Rt.isReg() && "Expected register and none was found");
597 unsigned Reg = RI->getEncodingValue(Rt.getReg());
598 if (Reg & 1)
599 MappedInst.setOpcode(Hexagon::A2_addsph);
600 else
601 MappedInst.setOpcode(Hexagon::A2_addspl);
603 return;
604 }
605
606 case Hexagon::V6_vd0: {
607 MCInst TmpInst;
608 assert(Inst.getOperand(0).isReg() &&
609 "Expected register and none was found");
610
611 TmpInst.setOpcode(Hexagon::V6_vxor);
612 TmpInst.addOperand(Inst.getOperand(0));
613 TmpInst.addOperand(Inst.getOperand(0));
614 TmpInst.addOperand(Inst.getOperand(0));
615 MappedInst = TmpInst;
616 return;
617 }
618
619 case Hexagon::V6_vdd0: {
620 MCInst TmpInst;
621 assert (Inst.getOperand(0).isReg() &&
622 "Expected register and none was found");
623
624 TmpInst.setOpcode(Hexagon::V6_vsubw_dv);
625 TmpInst.addOperand(Inst.getOperand(0));
626 TmpInst.addOperand(Inst.getOperand(0));
627 TmpInst.addOperand(Inst.getOperand(0));
628 MappedInst = TmpInst;
629 return;
630 }
631
632 case Hexagon::V6_vL32Ub_pi:
633 case Hexagon::V6_vL32b_cur_pi:
634 case Hexagon::V6_vL32b_nt_cur_pi:
635 case Hexagon::V6_vL32b_pi:
636 case Hexagon::V6_vL32b_nt_pi:
637 case Hexagon::V6_vL32b_nt_tmp_pi:
638 case Hexagon::V6_vL32b_tmp_pi:
639 MappedInst = ScaleVectorOffset(Inst, 3, VectorSize, OutContext);
640 return;
641
642 case Hexagon::V6_vL32Ub_ai:
643 case Hexagon::V6_vL32b_ai:
644 case Hexagon::V6_vL32b_cur_ai:
645 case Hexagon::V6_vL32b_nt_ai:
646 case Hexagon::V6_vL32b_nt_cur_ai:
647 case Hexagon::V6_vL32b_nt_tmp_ai:
648 case Hexagon::V6_vL32b_tmp_ai:
649 MappedInst = ScaleVectorOffset(Inst, 2, VectorSize, OutContext);
650 return;
651
652 case Hexagon::V6_vS32Ub_pi:
653 case Hexagon::V6_vS32b_new_pi:
654 case Hexagon::V6_vS32b_nt_new_pi:
655 case Hexagon::V6_vS32b_nt_pi:
656 case Hexagon::V6_vS32b_pi:
657 MappedInst = ScaleVectorOffset(Inst, 2, VectorSize, OutContext);
658 return;
659
660 case Hexagon::V6_vS32Ub_ai:
661 case Hexagon::V6_vS32b_ai:
662 case Hexagon::V6_vS32b_new_ai:
663 case Hexagon::V6_vS32b_nt_ai:
664 case Hexagon::V6_vS32b_nt_new_ai:
665 MappedInst = ScaleVectorOffset(Inst, 1, VectorSize, OutContext);
666 return;
667
668 case Hexagon::V6_vL32b_cur_npred_pi:
669 case Hexagon::V6_vL32b_cur_pred_pi:
670 case Hexagon::V6_vL32b_npred_pi:
671 case Hexagon::V6_vL32b_nt_cur_npred_pi:
672 case Hexagon::V6_vL32b_nt_cur_pred_pi:
673 case Hexagon::V6_vL32b_nt_npred_pi:
674 case Hexagon::V6_vL32b_nt_pred_pi:
675 case Hexagon::V6_vL32b_nt_tmp_npred_pi:
676 case Hexagon::V6_vL32b_nt_tmp_pred_pi:
677 case Hexagon::V6_vL32b_pred_pi:
678 case Hexagon::V6_vL32b_tmp_npred_pi:
679 case Hexagon::V6_vL32b_tmp_pred_pi:
680 MappedInst = ScaleVectorOffset(Inst, 4, VectorSize, OutContext);
681 return;
682
683 case Hexagon::V6_vL32b_cur_npred_ai:
684 case Hexagon::V6_vL32b_cur_pred_ai:
685 case Hexagon::V6_vL32b_npred_ai:
686 case Hexagon::V6_vL32b_nt_cur_npred_ai:
687 case Hexagon::V6_vL32b_nt_cur_pred_ai:
688 case Hexagon::V6_vL32b_nt_npred_ai:
689 case Hexagon::V6_vL32b_nt_pred_ai:
690 case Hexagon::V6_vL32b_nt_tmp_npred_ai:
691 case Hexagon::V6_vL32b_nt_tmp_pred_ai:
692 case Hexagon::V6_vL32b_pred_ai:
693 case Hexagon::V6_vL32b_tmp_npred_ai:
694 case Hexagon::V6_vL32b_tmp_pred_ai:
695 MappedInst = ScaleVectorOffset(Inst, 3, VectorSize, OutContext);
696 return;
697
698 case Hexagon::V6_vS32Ub_npred_pi:
699 case Hexagon::V6_vS32Ub_pred_pi:
700 case Hexagon::V6_vS32b_new_npred_pi:
701 case Hexagon::V6_vS32b_new_pred_pi:
702 case Hexagon::V6_vS32b_npred_pi:
703 case Hexagon::V6_vS32b_nqpred_pi:
704 case Hexagon::V6_vS32b_nt_new_npred_pi:
705 case Hexagon::V6_vS32b_nt_new_pred_pi:
706 case Hexagon::V6_vS32b_nt_npred_pi:
707 case Hexagon::V6_vS32b_nt_nqpred_pi:
708 case Hexagon::V6_vS32b_nt_pred_pi:
709 case Hexagon::V6_vS32b_nt_qpred_pi:
710 case Hexagon::V6_vS32b_pred_pi:
711 case Hexagon::V6_vS32b_qpred_pi:
712 MappedInst = ScaleVectorOffset(Inst, 3, VectorSize, OutContext);
713 return;
714
715 case Hexagon::V6_vS32Ub_npred_ai:
716 case Hexagon::V6_vS32Ub_pred_ai:
717 case Hexagon::V6_vS32b_new_npred_ai:
718 case Hexagon::V6_vS32b_new_pred_ai:
719 case Hexagon::V6_vS32b_npred_ai:
720 case Hexagon::V6_vS32b_nqpred_ai:
721 case Hexagon::V6_vS32b_nt_new_npred_ai:
722 case Hexagon::V6_vS32b_nt_new_pred_ai:
723 case Hexagon::V6_vS32b_nt_npred_ai:
724 case Hexagon::V6_vS32b_nt_nqpred_ai:
725 case Hexagon::V6_vS32b_nt_pred_ai:
726 case Hexagon::V6_vS32b_nt_qpred_ai:
727 case Hexagon::V6_vS32b_pred_ai:
728 case Hexagon::V6_vS32b_qpred_ai:
729 MappedInst = ScaleVectorOffset(Inst, 2, VectorSize, OutContext);
730 return;
731
732 // V65+
733 case Hexagon::V6_vS32b_srls_ai:
734 MappedInst = ScaleVectorOffset(Inst, 1, VectorSize, OutContext);
735 return;
736
737 case Hexagon::V6_vS32b_srls_pi:
738 MappedInst = ScaleVectorOffset(Inst, 2, VectorSize, OutContext);
739 return;
740 }
741}
742
743/// Print out a single Hexagon MI to the current output stream.
745 Hexagon_MC::verifyInstructionPredicates(MI->getOpcode(),
746 getSubtargetInfo().getFeatureBits());
747
748 MCInst MCB;
749 MCB.setOpcode(Hexagon::BUNDLE);
751 const MCInstrInfo &MCII = *Subtarget->getInstrInfo();
752
753 if (MI->isBundle()) {
754 const MachineBasicBlock* MBB = MI->getParent();
755 MachineBasicBlock::const_instr_iterator MII = MI->getIterator();
756
757 for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
758 if (!MII->isDebugInstr() && !MII->isImplicitDef())
759 HexagonLowerToMC(MCII, &*MII, MCB, *this);
760 } else {
761 HexagonLowerToMC(MCII, MI, MCB, *this);
762 }
763
764 const MachineFunction &MF = *MI->getParent()->getParent();
765 const auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
766 if (MI->isBundle() && HII.getBundleNoShuf(*MI))
768
769 MCContext &Ctx = OutStreamer->getContext();
770 bool Ok = HexagonMCInstrInfo::canonicalizePacket(MCII, *Subtarget, Ctx,
771 MCB, nullptr);
772 assert(Ok); (void)Ok;
773 if (HexagonMCInstrInfo::bundleSize(MCB) == 0)
774 return;
775 OutStreamer->emitInstruction(MCB, getSubtargetInfo());
776}
777
779 static const int8_t NoopsInSledCount = 4;
780 // We want to emit the following pattern:
781 //
782 // .L_xray_sled_N:
783 // <xray_sled_base>:
784 // { jump .Ltmp0 }
785 // { nop
786 // nop
787 // nop
788 // nop }
789 // .Ltmp0:
790 //
791 // We need the 4 nop words because at runtime, we'd be patching over the
792 // full 5 words with the following pattern:
793 //
794 // <xray_sled_n>:
795 // { immext(#...) // upper 26-bits of trampoline
796 // r6 = ##... // lower 6-bits of trampoline
797 // immext(#...) // upper 26-bits of func id
798 // r7 = ##... } // lower 6 bits of func id
799 // { callr r6 }
800 //
801 //
802 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
803 OutStreamer->emitLabel(CurSled);
804
805 MCInst *SledJump = new (OutContext) MCInst();
806 SledJump->setOpcode(Hexagon::J2_jump);
807 auto PostSled = OutContext.createTempSymbol();
810
811 // Emit "jump PostSled" instruction, which jumps over the nop series.
812 MCInst SledJumpPacket;
813 SledJumpPacket.setOpcode(Hexagon::BUNDLE);
814 SledJumpPacket.addOperand(MCOperand::createImm(0));
815 SledJumpPacket.addOperand(MCOperand::createInst(SledJump));
816
817 EmitToStreamer(*OutStreamer, SledJumpPacket);
818
819 // FIXME: this will emit individual packets, we should
820 // special-case this and combine them into a single packet.
821 emitNops(NoopsInSledCount);
822
823 OutStreamer->emitLabel(PostSled);
824 recordSled(CurSled, MI, Kind, 2);
825}
826
829}
830
833}
834
837}
838
841}
#define Success
MachineBasicBlock & MBB
static const LLT S16
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_EXTERNAL_VISIBILITY
Definition: Compiler.h:135
std::string Name
Symbol * Sym
Definition: ELF_riscv.cpp:479
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
LLVM_EXTERNAL_VISIBILITY void LLVMInitializeHexagonAsmPrinter()
static MCSymbol * smallData(AsmPrinter &AP, const MachineInstr &MI, MCStreamer &OutStreamer, const MCOperand &Imm, int AlignSize, const MCSubtargetInfo &STI)
static MCInst ScaleVectorOffset(MCInst &Inst, unsigned OpNo, unsigned VectorSize, MCContext &Ctx)
static unsigned getHexagonRegisterPair(unsigned Reg, const MCRegisterInfo *RI)
IRTranslator LLVM IR MI
unsigned const TargetRegisterInfo * TRI
uint64_t High
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
This file contains some functions that are useful when dealing with strings.
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition: Value.cpp:469
This class is intended to be used as a driving class for all asm writers.
Definition: AsmPrinter.h:84
MCSymbol * getSymbol(const GlobalValue *GV) const
Definition: AsmPrinter.cpp:700
void emitNops(unsigned N)
Emit N NOP instructions.
void EmitToStreamer(MCStreamer &S, const MCInst &Inst)
Definition: AsmPrinter.cpp:418
virtual MCSymbol * GetCPISymbol(unsigned CPID) const
Return the symbol for the specified constant pool entry.
virtual void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &OS)
Print the MachineOperand as a symbol.
const MCAsmInfo * MAI
Target Asm Printer information.
Definition: AsmPrinter.h:90
MachineFunction * MF
The current machine function.
Definition: AsmPrinter.h:102
virtual bool isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const
Return true if the basic block has exactly one predecessor and the control transfer mechanism between...
MCSymbol * GetJTISymbol(unsigned JTID, bool isLinkerPrivate=false) const
Return the symbol for the specified jump table entry.
void recordSled(MCSymbol *Sled, const MachineInstr &MI, SledKind Kind, uint8_t Version=0)
MCContext & OutContext
This is the context for the output file that we are streaming.
Definition: AsmPrinter.h:94
std::unique_ptr< MCStreamer > OutStreamer
This is the MCStreamer object for the file we are generating.
Definition: AsmPrinter.h:99
const MCSubtargetInfo & getSubtargetInfo() const
Return information about subtarget.
Definition: AsmPrinter.cpp:413
virtual bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, const char *ExtraCode, raw_ostream &OS)
Print the specified operand of MI, an INLINEASM instruction, using the specified assembler variant.
void LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI)
void EmitSled(const MachineInstr &MI, SledKind Kind)
void LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI)
bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, const char *ExtraCode, raw_ostream &OS) override
Print the specified operand of MI, an INLINEASM instruction, using the specified assembler variant as...
bool isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const override
Return true if the basic block has exactly one predecessor and the control transfer mechanism between...
bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, const char *ExtraCode, raw_ostream &OS) override
PrintAsmOperand - Print out an operand for an inline asm expression.
void emitInstruction(const MachineInstr *MI) override
Print out a single Hexagon MI to the current output stream.
void LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI)
void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O)
void HexagonProcessInstruction(MCInst &Inst, const MachineInstr &MBB)
static char const * getRegisterName(MCRegister Reg)
static HexagonMCExpr * create(MCExpr const *Expr, MCContext &Ctx)
const HexagonInstrInfo * getInstrInfo() const override
static const MCBinaryExpr * createSub(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx)
Definition: MCExpr.h:621
static const MCConstantExpr * create(int64_t Value, MCContext &Ctx, bool PrintInHex=false, unsigned SizeInBytes=0)
Definition: MCExpr.cpp:194
Context object for machine code objects.
Definition: MCContext.h:76
MCSymbol * createTempSymbol()
Create a temporary symbol with a unique name.
Definition: MCContext.cpp:321
MCSectionELF * getELFSection(const Twine &Section, unsigned Type, unsigned Flags)
Definition: MCContext.h:567
MCSymbol * getOrCreateSymbol(const Twine &Name)
Lookup the symbol inside with the specified Name.
Definition: MCContext.cpp:200
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:35
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:184
unsigned getNumOperands() const
Definition: MCInst.h:208
unsigned getOpcode() const
Definition: MCInst.h:198
void addOperand(const MCOperand Op)
Definition: MCInst.h:210
void setOpcode(unsigned Op)
Definition: MCInst.h:197
void clear()
Definition: MCInst.h:215
const MCOperand & getOperand(unsigned i) const
Definition: MCInst.h:206
Interface to description of machine instruction set.
Definition: MCInstrInfo.h:26
Instances of this class represent operands of the MCInst class.
Definition: MCInst.h:36
static MCOperand createReg(unsigned Reg)
Definition: MCInst.h:134
static MCOperand createExpr(const MCExpr *Val)
Definition: MCInst.h:162
void setReg(unsigned Reg)
Set the register number.
Definition: MCInst.h:75
static MCOperand createImm(int64_t Val)
Definition: MCInst.h:141
unsigned getReg() const
Returns the register number.
Definition: MCInst.h:69
bool isReg() const
Definition: MCInst.h:61
const MCExpr * getExpr() const
Definition: MCInst.h:114
static MCOperand createInst(const MCInst *Val)
Definition: MCInst.h:169
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
iterator_range< MCSuperRegIterator > superregs(MCRegister Reg) const
Return an iterator range over all super-registers of Reg, excluding Reg.
uint16_t getEncodingValue(MCRegister RegNo) const
Returns the encoding for RegNo.
MCRegister getSubReg(MCRegister Reg, unsigned Idx) const
Returns the physical register number of sub-register "Index" for physical register RegNo.
This represents a section on linux, lots of unix variants and some bare metal systems.
Definition: MCSectionELF.h:26
Streaming machine code generation interface.
Definition: MCStreamer.h:212
virtual bool emitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute)=0
Add the given Attribute to Symbol.
MCContext & getContext() const
Definition: MCStreamer.h:297
void emitValue(const MCExpr *Value, unsigned Size, SMLoc Loc=SMLoc())
Definition: MCStreamer.cpp:180
virtual void emitLabel(MCSymbol *Symbol, SMLoc Loc=SMLoc())
Emit a label for Symbol into the current section.
Definition: MCStreamer.cpp:424
virtual void emitIntValue(uint64_t Value, unsigned Size)
Special case of EmitValue that avoids the client having to pass in a MCExpr for constant integers.
Definition: MCStreamer.cpp:134
virtual void emitCodeAlignment(Align Alignment, const MCSubtargetInfo *STI, unsigned MaxBytesToEmit=0)
Emit nops until the byte alignment ByteAlignment is reached.
virtual void switchSection(MCSection *Section, const MCExpr *Subsection=nullptr)
Set the current section where code is being emitted to Section.
Generic base class for all target subtargets.
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx)
Definition: MCExpr.h:397
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:40
void print(raw_ostream &OS, const MCAsmInfo *MAI) const
print - Print the value to the stream OS.
Definition: MCSymbol.cpp:58
StringRef getName() const
getName - Get the symbol name.
Definition: MCSymbol.h:205
static const MCUnaryExpr * createMinus(const MCExpr *Expr, MCContext &Ctx, SMLoc Loc=SMLoc())
Definition: MCExpr.h:462
MCSymbol * getSymbol() const
Return the MCSymbol for this basic block.
bool hasAddressTaken() const
Test whether this block is used as something other than the target of a terminator,...
instr_iterator instr_end()
Instructions::const_iterator const_instr_iterator
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
Representation of each machine instruction.
Definition: MachineInstr.h:69
MachineOperand class - Representation of each machine instruction operand.
const GlobalValue * getGlobal() const
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
bool isCPI() const
isCPI - Tests if this is a MO_ConstantPoolIndex operand.
bool isJTI() const
isJTI - Tests if this is a MO_JumpTableIndex operand.
bool isGlobal() const
isGlobal - Tests if this is a MO_GlobalAddress operand.
MachineOperandType getType() const
getType - Returns the MachineOperandType for this operand.
Register getReg() const
getReg - Returns the register number.
@ MO_Immediate
Immediate operand.
@ MO_ConstantPoolIndex
Address of indexed Constant in Constant Pool.
@ MO_GlobalAddress
Address of a global value.
@ MO_MachineBasicBlock
MachineBasicBlock reference.
@ MO_Register
Register operand.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
std::string str() const
str - Get the contents as an std::string.
Definition: StringRef.h:222
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
LLVM Value Representation.
Definition: Value.h:74
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ SHF_ALLOC
Definition: ELF.h:1155
@ SHF_WRITE
Definition: ELF.h:1152
@ SHT_PROGBITS
Definition: ELF.h:1063
size_t bundleSize(MCInst const &MCI)
void setS27_2_reloc(MCExpr const &Expr, bool Val=true)
void setMemReorderDisabled(MCInst &MCI)
bool canonicalizePacket(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, MCContext &Context, MCInst &MCB, HexagonMCChecker *Checker, bool AttemptCompatibility=false)
void setMustNotExtend(MCExpr const &Expr, bool Val=true)
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
@ Offset
Definition: DWP.cpp:456
Target & getTheHexagonTarget()
void HexagonLowerToMC(const MCInstrInfo &MCII, const MachineInstr *MI, MCInst &MCB, HexagonAsmPrinter &AP)
std::pair< MCSection *, const MCExpr * > MCSectionSubPair
Definition: MCStreamer.h:66
@ MCSA_Local
.local (ELF)
Definition: MCDirectives.h:38
@ MCSA_Global
.type _foo, @gnu_unique_object
Definition: MCDirectives.h:30
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
RegisterAsmPrinter - Helper template for registering a target specific assembly printer,...