LLVM 19.0.0git
HexagonBitSimplify.cpp
Go to the documentation of this file.
1//===- HexagonBitSimplify.cpp ---------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "BitTracker.h"
10#include "HexagonBitTracker.h"
11#include "HexagonInstrInfo.h"
12#include "HexagonRegisterInfo.h"
13#include "HexagonSubtarget.h"
14#include "llvm/ADT/BitVector.h"
15#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/StringRef.h"
29#include "llvm/IR/DebugLoc.h"
31#include "llvm/MC/MCInstrDesc.h"
32#include "llvm/Pass.h"
35#include "llvm/Support/Debug.h"
39#include <algorithm>
40#include <cassert>
41#include <cstdint>
42#include <deque>
43#include <iterator>
44#include <limits>
45#include <utility>
46#include <vector>
47
48#define DEBUG_TYPE "hexbit"
49
50using namespace llvm;
51
52static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied", cl::Hidden,
53 cl::init(true), cl::desc("Preserve subregisters in tied operands"));
54static cl::opt<bool> GenExtract("hexbit-extract", cl::Hidden,
55 cl::init(true), cl::desc("Generate extract instructions"));
56static cl::opt<bool> GenBitSplit("hexbit-bitsplit", cl::Hidden,
57 cl::init(true), cl::desc("Generate bitsplit instructions"));
58
59static cl::opt<unsigned> MaxExtract("hexbit-max-extract", cl::Hidden,
60 cl::init(std::numeric_limits<unsigned>::max()));
61static unsigned CountExtract = 0;
62static cl::opt<unsigned> MaxBitSplit("hexbit-max-bitsplit", cl::Hidden,
63 cl::init(std::numeric_limits<unsigned>::max()));
64static unsigned CountBitSplit = 0;
65
66static cl::opt<unsigned> RegisterSetLimit("hexbit-registerset-limit",
67 cl::Hidden, cl::init(1000));
68
69namespace llvm {
70
73
74} // end namespace llvm
75
76namespace {
77
78 // Set of virtual registers, based on BitVector.
79 struct RegisterSet {
80 RegisterSet() = default;
81 explicit RegisterSet(unsigned s, bool t = false) : Bits(s, t) {}
82 RegisterSet(const RegisterSet &RS) = default;
83
84 void clear() {
85 Bits.clear();
86 LRU.clear();
87 }
88
89 unsigned count() const {
90 return Bits.count();
91 }
92
93 unsigned find_first() const {
94 int First = Bits.find_first();
95 if (First < 0)
96 return 0;
97 return x2v(First);
98 }
99
100 unsigned find_next(unsigned Prev) const {
101 int Next = Bits.find_next(v2x(Prev));
102 if (Next < 0)
103 return 0;
104 return x2v(Next);
105 }
106
107 RegisterSet &insert(unsigned R) {
108 unsigned Idx = v2x(R);
109 ensure(Idx);
110 bool Exists = Bits.test(Idx);
111 Bits.set(Idx);
112 if (!Exists) {
113 LRU.push_back(Idx);
114 if (LRU.size() > RegisterSetLimit) {
115 unsigned T = LRU.front();
116 Bits.reset(T);
117 LRU.pop_front();
118 }
119 }
120 return *this;
121 }
122 RegisterSet &remove(unsigned R) {
123 unsigned Idx = v2x(R);
124 if (Idx < Bits.size()) {
125 bool Exists = Bits.test(Idx);
126 Bits.reset(Idx);
127 if (Exists) {
128 auto F = llvm::find(LRU, Idx);
129 assert(F != LRU.end());
130 LRU.erase(F);
131 }
132 }
133 return *this;
134 }
135
136 RegisterSet &insert(const RegisterSet &Rs) {
137 for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R))
138 insert(R);
139 return *this;
140 }
141 RegisterSet &remove(const RegisterSet &Rs) {
142 for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R))
143 remove(R);
144 return *this;
145 }
146
147 bool operator[](unsigned R) const {
148 unsigned Idx = v2x(R);
149 return Idx < Bits.size() ? Bits[Idx] : false;
150 }
151 bool has(unsigned R) const {
152 unsigned Idx = v2x(R);
153 if (Idx >= Bits.size())
154 return false;
155 return Bits.test(Idx);
156 }
157
158 bool empty() const {
159 return !Bits.any();
160 }
161 bool includes(const RegisterSet &Rs) const {
162 // A.test(B) <=> A-B != {}
163 return !Rs.Bits.test(Bits);
164 }
165 bool intersects(const RegisterSet &Rs) const {
166 return Bits.anyCommon(Rs.Bits);
167 }
168
169 private:
171 std::deque<unsigned> LRU;
172
173 void ensure(unsigned Idx) {
174 if (Bits.size() <= Idx)
175 Bits.resize(std::max(Idx+1, 32U));
176 }
177
178 static inline unsigned v2x(unsigned v) {
179 return Register::virtReg2Index(v);
180 }
181
182 static inline unsigned x2v(unsigned x) {
183 return Register::index2VirtReg(x);
184 }
185 };
186
187 struct PrintRegSet {
188 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
189 : RS(S), TRI(RI) {}
190
192 const PrintRegSet &P);
193
194 private:
195 const RegisterSet &RS;
196 const TargetRegisterInfo *TRI;
197 };
198
199 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
201 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
202 OS << '{';
203 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
204 OS << ' ' << printReg(R, P.TRI);
205 OS << " }";
206 return OS;
207 }
208
209 class Transformation;
210
211 class HexagonBitSimplify : public MachineFunctionPass {
212 public:
213 static char ID;
214
215 HexagonBitSimplify() : MachineFunctionPass(ID) {}
216
217 StringRef getPassName() const override {
218 return "Hexagon bit simplification";
219 }
220
221 void getAnalysisUsage(AnalysisUsage &AU) const override {
225 }
226
227 bool runOnMachineFunction(MachineFunction &MF) override;
228
229 static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
230 static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
231 static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
232 const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
233 static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
234 uint16_t W);
235 static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
236 uint16_t W, uint64_t &U);
237 static bool replaceReg(Register OldR, Register NewR,
239 static bool getSubregMask(const BitTracker::RegisterRef &RR,
240 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
241 static bool replaceRegWithSub(Register OldR, Register NewR, unsigned NewSR,
243 static bool replaceSubWithSub(Register OldR, unsigned OldSR, Register NewR,
244 unsigned NewSR, MachineRegisterInfo &MRI);
245 static bool parseRegSequence(const MachineInstr &I,
247 const MachineRegisterInfo &MRI);
248
249 static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
250 uint16_t Begin);
251 static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
252 uint16_t Begin, const HexagonInstrInfo &HII);
253
254 static const TargetRegisterClass *getFinalVRegClass(
256 static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
258
259 private:
260 MachineDominatorTree *MDT = nullptr;
261
262 bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
263 static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
264 unsigned NewSub = Hexagon::NoSubRegister);
265 };
266
267 using HBS = HexagonBitSimplify;
268
269 // The purpose of this class is to provide a common facility to traverse
270 // the function top-down or bottom-up via the dominator tree, and keep
271 // track of the available registers.
272 class Transformation {
273 public:
274 bool TopDown;
275
276 Transformation(bool TD) : TopDown(TD) {}
277 virtual ~Transformation() = default;
278
279 virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
280 };
281
282} // end anonymous namespace
283
284char HexagonBitSimplify::ID = 0;
285
286INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexagon-bit-simplify",
287 "Hexagon bit simplification", false, false)
289INITIALIZE_PASS_END(HexagonBitSimplify, "hexagon-bit-simplify",
290 "Hexagon bit simplification", false, false)
291
292bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
293 RegisterSet &AVs) {
294 bool Changed = false;
295
296 if (T.TopDown)
297 Changed = T.processBlock(B, AVs);
298
299 RegisterSet Defs;
300 for (auto &I : B)
301 getInstrDefs(I, Defs);
302 RegisterSet NewAVs = AVs;
303 NewAVs.insert(Defs);
304
305 for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(&B)))
306 Changed |= visitBlock(*(DTN->getBlock()), T, NewAVs);
307
308 if (!T.TopDown)
309 Changed |= T.processBlock(B, AVs);
310
311 return Changed;
312}
313
314//
315// Utility functions:
316//
317void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
318 RegisterSet &Defs) {
319 for (auto &Op : MI.operands()) {
320 if (!Op.isReg() || !Op.isDef())
321 continue;
322 Register R = Op.getReg();
323 if (!R.isVirtual())
324 continue;
325 Defs.insert(R);
326 }
327}
328
329void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
330 RegisterSet &Uses) {
331 for (auto &Op : MI.operands()) {
332 if (!Op.isReg() || !Op.isUse())
333 continue;
334 Register R = Op.getReg();
335 if (!R.isVirtual())
336 continue;
337 Uses.insert(R);
338 }
339}
340
341// Check if all the bits in range [B, E) in both cells are equal.
342bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
343 uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
344 uint16_t W) {
345 for (uint16_t i = 0; i < W; ++i) {
346 // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
347 if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
348 return false;
349 // Same for RC2[i].
350 if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
351 return false;
352 if (RC1[B1+i] != RC2[B2+i])
353 return false;
354 }
355 return true;
356}
357
358bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
359 uint16_t B, uint16_t W) {
360 assert(B < RC.width() && B+W <= RC.width());
361 for (uint16_t i = B; i < B+W; ++i)
362 if (!RC[i].is(0))
363 return false;
364 return true;
365}
366
367bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
368 uint16_t B, uint16_t W, uint64_t &U) {
369 assert(B < RC.width() && B+W <= RC.width());
370 int64_t T = 0;
371 for (uint16_t i = B+W; i > B; --i) {
372 const BitTracker::BitValue &BV = RC[i-1];
373 T <<= 1;
374 if (BV.is(1))
375 T |= 1;
376 else if (!BV.is(0))
377 return false;
378 }
379 U = T;
380 return true;
381}
382
383bool HexagonBitSimplify::replaceReg(Register OldR, Register NewR,
385 if (!OldR.isVirtual() || !NewR.isVirtual())
386 return false;
387 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
388 decltype(End) NextI;
389 for (auto I = Begin; I != End; I = NextI) {
390 NextI = std::next(I);
391 I->setReg(NewR);
392 }
393 return Begin != End;
394}
395
396bool HexagonBitSimplify::replaceRegWithSub(Register OldR, Register NewR,
397 unsigned NewSR,
399 if (!OldR.isVirtual() || !NewR.isVirtual())
400 return false;
401 if (hasTiedUse(OldR, MRI, NewSR))
402 return false;
403 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
404 decltype(End) NextI;
405 for (auto I = Begin; I != End; I = NextI) {
406 NextI = std::next(I);
407 I->setReg(NewR);
408 I->setSubReg(NewSR);
409 }
410 return Begin != End;
411}
412
413bool HexagonBitSimplify::replaceSubWithSub(Register OldR, unsigned OldSR,
414 Register NewR, unsigned NewSR,
416 if (!OldR.isVirtual() || !NewR.isVirtual())
417 return false;
418 if (OldSR != NewSR && hasTiedUse(OldR, MRI, NewSR))
419 return false;
420 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
421 decltype(End) NextI;
422 for (auto I = Begin; I != End; I = NextI) {
423 NextI = std::next(I);
424 if (I->getSubReg() != OldSR)
425 continue;
426 I->setReg(NewR);
427 I->setSubReg(NewSR);
428 }
429 return Begin != End;
430}
431
432// For a register ref (pair Reg:Sub), set Begin to the position of the LSB
433// of Sub in Reg, and set Width to the size of Sub in bits. Return true,
434// if this succeeded, otherwise return false.
435bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
436 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
437 const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
438 if (RR.Sub == 0) {
439 Begin = 0;
440 Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC);
441 return true;
442 }
443
444 Begin = 0;
445
446 switch (RC->getID()) {
447 case Hexagon::DoubleRegsRegClassID:
448 case Hexagon::HvxWRRegClassID:
449 Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 2;
450 if (RR.Sub == Hexagon::isub_hi || RR.Sub == Hexagon::vsub_hi)
451 Begin = Width;
452 break;
453 default:
454 return false;
455 }
456 return true;
457}
458
459
460// For a REG_SEQUENCE, set SL to the low subregister and SH to the high
461// subregister.
462bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
464 const MachineRegisterInfo &MRI) {
465 assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
466 unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
467 auto &DstRC = *MRI.getRegClass(I.getOperand(0).getReg());
468 auto &HRI = static_cast<const HexagonRegisterInfo&>(
469 *MRI.getTargetRegisterInfo());
470 unsigned SubLo = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_lo);
471 unsigned SubHi = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_hi);
472 assert((Sub1 == SubLo && Sub2 == SubHi) || (Sub1 == SubHi && Sub2 == SubLo));
473 if (Sub1 == SubLo && Sub2 == SubHi) {
474 SL = I.getOperand(1);
475 SH = I.getOperand(3);
476 return true;
477 }
478 if (Sub1 == SubHi && Sub2 == SubLo) {
479 SH = I.getOperand(1);
480 SL = I.getOperand(3);
481 return true;
482 }
483 return false;
484}
485
486// All stores (except 64-bit stores) take a 32-bit register as the source
487// of the value to be stored. If the instruction stores into a location
488// that is shorter than 32 bits, some bits of the source register are not
489// used. For each store instruction, calculate the set of used bits in
490// the source register, and set appropriate bits in Bits. Return true if
491// the bits are calculated, false otherwise.
492bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
493 uint16_t Begin) {
494 using namespace Hexagon;
495
496 switch (Opc) {
497 // Store byte
498 case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32
499 case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new
500 case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32
501 case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32
502 case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
503 case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
504 case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
505 case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
506 case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
507 case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
508 case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32
509 case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new
510 case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32
511 case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32
512 case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
513 case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
514 case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
515 case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
516 case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
517 case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
518 case S4_storerb_ap: // memb(Re32=#U6)=Rt32
519 case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new
520 case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32
521 case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new
522 case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32
523 case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new
524 case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32
525 case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new
526 case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32
527 case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
528 case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32
529 case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new
530 case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32
531 case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new
532 case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
533 case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
534 case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
535 case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
536 case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
537 case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
538 case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
539 case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
540 case S2_storerbgp: // memb(gp+#u16:0)=Rt32
541 case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new
542 case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32
543 case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32
544 case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32
545 case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32
546 case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new
547 case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new
548 case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new
549 case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new
550 Bits.set(Begin, Begin+8);
551 return true;
552
553 // Store low half
554 case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32
555 case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new
556 case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32
557 case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32
558 case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
559 case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
560 case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
561 case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
562 case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
563 case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
564 case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32
565 case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new
566 case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32
567 case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32
568 case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
569 case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
570 case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
571 case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
572 case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
573 case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
574 case S4_storerh_ap: // memh(Re32=#U6)=Rt32
575 case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new
576 case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32
577 case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new
578 case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32
579 case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new
580 case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32
581 case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new
582 case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32
583 case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
584 case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32
585 case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new
586 case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32
587 case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
588 case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
589 case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
590 case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
591 case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new
592 case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
593 case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
594 case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
595 case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
596 case S2_storerhgp: // memh(gp+#u16:1)=Rt32
597 case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new
598 case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32
599 case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32
600 case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32
601 case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32
602 case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new
603 case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new
604 case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new
605 case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new
606 Bits.set(Begin, Begin+16);
607 return true;
608
609 // Store high half
610 case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32
611 case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
612 case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
613 case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
614 case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
615 case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32
616 case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
617 case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
618 case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
619 case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
620 case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32
621 case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32
622 case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32
623 case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32
624 case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
625 case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32
626 case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32
627 case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
628 case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
629 case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
630 case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
631 case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32
632 case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32
633 case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32
634 case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32
635 case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32
636 Bits.set(Begin+16, Begin+32);
637 return true;
638 }
639
640 return false;
641}
642
643// For an instruction with opcode Opc, calculate the set of bits that it
644// uses in a register in operand OpN. This only calculates the set of used
645// bits for cases where it does not depend on any operands (as is the case
646// in shifts, for example). For concrete instructions from a program, the
647// operand may be a subregister of a larger register, while Bits would
648// correspond to the larger register in its entirety. Because of that,
649// the parameter Begin can be used to indicate which bit of Bits should be
650// considered the LSB of the operand.
651bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
652 BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
653 using namespace Hexagon;
654
655 const MCInstrDesc &D = HII.get(Opc);
656 if (D.mayStore()) {
657 if (OpN == D.getNumOperands()-1)
658 return getUsedBitsInStore(Opc, Bits, Begin);
659 return false;
660 }
661
662 switch (Opc) {
663 // One register source. Used bits: R1[0-7].
664 case A2_sxtb:
665 case A2_zxtb:
666 case A4_cmpbeqi:
667 case A4_cmpbgti:
668 case A4_cmpbgtui:
669 if (OpN == 1) {
670 Bits.set(Begin, Begin+8);
671 return true;
672 }
673 break;
674
675 // One register source. Used bits: R1[0-15].
676 case A2_aslh:
677 case A2_sxth:
678 case A2_zxth:
679 case A4_cmpheqi:
680 case A4_cmphgti:
681 case A4_cmphgtui:
682 if (OpN == 1) {
683 Bits.set(Begin, Begin+16);
684 return true;
685 }
686 break;
687
688 // One register source. Used bits: R1[16-31].
689 case A2_asrh:
690 if (OpN == 1) {
691 Bits.set(Begin+16, Begin+32);
692 return true;
693 }
694 break;
695
696 // Two register sources. Used bits: R1[0-7], R2[0-7].
697 case A4_cmpbeq:
698 case A4_cmpbgt:
699 case A4_cmpbgtu:
700 if (OpN == 1) {
701 Bits.set(Begin, Begin+8);
702 return true;
703 }
704 break;
705
706 // Two register sources. Used bits: R1[0-15], R2[0-15].
707 case A4_cmpheq:
708 case A4_cmphgt:
709 case A4_cmphgtu:
710 case A2_addh_h16_ll:
711 case A2_addh_h16_sat_ll:
712 case A2_addh_l16_ll:
713 case A2_addh_l16_sat_ll:
714 case A2_combine_ll:
715 case A2_subh_h16_ll:
716 case A2_subh_h16_sat_ll:
717 case A2_subh_l16_ll:
718 case A2_subh_l16_sat_ll:
719 case M2_mpy_acc_ll_s0:
720 case M2_mpy_acc_ll_s1:
721 case M2_mpy_acc_sat_ll_s0:
722 case M2_mpy_acc_sat_ll_s1:
723 case M2_mpy_ll_s0:
724 case M2_mpy_ll_s1:
725 case M2_mpy_nac_ll_s0:
726 case M2_mpy_nac_ll_s1:
727 case M2_mpy_nac_sat_ll_s0:
728 case M2_mpy_nac_sat_ll_s1:
729 case M2_mpy_rnd_ll_s0:
730 case M2_mpy_rnd_ll_s1:
731 case M2_mpy_sat_ll_s0:
732 case M2_mpy_sat_ll_s1:
733 case M2_mpy_sat_rnd_ll_s0:
734 case M2_mpy_sat_rnd_ll_s1:
735 case M2_mpyd_acc_ll_s0:
736 case M2_mpyd_acc_ll_s1:
737 case M2_mpyd_ll_s0:
738 case M2_mpyd_ll_s1:
739 case M2_mpyd_nac_ll_s0:
740 case M2_mpyd_nac_ll_s1:
741 case M2_mpyd_rnd_ll_s0:
742 case M2_mpyd_rnd_ll_s1:
743 case M2_mpyu_acc_ll_s0:
744 case M2_mpyu_acc_ll_s1:
745 case M2_mpyu_ll_s0:
746 case M2_mpyu_ll_s1:
747 case M2_mpyu_nac_ll_s0:
748 case M2_mpyu_nac_ll_s1:
749 case M2_mpyud_acc_ll_s0:
750 case M2_mpyud_acc_ll_s1:
751 case M2_mpyud_ll_s0:
752 case M2_mpyud_ll_s1:
753 case M2_mpyud_nac_ll_s0:
754 case M2_mpyud_nac_ll_s1:
755 if (OpN == 1 || OpN == 2) {
756 Bits.set(Begin, Begin+16);
757 return true;
758 }
759 break;
760
761 // Two register sources. Used bits: R1[0-15], R2[16-31].
762 case A2_addh_h16_lh:
763 case A2_addh_h16_sat_lh:
764 case A2_combine_lh:
765 case A2_subh_h16_lh:
766 case A2_subh_h16_sat_lh:
767 case M2_mpy_acc_lh_s0:
768 case M2_mpy_acc_lh_s1:
769 case M2_mpy_acc_sat_lh_s0:
770 case M2_mpy_acc_sat_lh_s1:
771 case M2_mpy_lh_s0:
772 case M2_mpy_lh_s1:
773 case M2_mpy_nac_lh_s0:
774 case M2_mpy_nac_lh_s1:
775 case M2_mpy_nac_sat_lh_s0:
776 case M2_mpy_nac_sat_lh_s1:
777 case M2_mpy_rnd_lh_s0:
778 case M2_mpy_rnd_lh_s1:
779 case M2_mpy_sat_lh_s0:
780 case M2_mpy_sat_lh_s1:
781 case M2_mpy_sat_rnd_lh_s0:
782 case M2_mpy_sat_rnd_lh_s1:
783 case M2_mpyd_acc_lh_s0:
784 case M2_mpyd_acc_lh_s1:
785 case M2_mpyd_lh_s0:
786 case M2_mpyd_lh_s1:
787 case M2_mpyd_nac_lh_s0:
788 case M2_mpyd_nac_lh_s1:
789 case M2_mpyd_rnd_lh_s0:
790 case M2_mpyd_rnd_lh_s1:
791 case M2_mpyu_acc_lh_s0:
792 case M2_mpyu_acc_lh_s1:
793 case M2_mpyu_lh_s0:
794 case M2_mpyu_lh_s1:
795 case M2_mpyu_nac_lh_s0:
796 case M2_mpyu_nac_lh_s1:
797 case M2_mpyud_acc_lh_s0:
798 case M2_mpyud_acc_lh_s1:
799 case M2_mpyud_lh_s0:
800 case M2_mpyud_lh_s1:
801 case M2_mpyud_nac_lh_s0:
802 case M2_mpyud_nac_lh_s1:
803 // These four are actually LH.
804 case A2_addh_l16_hl:
805 case A2_addh_l16_sat_hl:
806 case A2_subh_l16_hl:
807 case A2_subh_l16_sat_hl:
808 if (OpN == 1) {
809 Bits.set(Begin, Begin+16);
810 return true;
811 }
812 if (OpN == 2) {
813 Bits.set(Begin+16, Begin+32);
814 return true;
815 }
816 break;
817
818 // Two register sources, used bits: R1[16-31], R2[0-15].
819 case A2_addh_h16_hl:
820 case A2_addh_h16_sat_hl:
821 case A2_combine_hl:
822 case A2_subh_h16_hl:
823 case A2_subh_h16_sat_hl:
824 case M2_mpy_acc_hl_s0:
825 case M2_mpy_acc_hl_s1:
826 case M2_mpy_acc_sat_hl_s0:
827 case M2_mpy_acc_sat_hl_s1:
828 case M2_mpy_hl_s0:
829 case M2_mpy_hl_s1:
830 case M2_mpy_nac_hl_s0:
831 case M2_mpy_nac_hl_s1:
832 case M2_mpy_nac_sat_hl_s0:
833 case M2_mpy_nac_sat_hl_s1:
834 case M2_mpy_rnd_hl_s0:
835 case M2_mpy_rnd_hl_s1:
836 case M2_mpy_sat_hl_s0:
837 case M2_mpy_sat_hl_s1:
838 case M2_mpy_sat_rnd_hl_s0:
839 case M2_mpy_sat_rnd_hl_s1:
840 case M2_mpyd_acc_hl_s0:
841 case M2_mpyd_acc_hl_s1:
842 case M2_mpyd_hl_s0:
843 case M2_mpyd_hl_s1:
844 case M2_mpyd_nac_hl_s0:
845 case M2_mpyd_nac_hl_s1:
846 case M2_mpyd_rnd_hl_s0:
847 case M2_mpyd_rnd_hl_s1:
848 case M2_mpyu_acc_hl_s0:
849 case M2_mpyu_acc_hl_s1:
850 case M2_mpyu_hl_s0:
851 case M2_mpyu_hl_s1:
852 case M2_mpyu_nac_hl_s0:
853 case M2_mpyu_nac_hl_s1:
854 case M2_mpyud_acc_hl_s0:
855 case M2_mpyud_acc_hl_s1:
856 case M2_mpyud_hl_s0:
857 case M2_mpyud_hl_s1:
858 case M2_mpyud_nac_hl_s0:
859 case M2_mpyud_nac_hl_s1:
860 if (OpN == 1) {
861 Bits.set(Begin+16, Begin+32);
862 return true;
863 }
864 if (OpN == 2) {
865 Bits.set(Begin, Begin+16);
866 return true;
867 }
868 break;
869
870 // Two register sources, used bits: R1[16-31], R2[16-31].
871 case A2_addh_h16_hh:
872 case A2_addh_h16_sat_hh:
873 case A2_combine_hh:
874 case A2_subh_h16_hh:
875 case A2_subh_h16_sat_hh:
876 case M2_mpy_acc_hh_s0:
877 case M2_mpy_acc_hh_s1:
878 case M2_mpy_acc_sat_hh_s0:
879 case M2_mpy_acc_sat_hh_s1:
880 case M2_mpy_hh_s0:
881 case M2_mpy_hh_s1:
882 case M2_mpy_nac_hh_s0:
883 case M2_mpy_nac_hh_s1:
884 case M2_mpy_nac_sat_hh_s0:
885 case M2_mpy_nac_sat_hh_s1:
886 case M2_mpy_rnd_hh_s0:
887 case M2_mpy_rnd_hh_s1:
888 case M2_mpy_sat_hh_s0:
889 case M2_mpy_sat_hh_s1:
890 case M2_mpy_sat_rnd_hh_s0:
891 case M2_mpy_sat_rnd_hh_s1:
892 case M2_mpyd_acc_hh_s0:
893 case M2_mpyd_acc_hh_s1:
894 case M2_mpyd_hh_s0:
895 case M2_mpyd_hh_s1:
896 case M2_mpyd_nac_hh_s0:
897 case M2_mpyd_nac_hh_s1:
898 case M2_mpyd_rnd_hh_s0:
899 case M2_mpyd_rnd_hh_s1:
900 case M2_mpyu_acc_hh_s0:
901 case M2_mpyu_acc_hh_s1:
902 case M2_mpyu_hh_s0:
903 case M2_mpyu_hh_s1:
904 case M2_mpyu_nac_hh_s0:
905 case M2_mpyu_nac_hh_s1:
906 case M2_mpyud_acc_hh_s0:
907 case M2_mpyud_acc_hh_s1:
908 case M2_mpyud_hh_s0:
909 case M2_mpyud_hh_s1:
910 case M2_mpyud_nac_hh_s0:
911 case M2_mpyud_nac_hh_s1:
912 if (OpN == 1 || OpN == 2) {
913 Bits.set(Begin+16, Begin+32);
914 return true;
915 }
916 break;
917 }
918
919 return false;
920}
921
922// Calculate the register class that matches Reg:Sub. For example, if
923// %1 is a double register, then %1:isub_hi would match the "int"
924// register class.
925const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
927 if (!RR.Reg.isVirtual())
928 return nullptr;
929 auto *RC = MRI.getRegClass(RR.Reg);
930 if (RR.Sub == 0)
931 return RC;
932 auto &HRI = static_cast<const HexagonRegisterInfo&>(
933 *MRI.getTargetRegisterInfo());
934
935 auto VerifySR = [&HRI] (const TargetRegisterClass *RC, unsigned Sub) -> void {
936 (void)HRI;
937 assert(Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_lo) ||
938 Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_hi));
939 };
940
941 switch (RC->getID()) {
942 case Hexagon::DoubleRegsRegClassID:
943 VerifySR(RC, RR.Sub);
944 return &Hexagon::IntRegsRegClass;
945 case Hexagon::HvxWRRegClassID:
946 VerifySR(RC, RR.Sub);
947 return &Hexagon::HvxVRRegClass;
948 }
949 return nullptr;
950}
951
952// Check if RD could be replaced with RS at any possible use of RD.
953// For example a predicate register cannot be replaced with a integer
954// register, but a 64-bit register with a subregister can be replaced
955// with a 32-bit register.
956bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
958 if (!RD.Reg.isVirtual() || !RS.Reg.isVirtual())
959 return false;
960 // Return false if one (or both) classes are nullptr.
961 auto *DRC = getFinalVRegClass(RD, MRI);
962 if (!DRC)
963 return false;
964
965 return DRC == getFinalVRegClass(RS, MRI);
966}
967
968bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
969 unsigned NewSub) {
970 if (!PreserveTiedOps)
971 return false;
972 return llvm::any_of(MRI.use_operands(Reg),
973 [NewSub] (const MachineOperand &Op) -> bool {
974 return Op.getSubReg() != NewSub && Op.isTied();
975 });
976}
977
978namespace {
979
980 class DeadCodeElimination {
981 public:
982 DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
983 : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
984 MDT(mdt), MRI(mf.getRegInfo()) {}
985
986 bool run() {
987 return runOnNode(MDT.getRootNode());
988 }
989
990 private:
991 bool isDead(unsigned R) const;
992 bool runOnNode(MachineDomTreeNode *N);
993
994 MachineFunction &MF;
995 const HexagonInstrInfo &HII;
998 };
999
1000} // end anonymous namespace
1001
1002bool DeadCodeElimination::isDead(unsigned R) const {
1003 for (const MachineOperand &MO : MRI.use_operands(R)) {
1004 const MachineInstr *UseI = MO.getParent();
1005 if (UseI->isDebugInstr())
1006 continue;
1007 if (UseI->isPHI()) {
1008 assert(!UseI->getOperand(0).getSubReg());
1009 Register DR = UseI->getOperand(0).getReg();
1010 if (DR == R)
1011 continue;
1012 }
1013 return false;
1014 }
1015 return true;
1016}
1017
1018bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
1019 bool Changed = false;
1020
1021 for (auto *DTN : children<MachineDomTreeNode*>(N))
1022 Changed |= runOnNode(DTN);
1023
1024 MachineBasicBlock *B = N->getBlock();
1025 std::vector<MachineInstr*> Instrs;
1026 for (MachineInstr &MI : llvm::reverse(*B))
1027 Instrs.push_back(&MI);
1028
1029 for (auto *MI : Instrs) {
1030 unsigned Opc = MI->getOpcode();
1031 // Do not touch lifetime markers. This is why the target-independent DCE
1032 // cannot be used.
1033 if (Opc == TargetOpcode::LIFETIME_START ||
1034 Opc == TargetOpcode::LIFETIME_END)
1035 continue;
1036 bool Store = false;
1037 if (MI->isInlineAsm())
1038 continue;
1039 // Delete PHIs if possible.
1040 if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
1041 continue;
1042
1043 bool AllDead = true;
1045 for (auto &Op : MI->operands()) {
1046 if (!Op.isReg() || !Op.isDef())
1047 continue;
1048 Register R = Op.getReg();
1049 if (!R.isVirtual() || !isDead(R)) {
1050 AllDead = false;
1051 break;
1052 }
1053 Regs.push_back(R);
1054 }
1055 if (!AllDead)
1056 continue;
1057
1058 B->erase(MI);
1059 for (unsigned i = 0, n = Regs.size(); i != n; ++i)
1060 MRI.markUsesInDebugValueAsUndef(Regs[i]);
1061 Changed = true;
1062 }
1063
1064 return Changed;
1065}
1066
1067namespace {
1068
1069// Eliminate redundant instructions
1070//
1071// This transformation will identify instructions where the output register
1072// is the same as one of its input registers. This only works on instructions
1073// that define a single register (unlike post-increment loads, for example).
1074// The equality check is actually more detailed: the code calculates which
1075// bits of the output are used, and only compares these bits with the input
1076// registers.
1077// If the output matches an input, the instruction is replaced with COPY.
1078// The copies will be removed by another transformation.
1079 class RedundantInstrElimination : public Transformation {
1080 public:
1081 RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
1083 : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1084
1085 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1086
1087 private:
1088 bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
1089 unsigned &LostB, unsigned &LostE);
1090 bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
1091 unsigned &LostB, unsigned &LostE);
1092 bool computeUsedBits(unsigned Reg, BitVector &Bits);
1093 bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
1094 uint16_t Begin);
1095 bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
1096
1097 const HexagonInstrInfo &HII;
1098 const HexagonRegisterInfo &HRI;
1100 BitTracker &BT;
1101 };
1102
1103} // end anonymous namespace
1104
1105// Check if the instruction is a lossy shift left, where the input being
1106// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1107// of bit indices that are lost.
1108bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
1109 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1110 using namespace Hexagon;
1111
1112 unsigned Opc = MI.getOpcode();
1113 unsigned ImN, RegN, Width;
1114 switch (Opc) {
1115 case S2_asl_i_p:
1116 ImN = 2;
1117 RegN = 1;
1118 Width = 64;
1119 break;
1120 case S2_asl_i_p_acc:
1121 case S2_asl_i_p_and:
1122 case S2_asl_i_p_nac:
1123 case S2_asl_i_p_or:
1124 case S2_asl_i_p_xacc:
1125 ImN = 3;
1126 RegN = 2;
1127 Width = 64;
1128 break;
1129 case S2_asl_i_r:
1130 ImN = 2;
1131 RegN = 1;
1132 Width = 32;
1133 break;
1134 case S2_addasl_rrri:
1135 case S4_andi_asl_ri:
1136 case S4_ori_asl_ri:
1137 case S4_addi_asl_ri:
1138 case S4_subi_asl_ri:
1139 case S2_asl_i_r_acc:
1140 case S2_asl_i_r_and:
1141 case S2_asl_i_r_nac:
1142 case S2_asl_i_r_or:
1143 case S2_asl_i_r_sat:
1144 case S2_asl_i_r_xacc:
1145 ImN = 3;
1146 RegN = 2;
1147 Width = 32;
1148 break;
1149 default:
1150 return false;
1151 }
1152
1153 if (RegN != OpN)
1154 return false;
1155
1156 assert(MI.getOperand(ImN).isImm());
1157 unsigned S = MI.getOperand(ImN).getImm();
1158 if (S == 0)
1159 return false;
1160 LostB = Width-S;
1161 LostE = Width;
1162 return true;
1163}
1164
1165// Check if the instruction is a lossy shift right, where the input being
1166// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1167// of bit indices that are lost.
1168bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
1169 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1170 using namespace Hexagon;
1171
1172 unsigned Opc = MI.getOpcode();
1173 unsigned ImN, RegN;
1174 switch (Opc) {
1175 case S2_asr_i_p:
1176 case S2_lsr_i_p:
1177 ImN = 2;
1178 RegN = 1;
1179 break;
1180 case S2_asr_i_p_acc:
1181 case S2_asr_i_p_and:
1182 case S2_asr_i_p_nac:
1183 case S2_asr_i_p_or:
1184 case S2_lsr_i_p_acc:
1185 case S2_lsr_i_p_and:
1186 case S2_lsr_i_p_nac:
1187 case S2_lsr_i_p_or:
1188 case S2_lsr_i_p_xacc:
1189 ImN = 3;
1190 RegN = 2;
1191 break;
1192 case S2_asr_i_r:
1193 case S2_lsr_i_r:
1194 ImN = 2;
1195 RegN = 1;
1196 break;
1197 case S4_andi_lsr_ri:
1198 case S4_ori_lsr_ri:
1199 case S4_addi_lsr_ri:
1200 case S4_subi_lsr_ri:
1201 case S2_asr_i_r_acc:
1202 case S2_asr_i_r_and:
1203 case S2_asr_i_r_nac:
1204 case S2_asr_i_r_or:
1205 case S2_lsr_i_r_acc:
1206 case S2_lsr_i_r_and:
1207 case S2_lsr_i_r_nac:
1208 case S2_lsr_i_r_or:
1209 case S2_lsr_i_r_xacc:
1210 ImN = 3;
1211 RegN = 2;
1212 break;
1213
1214 default:
1215 return false;
1216 }
1217
1218 if (RegN != OpN)
1219 return false;
1220
1221 assert(MI.getOperand(ImN).isImm());
1222 unsigned S = MI.getOperand(ImN).getImm();
1223 LostB = 0;
1224 LostE = S;
1225 return true;
1226}
1227
1228// Calculate the bit vector that corresponds to the used bits of register Reg.
1229// The vector Bits has the same size, as the size of Reg in bits. If the cal-
1230// culation fails (i.e. the used bits are unknown), it returns false. Other-
1231// wise, it returns true and sets the corresponding bits in Bits.
1232bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
1233 BitVector Used(Bits.size());
1234 RegisterSet Visited;
1235 std::vector<unsigned> Pending;
1236 Pending.push_back(Reg);
1237
1238 for (unsigned i = 0; i < Pending.size(); ++i) {
1239 unsigned R = Pending[i];
1240 if (Visited.has(R))
1241 continue;
1242 Visited.insert(R);
1243 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
1245 unsigned B, W;
1246 if (!HBS::getSubregMask(UR, B, W, MRI))
1247 return false;
1248 MachineInstr &UseI = *I->getParent();
1249 if (UseI.isPHI() || UseI.isCopy()) {
1250 Register DefR = UseI.getOperand(0).getReg();
1251 if (!DefR.isVirtual())
1252 return false;
1253 Pending.push_back(DefR);
1254 } else {
1255 if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
1256 return false;
1257 }
1258 }
1259 }
1260 Bits |= Used;
1261 return true;
1262}
1263
1264// Calculate the bits used by instruction MI in a register in operand OpN.
1265// Return true/false if the calculation succeeds/fails. If is succeeds, set
1266// used bits in Bits. This function does not reset any bits in Bits, so
1267// subsequent calls over different instructions will result in the union
1268// of the used bits in all these instructions.
1269// The register in question may be used with a sub-register, whereas Bits
1270// holds the bits for the entire register. To keep track of that, the
1271// argument Begin indicates where in Bits is the lowest-significant bit
1272// of the register used in operand OpN. For example, in instruction:
1273// %1 = S2_lsr_i_r %2:isub_hi, 10
1274// the operand 1 is a 32-bit register, which happens to be a subregister
1275// of the 64-bit register %2, and that subregister starts at position 32.
1276// In this case Begin=32, since Bits[32] would be the lowest-significant bit
1277// of %2:isub_hi.
1278bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
1279 unsigned OpN, BitVector &Bits, uint16_t Begin) {
1280 unsigned Opc = MI.getOpcode();
1281 BitVector T(Bits.size());
1282 bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
1283 // Even if we don't have bits yet, we could still provide some information
1284 // if the instruction is a lossy shift: the lost bits will be marked as
1285 // not used.
1286 unsigned LB, LE;
1287 if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
1288 assert(MI.getOperand(OpN).isReg());
1289 BitTracker::RegisterRef RR = MI.getOperand(OpN);
1290 const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
1291 uint16_t Width = HRI.getRegSizeInBits(*RC);
1292
1293 if (!GotBits)
1294 T.set(Begin, Begin+Width);
1295 assert(LB <= LE && LB < Width && LE <= Width);
1296 T.reset(Begin+LB, Begin+LE);
1297 GotBits = true;
1298 }
1299 if (GotBits)
1300 Bits |= T;
1301 return GotBits;
1302}
1303
1304// Calculates the used bits in RD ("defined register"), and checks if these
1305// bits in RS ("used register") and RD are identical.
1306bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
1308 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1310
1311 unsigned DB, DW;
1312 if (!HBS::getSubregMask(RD, DB, DW, MRI))
1313 return false;
1314 unsigned SB, SW;
1315 if (!HBS::getSubregMask(RS, SB, SW, MRI))
1316 return false;
1317 if (SW != DW)
1318 return false;
1319
1320 BitVector Used(DC.width());
1321 if (!computeUsedBits(RD.Reg, Used))
1322 return false;
1323
1324 for (unsigned i = 0; i != DW; ++i)
1325 if (Used[i+DB] && DC[DB+i] != SC[SB+i])
1326 return false;
1327 return true;
1328}
1329
1330bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
1331 const RegisterSet&) {
1332 if (!BT.reached(&B))
1333 return false;
1334 bool Changed = false;
1335
1336 for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1337 MachineInstr *MI = &*I;
1338
1339 if (MI->getOpcode() == TargetOpcode::COPY)
1340 continue;
1341 if (MI->isPHI() || MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
1342 continue;
1343 unsigned NumD = MI->getDesc().getNumDefs();
1344 if (NumD != 1)
1345 continue;
1346
1347 BitTracker::RegisterRef RD = MI->getOperand(0);
1348 if (!BT.has(RD.Reg))
1349 continue;
1350 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1352
1353 // Find a source operand that is equal to the result.
1354 for (auto &Op : MI->uses()) {
1355 if (!Op.isReg())
1356 continue;
1358 if (!BT.has(RS.Reg))
1359 continue;
1360 if (!HBS::isTransparentCopy(RD, RS, MRI))
1361 continue;
1362
1363 unsigned BN, BW;
1364 if (!HBS::getSubregMask(RS, BN, BW, MRI))
1365 continue;
1366
1368 if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
1369 continue;
1370
1371 // If found, replace the instruction with a COPY.
1372 const DebugLoc &DL = MI->getDebugLoc();
1373 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
1374 Register NewR = MRI.createVirtualRegister(FRC);
1375 MachineInstr *CopyI =
1376 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1377 .addReg(RS.Reg, 0, RS.Sub);
1378 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1379 // This pass can create copies between registers that don't have the
1380 // exact same values. Updating the tracker has to involve updating
1381 // all dependent cells. Example:
1382 // %1 = inst %2 ; %1 != %2, but used bits are equal
1383 //
1384 // %3 = copy %2 ; <- inserted
1385 // ... = %3 ; <- replaced from %2
1386 // Indirectly, we can create a "copy" between %1 and %2 even
1387 // though their exact values do not match.
1388 BT.visit(*CopyI);
1389 Changed = true;
1390 break;
1391 }
1392 }
1393
1394 return Changed;
1395}
1396
1397namespace {
1398
1399// Recognize instructions that produce constant values known at compile-time.
1400// Replace them with register definitions that load these constants directly.
1401 class ConstGeneration : public Transformation {
1402 public:
1403 ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1405 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1406
1407 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1408 static bool isTfrConst(const MachineInstr &MI);
1409
1410 private:
1411 Register genTfrConst(const TargetRegisterClass *RC, int64_t C,
1413 DebugLoc &DL);
1414
1415 const HexagonInstrInfo &HII;
1417 BitTracker &BT;
1418 };
1419
1420} // end anonymous namespace
1421
1422bool ConstGeneration::isTfrConst(const MachineInstr &MI) {
1423 unsigned Opc = MI.getOpcode();
1424 switch (Opc) {
1425 case Hexagon::A2_combineii:
1426 case Hexagon::A4_combineii:
1427 case Hexagon::A2_tfrsi:
1428 case Hexagon::A2_tfrpi:
1429 case Hexagon::PS_true:
1430 case Hexagon::PS_false:
1431 case Hexagon::CONST32:
1432 case Hexagon::CONST64:
1433 return true;
1434 }
1435 return false;
1436}
1437
1438// Generate a transfer-immediate instruction that is appropriate for the
1439// register class and the actual value being transferred.
1440Register ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
1443 DebugLoc &DL) {
1444 Register Reg = MRI.createVirtualRegister(RC);
1445 if (RC == &Hexagon::IntRegsRegClass) {
1446 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
1447 .addImm(int32_t(C));
1448 return Reg;
1449 }
1450
1451 if (RC == &Hexagon::DoubleRegsRegClass) {
1452 if (isInt<8>(C)) {
1453 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
1454 .addImm(C);
1455 return Reg;
1456 }
1457
1458 unsigned Lo = Lo_32(C), Hi = Hi_32(C);
1459 if (isInt<8>(Lo) || isInt<8>(Hi)) {
1460 unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
1461 : Hexagon::A4_combineii;
1462 BuildMI(B, At, DL, HII.get(Opc), Reg)
1463 .addImm(int32_t(Hi))
1464 .addImm(int32_t(Lo));
1465 return Reg;
1466 }
1467 MachineFunction *MF = B.getParent();
1468 auto &HST = MF->getSubtarget<HexagonSubtarget>();
1469
1470 // Disable CONST64 for tiny core since it takes a LD resource.
1471 if (!HST.isTinyCore() ||
1472 MF->getFunction().hasOptSize()) {
1473 BuildMI(B, At, DL, HII.get(Hexagon::CONST64), Reg)
1474 .addImm(C);
1475 return Reg;
1476 }
1477 }
1478
1479 if (RC == &Hexagon::PredRegsRegClass) {
1480 unsigned Opc;
1481 if (C == 0)
1482 Opc = Hexagon::PS_false;
1483 else if ((C & 0xFF) == 0xFF)
1484 Opc = Hexagon::PS_true;
1485 else
1486 return 0;
1487 BuildMI(B, At, DL, HII.get(Opc), Reg);
1488 return Reg;
1489 }
1490
1491 return 0;
1492}
1493
1494bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1495 if (!BT.reached(&B))
1496 return false;
1497 bool Changed = false;
1498 RegisterSet Defs;
1499
1500 for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1501 if (isTfrConst(*I))
1502 continue;
1503 Defs.clear();
1504 HBS::getInstrDefs(*I, Defs);
1505 if (Defs.count() != 1)
1506 continue;
1507 Register DR = Defs.find_first();
1508 if (!DR.isVirtual())
1509 continue;
1510 uint64_t U;
1511 const BitTracker::RegisterCell &DRC = BT.lookup(DR);
1512 if (HBS::getConst(DRC, 0, DRC.width(), U)) {
1513 int64_t C = U;
1514 DebugLoc DL = I->getDebugLoc();
1515 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1516 Register ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
1517 if (ImmReg) {
1518 HBS::replaceReg(DR, ImmReg, MRI);
1519 BT.put(ImmReg, DRC);
1520 Changed = true;
1521 }
1522 }
1523 }
1524 return Changed;
1525}
1526
1527namespace {
1528
1529// Identify pairs of available registers which hold identical values.
1530// In such cases, only one of them needs to be calculated, the other one
1531// will be defined as a copy of the first.
1532 class CopyGeneration : public Transformation {
1533 public:
1534 CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1536 : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1537
1538 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1539
1540 private:
1541 bool findMatch(const BitTracker::RegisterRef &Inp,
1542 BitTracker::RegisterRef &Out, const RegisterSet &AVs);
1543
1544 const HexagonInstrInfo &HII;
1545 const HexagonRegisterInfo &HRI;
1547 BitTracker &BT;
1548 RegisterSet Forbidden;
1549 };
1550
1551// Eliminate register copies RD = RS, by replacing the uses of RD with
1552// with uses of RS.
1553 class CopyPropagation : public Transformation {
1554 public:
1555 CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1556 : Transformation(false), HRI(hri), MRI(mri) {}
1557
1558 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1559
1560 static bool isCopyReg(unsigned Opc, bool NoConv);
1561
1562 private:
1563 bool propagateRegCopy(MachineInstr &MI);
1564
1565 const HexagonRegisterInfo &HRI;
1567 };
1568
1569} // end anonymous namespace
1570
1571/// Check if there is a register in AVs that is identical to Inp. If so,
1572/// set Out to the found register. The output may be a pair Reg:Sub.
1573bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
1574 BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
1575 if (!BT.has(Inp.Reg))
1576 return false;
1577 const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
1578 auto *FRC = HBS::getFinalVRegClass(Inp, MRI);
1579 unsigned B, W;
1580 if (!HBS::getSubregMask(Inp, B, W, MRI))
1581 return false;
1582
1583 for (Register R = AVs.find_first(); R; R = AVs.find_next(R)) {
1584 if (!BT.has(R) || Forbidden[R])
1585 continue;
1586 const BitTracker::RegisterCell &RC = BT.lookup(R);
1587 unsigned RW = RC.width();
1588 if (W == RW) {
1589 if (FRC != MRI.getRegClass(R))
1590 continue;
1591 if (!HBS::isTransparentCopy(R, Inp, MRI))
1592 continue;
1593 if (!HBS::isEqual(InpRC, B, RC, 0, W))
1594 continue;
1595 Out.Reg = R;
1596 Out.Sub = 0;
1597 return true;
1598 }
1599 // Check if there is a super-register, whose part (with a subregister)
1600 // is equal to the input.
1601 // Only do double registers for now.
1602 if (W*2 != RW)
1603 continue;
1604 if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
1605 continue;
1606
1607 if (HBS::isEqual(InpRC, B, RC, 0, W))
1608 Out.Sub = Hexagon::isub_lo;
1609 else if (HBS::isEqual(InpRC, B, RC, W, W))
1610 Out.Sub = Hexagon::isub_hi;
1611 else
1612 continue;
1613 Out.Reg = R;
1614 if (HBS::isTransparentCopy(Out, Inp, MRI))
1615 return true;
1616 }
1617 return false;
1618}
1619
1620bool CopyGeneration::processBlock(MachineBasicBlock &B,
1621 const RegisterSet &AVs) {
1622 if (!BT.reached(&B))
1623 return false;
1624 RegisterSet AVB(AVs);
1625 bool Changed = false;
1626 RegisterSet Defs;
1627
1628 for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
1629 Defs.clear();
1630 HBS::getInstrDefs(*I, Defs);
1631
1632 unsigned Opc = I->getOpcode();
1633 if (CopyPropagation::isCopyReg(Opc, false) ||
1634 ConstGeneration::isTfrConst(*I))
1635 continue;
1636
1637 DebugLoc DL = I->getDebugLoc();
1638 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1639
1640 for (Register R = Defs.find_first(); R; R = Defs.find_next(R)) {
1642 auto *FRC = HBS::getFinalVRegClass(R, MRI);
1643
1644 if (findMatch(R, MR, AVB)) {
1645 Register NewR = MRI.createVirtualRegister(FRC);
1646 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1647 .addReg(MR.Reg, 0, MR.Sub);
1648 BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
1649 HBS::replaceReg(R, NewR, MRI);
1650 Forbidden.insert(R);
1651 continue;
1652 }
1653
1654 if (FRC == &Hexagon::DoubleRegsRegClass ||
1655 FRC == &Hexagon::HvxWRRegClass) {
1656 // Try to generate REG_SEQUENCE.
1657 unsigned SubLo = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_lo);
1658 unsigned SubHi = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_hi);
1659 BitTracker::RegisterRef TL = { R, SubLo };
1660 BitTracker::RegisterRef TH = { R, SubHi };
1662 if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) {
1663 auto *FRC = HBS::getFinalVRegClass(R, MRI);
1664 Register NewR = MRI.createVirtualRegister(FRC);
1665 BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR)
1666 .addReg(ML.Reg, 0, ML.Sub)
1667 .addImm(SubLo)
1668 .addReg(MH.Reg, 0, MH.Sub)
1669 .addImm(SubHi);
1670 BT.put(BitTracker::RegisterRef(NewR), BT.get(R));
1671 HBS::replaceReg(R, NewR, MRI);
1672 Forbidden.insert(R);
1673 }
1674 }
1675 }
1676 }
1677
1678 return Changed;
1679}
1680
1681bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) {
1682 switch (Opc) {
1683 case TargetOpcode::COPY:
1684 case TargetOpcode::REG_SEQUENCE:
1685 case Hexagon::A4_combineir:
1686 case Hexagon::A4_combineri:
1687 return true;
1688 case Hexagon::A2_tfr:
1689 case Hexagon::A2_tfrp:
1690 case Hexagon::A2_combinew:
1691 case Hexagon::V6_vcombine:
1692 return NoConv;
1693 default:
1694 break;
1695 }
1696 return false;
1697}
1698
1699bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
1700 bool Changed = false;
1701 unsigned Opc = MI.getOpcode();
1702 BitTracker::RegisterRef RD = MI.getOperand(0);
1703 assert(MI.getOperand(0).getSubReg() == 0);
1704
1705 switch (Opc) {
1706 case TargetOpcode::COPY:
1707 case Hexagon::A2_tfr:
1708 case Hexagon::A2_tfrp: {
1709 BitTracker::RegisterRef RS = MI.getOperand(1);
1710 if (!HBS::isTransparentCopy(RD, RS, MRI))
1711 break;
1712 if (RS.Sub != 0)
1713 Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
1714 else
1715 Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
1716 break;
1717 }
1718 case TargetOpcode::REG_SEQUENCE: {
1720 if (HBS::parseRegSequence(MI, SL, SH, MRI)) {
1721 const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1722 unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1723 unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1724 Changed = HBS::replaceSubWithSub(RD.Reg, SubLo, SL.Reg, SL.Sub, MRI);
1725 Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, SH.Reg, SH.Sub, MRI);
1726 }
1727 break;
1728 }
1729 case Hexagon::A2_combinew:
1730 case Hexagon::V6_vcombine: {
1731 const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1732 unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1733 unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1734 BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
1735 Changed = HBS::replaceSubWithSub(RD.Reg, SubLo, RL.Reg, RL.Sub, MRI);
1736 Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, RH.Reg, RH.Sub, MRI);
1737 break;
1738 }
1739 case Hexagon::A4_combineir:
1740 case Hexagon::A4_combineri: {
1741 unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
1742 unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::isub_lo
1743 : Hexagon::isub_hi;
1744 BitTracker::RegisterRef RS = MI.getOperand(SrcX);
1745 Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
1746 break;
1747 }
1748 }
1749 return Changed;
1750}
1751
1752bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1753 std::vector<MachineInstr*> Instrs;
1754 for (MachineInstr &MI : llvm::reverse(B))
1755 Instrs.push_back(&MI);
1756
1757 bool Changed = false;
1758 for (auto *I : Instrs) {
1759 unsigned Opc = I->getOpcode();
1760 if (!CopyPropagation::isCopyReg(Opc, true))
1761 continue;
1762 Changed |= propagateRegCopy(*I);
1763 }
1764
1765 return Changed;
1766}
1767
1768namespace {
1769
1770// Recognize patterns that can be simplified and replace them with the
1771// simpler forms.
1772// This is by no means complete
1773 class BitSimplification : public Transformation {
1774 public:
1775 BitSimplification(BitTracker &bt, const MachineDominatorTree &mdt,
1776 const HexagonInstrInfo &hii, const HexagonRegisterInfo &hri,
1778 : Transformation(true), MDT(mdt), HII(hii), HRI(hri), MRI(mri),
1779 MF(mf), BT(bt) {}
1780
1781 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1782
1783 private:
1784 struct RegHalf : public BitTracker::RegisterRef {
1785 bool Low; // Low/High halfword.
1786 };
1787
1788 bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
1789 unsigned B, RegHalf &RH);
1790 bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum);
1791
1792 bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
1794 unsigned getCombineOpcode(bool HLow, bool LLow);
1795
1796 bool genStoreUpperHalf(MachineInstr *MI);
1797 bool genStoreImmediate(MachineInstr *MI);
1798 bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
1799 const BitTracker::RegisterCell &RC);
1800 bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1801 const BitTracker::RegisterCell &RC);
1802 bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1803 const BitTracker::RegisterCell &RC);
1804 bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1805 const BitTracker::RegisterCell &RC);
1806 bool genBitSplit(MachineInstr *MI, BitTracker::RegisterRef RD,
1807 const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1808 bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
1809 const BitTracker::RegisterCell &RC);
1810 bool simplifyExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1811 const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1812 bool simplifyRCmp0(MachineInstr *MI, BitTracker::RegisterRef RD);
1813
1814 // Cache of created instructions to avoid creating duplicates.
1815 // XXX Currently only used by genBitSplit.
1816 std::vector<MachineInstr*> NewMIs;
1817
1818 const MachineDominatorTree &MDT;
1819 const HexagonInstrInfo &HII;
1820 const HexagonRegisterInfo &HRI;
1822 MachineFunction &MF;
1823 BitTracker &BT;
1824 };
1825
1826} // end anonymous namespace
1827
1828// Check if the bits [B..B+16) in register cell RC form a valid halfword,
1829// i.e. [0..16), [16..32), etc. of some register. If so, return true and
1830// set the information about the found register in RH.
1831bool BitSimplification::matchHalf(unsigned SelfR,
1832 const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
1833 // XXX This could be searching in the set of available registers, in case
1834 // the match is not exact.
1835
1836 // Match 16-bit chunks, where the RC[B..B+15] references exactly one
1837 // register and all the bits B..B+15 match between RC and the register.
1838 // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
1839 // and RC = { [0]:0 [1-15]:v1[1-15]... }.
1840 bool Low = false;
1841 unsigned I = B;
1842 while (I < B+16 && RC[I].num())
1843 I++;
1844 if (I == B+16)
1845 return false;
1846
1847 Register Reg = RC[I].RefI.Reg;
1848 unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B.
1849 if (P < I-B)
1850 return false;
1851 unsigned Pos = P - (I-B);
1852
1853 if (Reg == 0 || Reg == SelfR) // Don't match "self".
1854 return false;
1855 if (!Reg.isVirtual())
1856 return false;
1857 if (!BT.has(Reg))
1858 return false;
1859
1860 const BitTracker::RegisterCell &SC = BT.lookup(Reg);
1861 if (Pos+16 > SC.width())
1862 return false;
1863
1864 for (unsigned i = 0; i < 16; ++i) {
1865 const BitTracker::BitValue &RV = RC[i+B];
1866 if (RV.Type == BitTracker::BitValue::Ref) {
1867 if (RV.RefI.Reg != Reg)
1868 return false;
1869 if (RV.RefI.Pos != i+Pos)
1870 return false;
1871 continue;
1872 }
1873 if (RC[i+B] != SC[i+Pos])
1874 return false;
1875 }
1876
1877 unsigned Sub = 0;
1878 switch (Pos) {
1879 case 0:
1880 Sub = Hexagon::isub_lo;
1881 Low = true;
1882 break;
1883 case 16:
1884 Sub = Hexagon::isub_lo;
1885 Low = false;
1886 break;
1887 case 32:
1888 Sub = Hexagon::isub_hi;
1889 Low = true;
1890 break;
1891 case 48:
1892 Sub = Hexagon::isub_hi;
1893 Low = false;
1894 break;
1895 default:
1896 return false;
1897 }
1898
1899 RH.Reg = Reg;
1900 RH.Sub = Sub;
1901 RH.Low = Low;
1902 // If the subregister is not valid with the register, set it to 0.
1903 if (!HBS::getFinalVRegClass(RH, MRI))
1904 RH.Sub = 0;
1905
1906 return true;
1907}
1908
1909bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc,
1910 unsigned OpNum) {
1911 auto *OpRC = HII.getRegClass(HII.get(Opc), OpNum, &HRI, MF);
1912 auto *RRC = HBS::getFinalVRegClass(R, MRI);
1913 return OpRC->hasSubClassEq(RRC);
1914}
1915
1916// Check if RC matches the pattern of a S2_packhl. If so, return true and
1917// set the inputs Rs and Rt.
1918bool BitSimplification::matchPackhl(unsigned SelfR,
1921 RegHalf L1, H1, L2, H2;
1922
1923 if (!matchHalf(SelfR, RC, 0, L2) || !matchHalf(SelfR, RC, 16, L1))
1924 return false;
1925 if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
1926 return false;
1927
1928 // Rs = H1.L1, Rt = H2.L2
1929 if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
1930 return false;
1931 if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
1932 return false;
1933
1934 Rs = H1;
1935 Rt = H2;
1936 return true;
1937}
1938
1939unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
1940 return HLow ? LLow ? Hexagon::A2_combine_ll
1941 : Hexagon::A2_combine_lh
1942 : LLow ? Hexagon::A2_combine_hl
1943 : Hexagon::A2_combine_hh;
1944}
1945
1946// If MI stores the upper halfword of a register (potentially obtained via
1947// shifts or extracts), replace it with a storerf instruction. This could
1948// cause the "extraction" code to become dead.
1949bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
1950 unsigned Opc = MI->getOpcode();
1951 if (Opc != Hexagon::S2_storerh_io)
1952 return false;
1953
1954 MachineOperand &ValOp = MI->getOperand(2);
1955 BitTracker::RegisterRef RS = ValOp;
1956 if (!BT.has(RS.Reg))
1957 return false;
1958 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1959 RegHalf H;
1960 unsigned B = (RS.Sub == Hexagon::isub_hi) ? 32 : 0;
1961 if (!matchHalf(0, RC, B, H))
1962 return false;
1963 if (H.Low)
1964 return false;
1965 MI->setDesc(HII.get(Hexagon::S2_storerf_io));
1966 ValOp.setReg(H.Reg);
1967 ValOp.setSubReg(H.Sub);
1968 return true;
1969}
1970
1971// If MI stores a value known at compile-time, and the value is within a range
1972// that avoids using constant-extenders, replace it with a store-immediate.
1973bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
1974 unsigned Opc = MI->getOpcode();
1975 unsigned Align = 0;
1976 switch (Opc) {
1977 case Hexagon::S2_storeri_io:
1978 Align++;
1979 [[fallthrough]];
1980 case Hexagon::S2_storerh_io:
1981 Align++;
1982 [[fallthrough]];
1983 case Hexagon::S2_storerb_io:
1984 break;
1985 default:
1986 return false;
1987 }
1988
1989 // Avoid stores to frame-indices (due to an unknown offset).
1990 if (!MI->getOperand(0).isReg())
1991 return false;
1992 MachineOperand &OffOp = MI->getOperand(1);
1993 if (!OffOp.isImm())
1994 return false;
1995
1996 int64_t Off = OffOp.getImm();
1997 // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
1998 if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
1999 return false;
2000 // Source register:
2001 BitTracker::RegisterRef RS = MI->getOperand(2);
2002 if (!BT.has(RS.Reg))
2003 return false;
2004 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
2005 uint64_t U;
2006 if (!HBS::getConst(RC, 0, RC.width(), U))
2007 return false;
2008
2009 // Only consider 8-bit values to avoid constant-extenders.
2010 int V;
2011 switch (Opc) {
2012 case Hexagon::S2_storerb_io:
2013 V = int8_t(U);
2014 break;
2015 case Hexagon::S2_storerh_io:
2016 V = int16_t(U);
2017 break;
2018 case Hexagon::S2_storeri_io:
2019 V = int32_t(U);
2020 break;
2021 default:
2022 // Opc is already checked above to be one of the three store instructions.
2023 // This silences a -Wuninitialized false positive on GCC 5.4.
2024 llvm_unreachable("Unexpected store opcode");
2025 }
2026 if (!isInt<8>(V))
2027 return false;
2028
2029 MI->removeOperand(2);
2030 switch (Opc) {
2031 case Hexagon::S2_storerb_io:
2032 MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
2033 break;
2034 case Hexagon::S2_storerh_io:
2035 MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
2036 break;
2037 case Hexagon::S2_storeri_io:
2038 MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
2039 break;
2040 }
2041 MI->addOperand(MachineOperand::CreateImm(V));
2042 return true;
2043}
2044
2045// If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
2046// last instruction in a sequence that results in something equivalent to
2047// the pack-halfwords. The intent is to cause the entire sequence to become
2048// dead.
2049bool BitSimplification::genPackhl(MachineInstr *MI,
2051 unsigned Opc = MI->getOpcode();
2052 if (Opc == Hexagon::S2_packhl)
2053 return false;
2055 if (!matchPackhl(RD.Reg, RC, Rs, Rt))
2056 return false;
2057 if (!validateReg(Rs, Hexagon::S2_packhl, 1) ||
2058 !validateReg(Rt, Hexagon::S2_packhl, 2))
2059 return false;
2060
2061 MachineBasicBlock &B = *MI->getParent();
2062 Register NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2063 DebugLoc DL = MI->getDebugLoc();
2064 auto At = MI->isPHI() ? B.getFirstNonPHI()
2066 BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
2067 .addReg(Rs.Reg, 0, Rs.Sub)
2068 .addReg(Rt.Reg, 0, Rt.Sub);
2069 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2070 BT.put(BitTracker::RegisterRef(NewR), RC);
2071 return true;
2072}
2073
2074// If MI produces halfword of the input in the low half of the output,
2075// replace it with zero-extend or extractu.
2076bool BitSimplification::genExtractHalf(MachineInstr *MI,
2078 RegHalf L;
2079 // Check for halfword in low 16 bits, zeros elsewhere.
2080 if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
2081 return false;
2082
2083 unsigned Opc = MI->getOpcode();
2084 MachineBasicBlock &B = *MI->getParent();
2085 DebugLoc DL = MI->getDebugLoc();
2086
2087 // Prefer zxth, since zxth can go in any slot, while extractu only in
2088 // slots 2 and 3.
2089 unsigned NewR = 0;
2090 auto At = MI->isPHI() ? B.getFirstNonPHI()
2092 if (L.Low && Opc != Hexagon::A2_zxth) {
2093 if (validateReg(L, Hexagon::A2_zxth, 1)) {
2094 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2095 BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
2096 .addReg(L.Reg, 0, L.Sub);
2097 }
2098 } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
2099 if (validateReg(L, Hexagon::S2_lsr_i_r, 1)) {
2100 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2101 BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
2102 .addReg(L.Reg, 0, L.Sub)
2103 .addImm(16);
2104 }
2105 }
2106 if (NewR == 0)
2107 return false;
2108 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2109 BT.put(BitTracker::RegisterRef(NewR), RC);
2110 return true;
2111}
2112
2113// If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
2114// combine.
2115bool BitSimplification::genCombineHalf(MachineInstr *MI,
2117 RegHalf L, H;
2118 // Check for combine h/l
2119 if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
2120 return false;
2121 // Do nothing if this is just a reg copy.
2122 if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
2123 return false;
2124
2125 unsigned Opc = MI->getOpcode();
2126 unsigned COpc = getCombineOpcode(H.Low, L.Low);
2127 if (COpc == Opc)
2128 return false;
2129 if (!validateReg(H, COpc, 1) || !validateReg(L, COpc, 2))
2130 return false;
2131
2132 MachineBasicBlock &B = *MI->getParent();
2133 DebugLoc DL = MI->getDebugLoc();
2134 Register NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2135 auto At = MI->isPHI() ? B.getFirstNonPHI()
2137 BuildMI(B, At, DL, HII.get(COpc), NewR)
2138 .addReg(H.Reg, 0, H.Sub)
2139 .addReg(L.Reg, 0, L.Sub);
2140 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2141 BT.put(BitTracker::RegisterRef(NewR), RC);
2142 return true;
2143}
2144
2145// If MI resets high bits of a register and keeps the lower ones, replace it
2146// with zero-extend byte/half, and-immediate, or extractu, as appropriate.
2147bool BitSimplification::genExtractLow(MachineInstr *MI,
2149 unsigned Opc = MI->getOpcode();
2150 switch (Opc) {
2151 case Hexagon::A2_zxtb:
2152 case Hexagon::A2_zxth:
2153 case Hexagon::S2_extractu:
2154 return false;
2155 }
2156 if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
2157 int32_t Imm = MI->getOperand(2).getImm();
2158 if (isInt<10>(Imm))
2159 return false;
2160 }
2161
2162 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
2163 return false;
2164 unsigned W = RC.width();
2165 while (W > 0 && RC[W-1].is(0))
2166 W--;
2167 if (W == 0 || W == RC.width())
2168 return false;
2169 unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb
2170 : (W == 16) ? Hexagon::A2_zxth
2171 : (W < 10) ? Hexagon::A2_andir
2172 : Hexagon::S2_extractu;
2173 MachineBasicBlock &B = *MI->getParent();
2174 DebugLoc DL = MI->getDebugLoc();
2175
2176 for (auto &Op : MI->uses()) {
2177 if (!Op.isReg())
2178 continue;
2180 if (!BT.has(RS.Reg))
2181 continue;
2183 unsigned BN, BW;
2184 if (!HBS::getSubregMask(RS, BN, BW, MRI))
2185 continue;
2186 if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
2187 continue;
2188 if (!validateReg(RS, NewOpc, 1))
2189 continue;
2190
2191 Register NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2192 auto At = MI->isPHI() ? B.getFirstNonPHI()
2194 auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
2195 .addReg(RS.Reg, 0, RS.Sub);
2196 if (NewOpc == Hexagon::A2_andir)
2197 MIB.addImm((1 << W) - 1);
2198 else if (NewOpc == Hexagon::S2_extractu)
2199 MIB.addImm(W).addImm(0);
2200 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2201 BT.put(BitTracker::RegisterRef(NewR), RC);
2202 return true;
2203 }
2204 return false;
2205}
2206
2207bool BitSimplification::genBitSplit(MachineInstr *MI,
2209 const RegisterSet &AVs) {
2210 if (!GenBitSplit)
2211 return false;
2212 if (MaxBitSplit.getNumOccurrences()) {
2214 return false;
2215 }
2216
2217 unsigned Opc = MI->getOpcode();
2218 switch (Opc) {
2219 case Hexagon::A4_bitsplit:
2220 case Hexagon::A4_bitspliti:
2221 return false;
2222 }
2223
2224 unsigned W = RC.width();
2225 if (W != 32)
2226 return false;
2227
2228 auto ctlz = [] (const BitTracker::RegisterCell &C) -> unsigned {
2229 unsigned Z = C.width();
2230 while (Z > 0 && C[Z-1].is(0))
2231 --Z;
2232 return C.width() - Z;
2233 };
2234
2235 // Count the number of leading zeros in the target RC.
2236 unsigned Z = ctlz(RC);
2237 if (Z == 0 || Z == W)
2238 return false;
2239
2240 // A simplistic analysis: assume the source register (the one being split)
2241 // is fully unknown, and that all its bits are self-references.
2242 const BitTracker::BitValue &B0 = RC[0];
2244 return false;
2245
2246 unsigned SrcR = B0.RefI.Reg;
2247 unsigned SrcSR = 0;
2248 unsigned Pos = B0.RefI.Pos;
2249
2250 // All the non-zero bits should be consecutive bits from the same register.
2251 for (unsigned i = 1; i < W-Z; ++i) {
2252 const BitTracker::BitValue &V = RC[i];
2253 if (V.Type != BitTracker::BitValue::Ref)
2254 return false;
2255 if (V.RefI.Reg != SrcR || V.RefI.Pos != Pos+i)
2256 return false;
2257 }
2258
2259 // Now, find the other bitfield among AVs.
2260 for (unsigned S = AVs.find_first(); S; S = AVs.find_next(S)) {
2261 // The number of leading zeros here should be the number of trailing
2262 // non-zeros in RC.
2263 unsigned SRC = MRI.getRegClass(S)->getID();
2264 if (SRC != Hexagon::IntRegsRegClassID &&
2265 SRC != Hexagon::DoubleRegsRegClassID)
2266 continue;
2267 if (!BT.has(S))
2268 continue;
2270 if (SC.width() != W || ctlz(SC) != W-Z)
2271 continue;
2272 // The Z lower bits should now match SrcR.
2273 const BitTracker::BitValue &S0 = SC[0];
2274 if (S0.Type != BitTracker::BitValue::Ref || S0.RefI.Reg != SrcR)
2275 continue;
2276 unsigned P = S0.RefI.Pos;
2277
2278 if (Pos <= P && (Pos + W-Z) != P)
2279 continue;
2280 if (P < Pos && (P + Z) != Pos)
2281 continue;
2282 // The starting bitfield position must be at a subregister boundary.
2283 if (std::min(P, Pos) != 0 && std::min(P, Pos) != 32)
2284 continue;
2285
2286 unsigned I;
2287 for (I = 1; I < Z; ++I) {
2288 const BitTracker::BitValue &V = SC[I];
2289 if (V.Type != BitTracker::BitValue::Ref)
2290 break;
2291 if (V.RefI.Reg != SrcR || V.RefI.Pos != P+I)
2292 break;
2293 }
2294 if (I != Z)
2295 continue;
2296
2297 // Generate bitsplit where S is defined.
2298 if (MaxBitSplit.getNumOccurrences())
2299 CountBitSplit++;
2300 MachineInstr *DefS = MRI.getVRegDef(S);
2301 assert(DefS != nullptr);
2302 DebugLoc DL = DefS->getDebugLoc();
2303 MachineBasicBlock &B = *DefS->getParent();
2304 auto At = DefS->isPHI() ? B.getFirstNonPHI()
2306 if (MRI.getRegClass(SrcR)->getID() == Hexagon::DoubleRegsRegClassID)
2307 SrcSR = (std::min(Pos, P) == 32) ? Hexagon::isub_hi : Hexagon::isub_lo;
2308 if (!validateReg({SrcR,SrcSR}, Hexagon::A4_bitspliti, 1))
2309 continue;
2310 unsigned ImmOp = Pos <= P ? W-Z : Z;
2311
2312 // Find an existing bitsplit instruction if one already exists.
2313 unsigned NewR = 0;
2314 for (MachineInstr *In : NewMIs) {
2315 if (In->getOpcode() != Hexagon::A4_bitspliti)
2316 continue;
2317 MachineOperand &Op1 = In->getOperand(1);
2318 if (Op1.getReg() != SrcR || Op1.getSubReg() != SrcSR)
2319 continue;
2320 if (In->getOperand(2).getImm() != ImmOp)
2321 continue;
2322 // Check if the target register is available here.
2323 MachineOperand &Op0 = In->getOperand(0);
2324 MachineInstr *DefI = MRI.getVRegDef(Op0.getReg());
2325 assert(DefI != nullptr);
2326 if (!MDT.dominates(DefI, &*At))
2327 continue;
2328
2329 // Found one that can be reused.
2330 assert(Op0.getSubReg() == 0);
2331 NewR = Op0.getReg();
2332 break;
2333 }
2334 if (!NewR) {
2335 NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2336 auto NewBS = BuildMI(B, At, DL, HII.get(Hexagon::A4_bitspliti), NewR)
2337 .addReg(SrcR, 0, SrcSR)
2338 .addImm(ImmOp);
2339 NewMIs.push_back(NewBS);
2340 }
2341 if (Pos <= P) {
2342 HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_lo, MRI);
2343 HBS::replaceRegWithSub(S, NewR, Hexagon::isub_hi, MRI);
2344 } else {
2345 HBS::replaceRegWithSub(S, NewR, Hexagon::isub_lo, MRI);
2346 HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_hi, MRI);
2347 }
2348 return true;
2349 }
2350
2351 return false;
2352}
2353
2354// Check for tstbit simplification opportunity, where the bit being checked
2355// can be tracked back to another register. For example:
2356// %2 = S2_lsr_i_r %1, 5
2357// %3 = S2_tstbit_i %2, 0
2358// =>
2359// %3 = S2_tstbit_i %1, 5
2360bool BitSimplification::simplifyTstbit(MachineInstr *MI,
2362 unsigned Opc = MI->getOpcode();
2363 if (Opc != Hexagon::S2_tstbit_i)
2364 return false;
2365
2366 unsigned BN = MI->getOperand(2).getImm();
2367 BitTracker::RegisterRef RS = MI->getOperand(1);
2368 unsigned F, W;
2369 DebugLoc DL = MI->getDebugLoc();
2370 if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
2371 return false;
2372 MachineBasicBlock &B = *MI->getParent();
2373 auto At = MI->isPHI() ? B.getFirstNonPHI()
2375
2377 const BitTracker::BitValue &V = SC[F+BN];
2378 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
2379 const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
2380 // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
2381 // a double register, need to use a subregister and adjust bit
2382 // number.
2383 unsigned P = std::numeric_limits<unsigned>::max();
2384 BitTracker::RegisterRef RR(V.RefI.Reg, 0);
2385 if (TC == &Hexagon::DoubleRegsRegClass) {
2386 P = V.RefI.Pos;
2387 RR.Sub = Hexagon::isub_lo;
2388 if (P >= 32) {
2389 P -= 32;
2390 RR.Sub = Hexagon::isub_hi;
2391 }
2392 } else if (TC == &Hexagon::IntRegsRegClass) {
2393 P = V.RefI.Pos;
2394 }
2395 if (P != std::numeric_limits<unsigned>::max()) {
2396 Register NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2397 BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
2398 .addReg(RR.Reg, 0, RR.Sub)
2399 .addImm(P);
2400 HBS::replaceReg(RD.Reg, NewR, MRI);
2401 BT.put(NewR, RC);
2402 return true;
2403 }
2404 } else if (V.is(0) || V.is(1)) {
2405 Register NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2406 unsigned NewOpc = V.is(0) ? Hexagon::PS_false : Hexagon::PS_true;
2407 BuildMI(B, At, DL, HII.get(NewOpc), NewR);
2408 HBS::replaceReg(RD.Reg, NewR, MRI);
2409 return true;
2410 }
2411
2412 return false;
2413}
2414
2415// Detect whether RD is a bitfield extract (sign- or zero-extended) of
2416// some register from the AVs set. Create a new corresponding instruction
2417// at the location of MI. The intent is to recognize situations where
2418// a sequence of instructions performs an operation that is equivalent to
2419// an extract operation, such as a shift left followed by a shift right.
2420bool BitSimplification::simplifyExtractLow(MachineInstr *MI,
2422 const RegisterSet &AVs) {
2423 if (!GenExtract)
2424 return false;
2425 if (MaxExtract.getNumOccurrences()) {
2426 if (CountExtract >= MaxExtract)
2427 return false;
2428 CountExtract++;
2429 }
2430
2431 unsigned W = RC.width();
2432 unsigned RW = W;
2433 unsigned Len;
2434 bool Signed;
2435
2436 // The code is mostly class-independent, except for the part that generates
2437 // the extract instruction, and establishes the source register (in case it
2438 // needs to use a subregister).
2439 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2440 if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2441 return false;
2442 assert(RD.Sub == 0);
2443
2444 // Observation:
2445 // If the cell has a form of 00..0xx..x with k zeros and n remaining
2446 // bits, this could be an extractu of the n bits, but it could also be
2447 // an extractu of a longer field which happens to have 0s in the top
2448 // bit positions.
2449 // The same logic applies to sign-extended fields.
2450 //
2451 // Do not check for the extended extracts, since it would expand the
2452 // search space quite a bit. The search may be expensive as it is.
2453
2454 const BitTracker::BitValue &TopV = RC[W-1];
2455
2456 // Eliminate candidates that have self-referential bits, since they
2457 // cannot be extracts from other registers. Also, skip registers that
2458 // have compile-time constant values.
2459 bool IsConst = true;
2460 for (unsigned I = 0; I != W; ++I) {
2461 const BitTracker::BitValue &V = RC[I];
2462 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == RD.Reg)
2463 return false;
2464 IsConst = IsConst && (V.is(0) || V.is(1));
2465 }
2466 if (IsConst)
2467 return false;
2468
2469 if (TopV.is(0) || TopV.is(1)) {
2470 bool S = TopV.is(1);
2471 for (--W; W > 0 && RC[W-1].is(S); --W)
2472 ;
2473 Len = W;
2474 Signed = S;
2475 // The sign bit must be a part of the field being extended.
2476 if (Signed)
2477 ++Len;
2478 } else {
2479 // This could still be a sign-extended extract.
2481 if (TopV.RefI.Reg == RD.Reg || TopV.RefI.Pos == W-1)
2482 return false;
2483 for (--W; W > 0 && RC[W-1] == TopV; --W)
2484 ;
2485 // The top bits of RC are copies of TopV. One occurrence of TopV will
2486 // be a part of the field.
2487 Len = W + 1;
2488 Signed = true;
2489 }
2490
2491 // This would be just a copy. It should be handled elsewhere.
2492 if (Len == RW)
2493 return false;
2494
2495 LLVM_DEBUG({
2496 dbgs() << __func__ << " on reg: " << printReg(RD.Reg, &HRI, RD.Sub)
2497 << ", MI: " << *MI;
2498 dbgs() << "Cell: " << RC << '\n';
2499 dbgs() << "Expected bitfield size: " << Len << " bits, "
2500 << (Signed ? "sign" : "zero") << "-extended\n";
2501 });
2502
2503 bool Changed = false;
2504
2505 for (unsigned R = AVs.find_first(); R != 0; R = AVs.find_next(R)) {
2506 if (!BT.has(R))
2507 continue;
2509 unsigned SW = SC.width();
2510
2511 // The source can be longer than the destination, as long as its size is
2512 // a multiple of the size of the destination. Also, we would need to be
2513 // able to refer to the subregister in the source that would be of the
2514 // same size as the destination, but only check the sizes here.
2515 if (SW < RW || (SW % RW) != 0)
2516 continue;
2517
2518 // The field can start at any offset in SC as long as it contains Len
2519 // bits and does not cross subregister boundary (if the source register
2520 // is longer than the destination).
2521 unsigned Off = 0;
2522 while (Off <= SW-Len) {
2523 unsigned OE = (Off+Len)/RW;
2524 if (OE != Off/RW) {
2525 // The assumption here is that if the source (R) is longer than the
2526 // destination, then the destination is a sequence of words of
2527 // size RW, and each such word in R can be accessed via a subregister.
2528 //
2529 // If the beginning and the end of the field cross the subregister
2530 // boundary, advance to the next subregister.
2531 Off = OE*RW;
2532 continue;
2533 }
2534 if (HBS::isEqual(RC, 0, SC, Off, Len))
2535 break;
2536 ++Off;
2537 }
2538
2539 if (Off > SW-Len)
2540 continue;
2541
2542 // Found match.
2543 unsigned ExtOpc = 0;
2544 if (Off == 0) {
2545 if (Len == 8)
2546 ExtOpc = Signed ? Hexagon::A2_sxtb : Hexagon::A2_zxtb;
2547 else if (Len == 16)
2548 ExtOpc = Signed ? Hexagon::A2_sxth : Hexagon::A2_zxth;
2549 else if (Len < 10 && !Signed)
2550 ExtOpc = Hexagon::A2_andir;
2551 }
2552 if (ExtOpc == 0) {
2553 ExtOpc =
2554 Signed ? (RW == 32 ? Hexagon::S4_extract : Hexagon::S4_extractp)
2555 : (RW == 32 ? Hexagon::S2_extractu : Hexagon::S2_extractup);
2556 }
2557 unsigned SR = 0;
2558 // This only recognizes isub_lo and isub_hi.
2559 if (RW != SW && RW*2 != SW)
2560 continue;
2561 if (RW != SW)
2562 SR = (Off/RW == 0) ? Hexagon::isub_lo : Hexagon::isub_hi;
2563 Off = Off % RW;
2564
2565 if (!validateReg({R,SR}, ExtOpc, 1))
2566 continue;
2567
2568 // Don't generate the same instruction as the one being optimized.
2569 if (MI->getOpcode() == ExtOpc) {
2570 // All possible ExtOpc's have the source in operand(1).
2571 const MachineOperand &SrcOp = MI->getOperand(1);
2572 if (SrcOp.getReg() == R)
2573 continue;
2574 }
2575
2576 DebugLoc DL = MI->getDebugLoc();
2577 MachineBasicBlock &B = *MI->getParent();
2578 Register NewR = MRI.createVirtualRegister(FRC);
2579 auto At = MI->isPHI() ? B.getFirstNonPHI()
2581 auto MIB = BuildMI(B, At, DL, HII.get(ExtOpc), NewR)
2582 .addReg(R, 0, SR);
2583 switch (ExtOpc) {
2584 case Hexagon::A2_sxtb:
2585 case Hexagon::A2_zxtb:
2586 case Hexagon::A2_sxth:
2587 case Hexagon::A2_zxth:
2588 break;
2589 case Hexagon::A2_andir:
2590 MIB.addImm((1u << Len) - 1);
2591 break;
2592 case Hexagon::S4_extract:
2593 case Hexagon::S2_extractu:
2594 case Hexagon::S4_extractp:
2595 case Hexagon::S2_extractup:
2596 MIB.addImm(Len)
2597 .addImm(Off);
2598 break;
2599 default:
2600 llvm_unreachable("Unexpected opcode");
2601 }
2602
2603 HBS::replaceReg(RD.Reg, NewR, MRI);
2604 BT.put(BitTracker::RegisterRef(NewR), RC);
2605 Changed = true;
2606 break;
2607 }
2608
2609 return Changed;
2610}
2611
2612bool BitSimplification::simplifyRCmp0(MachineInstr *MI,
2614 unsigned Opc = MI->getOpcode();
2615 if (Opc != Hexagon::A4_rcmpeqi && Opc != Hexagon::A4_rcmpneqi)
2616 return false;
2617 MachineOperand &CmpOp = MI->getOperand(2);
2618 if (!CmpOp.isImm() || CmpOp.getImm() != 0)
2619 return false;
2620
2621 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2622 if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2623 return false;
2624 assert(RD.Sub == 0);
2625
2626 MachineBasicBlock &B = *MI->getParent();
2627 const DebugLoc &DL = MI->getDebugLoc();
2628 auto At = MI->isPHI() ? B.getFirstNonPHI()
2630 bool KnownZ = true;
2631 bool KnownNZ = false;
2632
2633 BitTracker::RegisterRef SR = MI->getOperand(1);
2634 if (!BT.has(SR.Reg))
2635 return false;
2637 unsigned F, W;
2638 if (!HBS::getSubregMask(SR, F, W, MRI))
2639 return false;
2640
2641 for (uint16_t I = F; I != F+W; ++I) {
2642 const BitTracker::BitValue &V = SC[I];
2643 if (!V.is(0))
2644 KnownZ = false;
2645 if (V.is(1))
2646 KnownNZ = true;
2647 }
2648
2649 auto ReplaceWithConst = [&](int C) {
2650 Register NewR = MRI.createVirtualRegister(FRC);
2651 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), NewR)
2652 .addImm(C);
2653 HBS::replaceReg(RD.Reg, NewR, MRI);
2654 BitTracker::RegisterCell NewRC(W);
2655 for (uint16_t I = 0; I != W; ++I) {
2656 NewRC[I] = BitTracker::BitValue(C & 1);
2657 C = unsigned(C) >> 1;
2658 }
2659 BT.put(BitTracker::RegisterRef(NewR), NewRC);
2660 return true;
2661 };
2662
2663 auto IsNonZero = [] (const MachineOperand &Op) {
2664 if (Op.isGlobal() || Op.isBlockAddress())
2665 return true;
2666 if (Op.isImm())
2667 return Op.getImm() != 0;
2668 if (Op.isCImm())
2669 return !Op.getCImm()->isZero();
2670 if (Op.isFPImm())
2671 return !Op.getFPImm()->isZero();
2672 return false;
2673 };
2674
2675 auto IsZero = [] (const MachineOperand &Op) {
2676 if (Op.isGlobal() || Op.isBlockAddress())
2677 return false;
2678 if (Op.isImm())
2679 return Op.getImm() == 0;
2680 if (Op.isCImm())
2681 return Op.getCImm()->isZero();
2682 if (Op.isFPImm())
2683 return Op.getFPImm()->isZero();
2684 return false;
2685 };
2686
2687 // If the source register is known to be 0 or non-0, the comparison can
2688 // be folded to a load of a constant.
2689 if (KnownZ || KnownNZ) {
2690 assert(KnownZ != KnownNZ && "Register cannot be both 0 and non-0");
2691 return ReplaceWithConst(KnownZ == (Opc == Hexagon::A4_rcmpeqi));
2692 }
2693
2694 // Special case: if the compare comes from a C2_muxii, then we know the
2695 // two possible constants that can be the source value.
2696 MachineInstr *InpDef = MRI.getVRegDef(SR.Reg);
2697 if (!InpDef)
2698 return false;
2699 if (SR.Sub == 0 && InpDef->getOpcode() == Hexagon::C2_muxii) {
2700 MachineOperand &Src1 = InpDef->getOperand(2);
2701 MachineOperand &Src2 = InpDef->getOperand(3);
2702 // Check if both are non-zero.
2703 bool KnownNZ1 = IsNonZero(Src1), KnownNZ2 = IsNonZero(Src2);
2704 if (KnownNZ1 && KnownNZ2)
2705 return ReplaceWithConst(Opc == Hexagon::A4_rcmpneqi);
2706 // Check if both are zero.
2707 bool KnownZ1 = IsZero(Src1), KnownZ2 = IsZero(Src2);
2708 if (KnownZ1 && KnownZ2)
2709 return ReplaceWithConst(Opc == Hexagon::A4_rcmpeqi);
2710
2711 // If for both operands we know that they are either 0 or non-0,
2712 // replace the comparison with a C2_muxii, using the same predicate
2713 // register, but with operands substituted with 0/1 accordingly.
2714 if ((KnownZ1 || KnownNZ1) && (KnownZ2 || KnownNZ2)) {
2715 Register NewR = MRI.createVirtualRegister(FRC);
2716 BuildMI(B, At, DL, HII.get(Hexagon::C2_muxii), NewR)
2717 .addReg(InpDef->getOperand(1).getReg())
2718 .addImm(KnownZ1 == (Opc == Hexagon::A4_rcmpeqi))
2719 .addImm(KnownZ2 == (Opc == Hexagon::A4_rcmpeqi));
2720 HBS::replaceReg(RD.Reg, NewR, MRI);
2721 // Create a new cell with only the least significant bit unknown.
2722 BitTracker::RegisterCell NewRC(W);
2723 NewRC[0] = BitTracker::BitValue::self();
2724 NewRC.fill(1, W, BitTracker::BitValue::Zero);
2725 BT.put(BitTracker::RegisterRef(NewR), NewRC);
2726 return true;
2727 }
2728 }
2729
2730 return false;
2731}
2732
2733bool BitSimplification::processBlock(MachineBasicBlock &B,
2734 const RegisterSet &AVs) {
2735 if (!BT.reached(&B))
2736 return false;
2737 bool Changed = false;
2738 RegisterSet AVB = AVs;
2739 RegisterSet Defs;
2740
2741 for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
2742 MachineInstr *MI = &*I;
2743 Defs.clear();
2744 HBS::getInstrDefs(*MI, Defs);
2745
2746 unsigned Opc = MI->getOpcode();
2747 if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
2748 continue;
2749
2750 if (MI->mayStore()) {
2751 bool T = genStoreUpperHalf(MI);
2752 T = T || genStoreImmediate(MI);
2753 Changed |= T;
2754 continue;
2755 }
2756
2757 if (Defs.count() != 1)
2758 continue;
2759 const MachineOperand &Op0 = MI->getOperand(0);
2760 if (!Op0.isReg() || !Op0.isDef())
2761 continue;
2762 BitTracker::RegisterRef RD = Op0;
2763 if (!BT.has(RD.Reg))
2764 continue;
2765 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2766 const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
2767
2768 if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
2769 bool T = genPackhl(MI, RD, RC);
2770 T = T || simplifyExtractLow(MI, RD, RC, AVB);
2771 Changed |= T;
2772 continue;
2773 }
2774
2775 if (FRC->getID() == Hexagon::IntRegsRegClassID) {
2776 bool T = genBitSplit(MI, RD, RC, AVB);
2777 T = T || simplifyExtractLow(MI, RD, RC, AVB);
2778 T = T || genExtractHalf(MI, RD, RC);
2779 T = T || genCombineHalf(MI, RD, RC);
2780 T = T || genExtractLow(MI, RD, RC);
2781 T = T || simplifyRCmp0(MI, RD);
2782 Changed |= T;
2783 continue;
2784 }
2785
2786 if (FRC->getID() == Hexagon::PredRegsRegClassID) {
2787 bool T = simplifyTstbit(MI, RD, RC);
2788 Changed |= T;
2789 continue;
2790 }
2791 }
2792 return Changed;
2793}
2794
2795bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
2796 if (skipFunction(MF.getFunction()))
2797 return false;
2798
2799 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2800 auto &HRI = *HST.getRegisterInfo();
2801 auto &HII = *HST.getInstrInfo();
2802
2803 MDT = &getAnalysis<MachineDominatorTree>();
2805 bool Changed;
2806
2807 Changed = DeadCodeElimination(MF, *MDT).run();
2808
2809 const HexagonEvaluator HE(HRI, MRI, HII, MF);
2810 BitTracker BT(HE, MF);
2811 LLVM_DEBUG(BT.trace(true));
2812 BT.run();
2813
2814 MachineBasicBlock &Entry = MF.front();
2815
2816 RegisterSet AIG; // Available registers for IG.
2817 ConstGeneration ImmG(BT, HII, MRI);
2818 Changed |= visitBlock(Entry, ImmG, AIG);
2819
2820 RegisterSet ARE; // Available registers for RIE.
2821 RedundantInstrElimination RIE(BT, HII, HRI, MRI);
2822 bool Ried = visitBlock(Entry, RIE, ARE);
2823 if (Ried) {
2824 Changed = true;
2825 BT.run();
2826 }
2827
2828 RegisterSet ACG; // Available registers for CG.
2829 CopyGeneration CopyG(BT, HII, HRI, MRI);
2830 Changed |= visitBlock(Entry, CopyG, ACG);
2831
2832 RegisterSet ACP; // Available registers for CP.
2833 CopyPropagation CopyP(HRI, MRI);
2834 Changed |= visitBlock(Entry, CopyP, ACP);
2835
2836 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2837
2838 BT.run();
2839 RegisterSet ABS; // Available registers for BS.
2840 BitSimplification BitS(BT, *MDT, HII, HRI, MRI, MF);
2841 Changed |= visitBlock(Entry, BitS, ABS);
2842
2843 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2844
2845 if (Changed) {
2846 for (auto &B : MF)
2847 for (auto &I : B)
2848 I.clearKillInfo();
2849 DeadCodeElimination(MF, *MDT).run();
2850 }
2851 return Changed;
2852}
2853
2854// Recognize loops where the code at the end of the loop matches the code
2855// before the entry of the loop, and the matching code is such that is can
2856// be simplified. This pass relies on the bit simplification above and only
2857// prepares code in a way that can be handled by the bit simplifcation.
2858//
2859// This is the motivating testcase (and explanation):
2860//
2861// {
2862// loop0(.LBB0_2, r1) // %for.body.preheader
2863// r5:4 = memd(r0++#8)
2864// }
2865// {
2866// r3 = lsr(r4, #16)
2867// r7:6 = combine(r5, r5)
2868// }
2869// {
2870// r3 = insert(r5, #16, #16)
2871// r7:6 = vlsrw(r7:6, #16)
2872// }
2873// .LBB0_2:
2874// {
2875// memh(r2+#4) = r5
2876// memh(r2+#6) = r6 # R6 is really R5.H
2877// }
2878// {
2879// r2 = add(r2, #8)
2880// memh(r2+#0) = r4
2881// memh(r2+#2) = r3 # R3 is really R4.H
2882// }
2883// {
2884// r5:4 = memd(r0++#8)
2885// }
2886// { # "Shuffling" code that sets up R3 and R6
2887// r3 = lsr(r4, #16) # so that their halves can be stored in the
2888// r7:6 = combine(r5, r5) # next iteration. This could be folded into
2889// } # the stores if the code was at the beginning
2890// { # of the loop iteration. Since the same code
2891// r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved
2892// r7:6 = vlsrw(r7:6, #16) # there.
2893// }:endloop0
2894//
2895//
2896// The outcome:
2897//
2898// {
2899// loop0(.LBB0_2, r1)
2900// r5:4 = memd(r0++#8)
2901// }
2902// .LBB0_2:
2903// {
2904// memh(r2+#4) = r5
2905// memh(r2+#6) = r5.h
2906// }
2907// {
2908// r2 = add(r2, #8)
2909// memh(r2+#0) = r4
2910// memh(r2+#2) = r4.h
2911// }
2912// {
2913// r5:4 = memd(r0++#8)
2914// }:endloop0
2915
2916namespace llvm {
2917
2920
2921} // end namespace llvm
2922
2923namespace {
2924
2925 class HexagonLoopRescheduling : public MachineFunctionPass {
2926 public:
2927 static char ID;
2928
2929 HexagonLoopRescheduling() : MachineFunctionPass(ID) {
2931 }
2932
2933 bool runOnMachineFunction(MachineFunction &MF) override;
2934
2935 private:
2936 const HexagonInstrInfo *HII = nullptr;
2937 const HexagonRegisterInfo *HRI = nullptr;
2938 MachineRegisterInfo *MRI = nullptr;
2939 BitTracker *BTP = nullptr;
2940
2941 struct LoopCand {
2942 LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
2943 MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
2944
2945 MachineBasicBlock *LB, *PB, *EB;
2946 };
2947 using InstrList = std::vector<MachineInstr *>;
2948 struct InstrGroup {
2949 BitTracker::RegisterRef Inp, Out;
2950 InstrList Ins;
2951 };
2952 struct PhiInfo {
2953 PhiInfo(MachineInstr &P, MachineBasicBlock &B);
2954
2955 unsigned DefR;
2956 BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register
2957 MachineBasicBlock *LB, *PB; // Loop Block, Preheader Block
2958 };
2959
2960 static unsigned getDefReg(const MachineInstr *MI);
2961 bool isConst(unsigned Reg) const;
2962 bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
2963 bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
2964 bool isShuffleOf(unsigned OutR, unsigned InpR) const;
2965 bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
2966 unsigned &InpR2) const;
2967 void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
2968 MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
2969 bool processLoop(LoopCand &C);
2970 };
2971
2972} // end anonymous namespace
2973
2974char HexagonLoopRescheduling::ID = 0;
2975
2976INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
2977 "Hexagon Loop Rescheduling", false, false)
2978
2979HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
2981 DefR = HexagonLoopRescheduling::getDefReg(&P);
2982 LB = &B;
2983 PB = nullptr;
2984 for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
2985 const MachineOperand &OpB = P.getOperand(i+1);
2986 if (OpB.getMBB() == &B) {
2987 LR = P.getOperand(i);
2988 continue;
2989 }
2990 PB = OpB.getMBB();
2991 PR = P.getOperand(i);
2992 }
2993}
2994
2995unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
2996 RegisterSet Defs;
2997 HBS::getInstrDefs(*MI, Defs);
2998 if (Defs.count() != 1)
2999 return 0;
3000 return Defs.find_first();
3001}
3002
3003bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
3004 if (!BTP->has(Reg))
3005 return false;
3006 const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
3007 for (unsigned i = 0, w = RC.width(); i < w; ++i) {
3008 const BitTracker::BitValue &V = RC[i];
3009 if (!V.is(0) && !V.is(1))
3010 return false;
3011 }
3012 return true;
3013}
3014
3015bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
3016 unsigned DefR) const {
3017 unsigned Opc = MI->getOpcode();
3018 switch (Opc) {
3019 case TargetOpcode::COPY:
3020 case Hexagon::S2_lsr_i_r:
3021 case Hexagon::S2_asr_i_r:
3022 case Hexagon::S2_asl_i_r:
3023 case Hexagon::S2_lsr_i_p:
3024 case Hexagon::S2_asr_i_p:
3025 case Hexagon::S2_asl_i_p:
3026 case Hexagon::S2_insert:
3027 case Hexagon::A2_or:
3028 case Hexagon::A2_orp:
3029 case Hexagon::A2_and:
3030 case Hexagon::A2_andp:
3031 case Hexagon::A2_combinew:
3032 case Hexagon::A4_combineri:
3033 case Hexagon::A4_combineir:
3034 case Hexagon::A2_combineii:
3035 case Hexagon::A4_combineii:
3036 case Hexagon::A2_combine_ll:
3037 case Hexagon::A2_combine_lh:
3038 case Hexagon::A2_combine_hl:
3039 case Hexagon::A2_combine_hh:
3040 return true;
3041 }
3042 return false;
3043}
3044
3045bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
3046 unsigned InpR) const {
3047 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
3048 const MachineOperand &Op = MI->getOperand(i);
3049 if (!Op.isReg())
3050 continue;
3051 if (Op.getReg() == InpR)
3052 return i == n-1;
3053 }
3054 return false;
3055}
3056
3057bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
3058 if (!BTP->has(OutR) || !BTP->has(InpR))
3059 return false;
3060 const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
3061 for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
3062 const BitTracker::BitValue &V = OutC[i];
3063 if (V.Type != BitTracker::BitValue::Ref)
3064 continue;
3065 if (V.RefI.Reg != InpR)
3066 return false;
3067 }
3068 return true;
3069}
3070
3071bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
3072 unsigned OutR2, unsigned &InpR2) const {
3073 if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
3074 return false;
3075 const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
3076 const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
3077 unsigned W = OutC1.width();
3078 unsigned MatchR = 0;
3079 if (W != OutC2.width())
3080 return false;
3081 for (unsigned i = 0; i < W; ++i) {
3082 const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
3083 if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
3084 return false;
3086 continue;
3087 if (V1.RefI.Pos != V2.RefI.Pos)
3088 return false;
3089 if (V1.RefI.Reg != InpR1)
3090 return false;
3091 if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
3092 return false;
3093 if (!MatchR)
3094 MatchR = V2.RefI.Reg;
3095 else if (V2.RefI.Reg != MatchR)
3096 return false;
3097 }
3098 InpR2 = MatchR;
3099 return true;
3100}
3101
3102void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
3103 MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
3104 unsigned NewPredR) {
3106
3107 const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
3108 Register PhiR = MRI->createVirtualRegister(PhiRC);
3109 BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
3110 .addReg(NewPredR)
3111 .addMBB(&PB)
3112 .addReg(G.Inp.Reg)
3113 .addMBB(&LB);
3114 RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
3115
3116 for (const MachineInstr *SI : llvm::reverse(G.Ins)) {
3117 unsigned DR = getDefReg(SI);
3118 const TargetRegisterClass *RC = MRI->getRegClass(DR);
3119 Register NewDR = MRI->createVirtualRegister(RC);
3120 DebugLoc DL = SI->getDebugLoc();
3121
3122 auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
3123 for (const MachineOperand &Op : SI->operands()) {
3124 if (!Op.isReg()) {
3125 MIB.add(Op);
3126 continue;
3127 }
3128 if (!Op.isUse())
3129 continue;
3130 unsigned UseR = RegMap[Op.getReg()];
3131 MIB.addReg(UseR, 0, Op.getSubReg());
3132 }
3133 RegMap.insert(std::make_pair(DR, NewDR));
3134 }
3135
3136 HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
3137}
3138
3139bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
3140 LLVM_DEBUG(dbgs() << "Processing loop in " << printMBBReference(*C.LB)
3141 << "\n");
3142 std::vector<PhiInfo> Phis;
3143 for (auto &I : *C.LB) {
3144 if (!I.isPHI())
3145 break;
3146 unsigned PR = getDefReg(&I);
3147 if (isConst(PR))
3148 continue;
3149 bool BadUse = false, GoodUse = false;
3150 for (const MachineOperand &MO : MRI->use_operands(PR)) {
3151 const MachineInstr *UseI = MO.getParent();
3152 if (UseI->getParent() != C.LB) {
3153 BadUse = true;
3154 break;
3155 }
3156 if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
3157 GoodUse = true;
3158 }
3159 if (BadUse || !GoodUse)
3160 continue;
3161
3162 Phis.push_back(PhiInfo(I, *C.LB));
3163 }
3164
3165 LLVM_DEBUG({
3166 dbgs() << "Phis: {";
3167 for (auto &I : Phis) {
3168 dbgs() << ' ' << printReg(I.DefR, HRI) << "=phi("
3169 << printReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
3170 << ',' << printReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
3171 << I.LB->getNumber() << ')';
3172 }
3173 dbgs() << " }\n";
3174 });
3175
3176 if (Phis.empty())
3177 return false;
3178
3179 bool Changed = false;
3180 InstrList ShufIns;
3181
3182 // Go backwards in the block: for each bit shuffling instruction, check
3183 // if that instruction could potentially be moved to the front of the loop:
3184 // the output of the loop cannot be used in a non-shuffling instruction
3185 // in this loop.
3186 for (MachineInstr &MI : llvm::reverse(*C.LB)) {
3187 if (MI.isTerminator())
3188 continue;
3189 if (MI.isPHI())
3190 break;
3191
3192 RegisterSet Defs;
3193 HBS::getInstrDefs(MI, Defs);
3194 if (Defs.count() != 1)
3195 continue;
3196 Register DefR = Defs.find_first();
3197 if (!DefR.isVirtual())
3198 continue;
3199 if (!isBitShuffle(&MI, DefR))
3200 continue;
3201
3202 bool BadUse = false;
3203 for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
3204 MachineInstr *UseI = UI->getParent();
3205 if (UseI->getParent() == C.LB) {
3206 if (UseI->isPHI()) {
3207 // If the use is in a phi node in this loop, then it should be
3208 // the value corresponding to the back edge.
3209 unsigned Idx = UI.getOperandNo();
3210 if (UseI->getOperand(Idx+1).getMBB() != C.LB)
3211 BadUse = true;
3212 } else {
3213 if (!llvm::is_contained(ShufIns, UseI))
3214 BadUse = true;
3215 }
3216 } else {
3217 // There is a use outside of the loop, but there is no epilog block
3218 // suitable for a copy-out.
3219 if (C.EB == nullptr)
3220 BadUse = true;
3221 }
3222 if (BadUse)
3223 break;
3224 }
3225
3226 if (BadUse)
3227 continue;
3228 ShufIns.push_back(&MI);
3229 }
3230
3231 // Partition the list of shuffling instructions into instruction groups,
3232 // where each group has to be moved as a whole (i.e. a group is a chain of
3233 // dependent instructions). A group produces a single live output register,
3234 // which is meant to be the input of the loop phi node (although this is
3235 // not checked here yet). It also uses a single register as its input,
3236 // which is some value produced in the loop body. After moving the group
3237 // to the beginning of the loop, that input register would need to be
3238 // the loop-carried register (through a phi node) instead of the (currently
3239 // loop-carried) output register.
3240 using InstrGroupList = std::vector<InstrGroup>;
3241 InstrGroupList Groups;
3242
3243 for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
3244 MachineInstr *SI = ShufIns[i];
3245 if (SI == nullptr)
3246 continue;
3247
3248 InstrGroup G;
3249 G.Ins.push_back(SI);
3250 G.Out.Reg = getDefReg(SI);
3251 RegisterSet Inputs;
3252 HBS::getInstrUses(*SI, Inputs);
3253
3254 for (unsigned j = i+1; j < n; ++j) {
3255 MachineInstr *MI = ShufIns[j];
3256 if (MI == nullptr)
3257 continue;
3258 RegisterSet Defs;
3259 HBS::getInstrDefs(*MI, Defs);
3260 // If this instruction does not define any pending inputs, skip it.
3261 if (!Defs.intersects(Inputs))
3262 continue;
3263 // Otherwise, add it to the current group and remove the inputs that
3264 // are defined by MI.
3265 G.Ins.push_back(MI);
3266 Inputs.remove(Defs);
3267 // Then add all registers used by MI.
3268 HBS::getInstrUses(*MI, Inputs);
3269 ShufIns[j] = nullptr;
3270 }
3271
3272 // Only add a group if it requires at most one register.
3273 if (Inputs.count() > 1)
3274 continue;
3275 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3276 return G.Out.Reg == P.LR.Reg;
3277 };
3278 if (llvm::none_of(Phis, LoopInpEq))
3279 continue;
3280
3281 G.Inp.Reg = Inputs.find_first();
3282 Groups.push_back(G);
3283 }
3284
3285 LLVM_DEBUG({
3286 for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
3287 InstrGroup &G = Groups[i];
3288 dbgs() << "Group[" << i << "] inp: "
3289 << printReg(G.Inp.Reg, HRI, G.Inp.Sub)
3290 << " out: " << printReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
3291 for (const MachineInstr *MI : G.Ins)
3292 dbgs() << " " << MI;
3293 }
3294 });
3295
3296 for (InstrGroup &G : Groups) {
3297 if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
3298 continue;
3299 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3300 return G.Out.Reg == P.LR.Reg;
3301 };
3302 auto F = llvm::find_if(Phis, LoopInpEq);
3303 if (F == Phis.end())
3304 continue;
3305 unsigned PrehR = 0;
3306 if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) {
3307 const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg);
3308 unsigned Opc = DefPrehR->getOpcode();
3309 if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
3310 continue;
3311 if (!DefPrehR->getOperand(1).isImm())
3312 continue;
3313 if (DefPrehR->getOperand(1).getImm() != 0)
3314 continue;
3315 const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
3316 if (RC != MRI->getRegClass(F->PR.Reg)) {
3317 PrehR = MRI->createVirtualRegister(RC);
3318 unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
3319 : Hexagon::A2_tfrpi;
3320 auto T = C.PB->getFirstTerminator();
3321 DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
3322 BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR)
3323 .addImm(0);
3324 } else {
3325 PrehR = F->PR.Reg;
3326 }
3327 }
3328 // isSameShuffle could match with PrehR being of a wider class than
3329 // G.Inp.Reg, for example if G shuffles the low 32 bits of its input,
3330 // it would match for the input being a 32-bit register, and PrehR
3331 // being a 64-bit register (where the low 32 bits match). This could
3332 // be handled, but for now skip these cases.
3333 if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg))
3334 continue;
3335 moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR);
3336 Changed = true;
3337 }
3338
3339 return Changed;
3340}
3341
3342bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
3343 if (skipFunction(MF.getFunction()))
3344 return false;
3345
3346 auto &HST = MF.getSubtarget<HexagonSubtarget>();
3347 HII = HST.getInstrInfo();
3348 HRI = HST.getRegisterInfo();
3349 MRI = &MF.getRegInfo();
3350 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
3351 BitTracker BT(HE, MF);
3352 LLVM_DEBUG(BT.trace(true));
3353 BT.run();
3354 BTP = &BT;
3355
3356 std::vector<LoopCand> Cand;
3357
3358 for (auto &B : MF) {
3359 if (B.pred_size() != 2 || B.succ_size() != 2)
3360 continue;
3361 MachineBasicBlock *PB = nullptr;
3362 bool IsLoop = false;
3363 for (MachineBasicBlock *Pred : B.predecessors()) {
3364 if (Pred != &B)
3365 PB = Pred;
3366 else
3367 IsLoop = true;
3368 }
3369 if (!IsLoop)
3370 continue;
3371
3372 MachineBasicBlock *EB = nullptr;
3373 for (MachineBasicBlock *Succ : B.successors()) {
3374 if (Succ == &B)
3375 continue;
3376 // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
3377 // edge from B to EP is non-critical.
3378 if (Succ->pred_size() == 1)
3379 EB = Succ;
3380 break;
3381 }
3382
3383 Cand.push_back(LoopCand(&B, PB, EB));
3384 }
3385
3386 bool Changed = false;
3387 for (auto &C : Cand)
3388 Changed |= processLoop(C);
3389
3390 return Changed;
3391}
3392
3393//===----------------------------------------------------------------------===//
3394// Public Constructor Functions
3395//===----------------------------------------------------------------------===//
3396
3398 return new HexagonLoopRescheduling();
3399}
3400
3402 return new HexagonBitSimplify();
3403}
unsigned const MachineRegisterInfo * MRI
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
basic Basic Alias true
BitTracker BT
Definition: BitTracker.cpp:73
This file implements the BitVector class.
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
#define LLVM_ATTRIBUTE_UNUSED
Definition: Compiler.h:203
static void clear(coro::Shape &Shape)
Definition: Coroutines.cpp:148
static std::optional< ArrayRef< InsnRange >::iterator > intersects(const MachineInstr *StartMI, const MachineInstr *EndMI, const ArrayRef< InsnRange > &Ranges, const InstructionOrdering &Ordering)
Check if the instruction range [StartMI, EndMI] intersects any instruction range in Ranges.
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseMap class.
bool End
Definition: ELF_riscv.cpp:480
Rewrite Partial Register Uses
This file defines the little GraphTraits<X> template class that should be specialized by classes that...
static unsigned CountBitSplit
static cl::opt< bool > PreserveTiedOps("hexbit-keep-tied", cl::Hidden, cl::init(true), cl::desc("Preserve subregisters in tied operands"))
static cl::opt< bool > GenExtract("hexbit-extract", cl::Hidden, cl::init(true), cl::desc("Generate extract instructions"))
static cl::opt< unsigned > MaxBitSplit("hexbit-max-bitsplit", cl::Hidden, cl::init(std::numeric_limits< unsigned >::max()))
hexagon bit Hexagon bit simplification
static cl::opt< bool > GenBitSplit("hexbit-bitsplit", cl::Hidden, cl::init(true), cl::desc("Generate bitsplit instructions"))
static cl::opt< unsigned > MaxExtract("hexbit-max-extract", cl::Hidden, cl::init(std::numeric_limits< unsigned >::max()))
hexagon bit simplify
static cl::opt< unsigned > RegisterSetLimit("hexbit-registerset-limit", cl::Hidden, cl::init(1000))
static unsigned CountExtract
IRTranslator LLVM IR MI
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition: Lint.cpp:531
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
#define H(x, y, z)
Definition: MD5.cpp:57
unsigned const TargetRegisterInfo * TRI
#define P(N)
PassBuilder PB(Machine, PassOpts->PTO, std::nullopt, &PIC)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:59
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the SmallVector class.
static const X86InstrFMA3Group Groups[]
support::ulittle16_t & Lo
Definition: aarch32.cpp:206
support::ulittle16_t & Hi
Definition: aarch32.cpp:205
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:220
Base class for the actual dominator tree node.
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:311
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
Definition: Function.h:680
unsigned getHexagonSubRegIndex(const TargetRegisterClass &RC, unsigned GenIdx) const
const HexagonRegisterInfo * getRegisterInfo() const override
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
void push_back(MachineInstr *MI)
MachineInstrBundleIterator< MachineInstr > iterator
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineBasicBlock & front() const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:546
bool isCopy() const
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:329
bool isDebugInstr() const
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:475
bool isPHI() const
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:556
MachineOperand class - Representation of each machine instruction operand.
void setSubReg(unsigned subReg)
unsigned getSubReg() const
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
void setReg(Register Reg)
Change the register this operand corresponds to.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
static MachineOperand CreateImm(int64_t Val)
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
Definition: PassRegistry.h:37
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
static Register index2VirtReg(unsigned Index)
Convert a 0-based index to a virtual register number.
Definition: Register.h:84
static unsigned virtReg2Index(Register Reg)
Convert a virtual register number to a 0-based index.
Definition: Register.h:77
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition: Register.h:91
A global registry used in conjunction with static constructors to make pluggable components (like tar...
Definition: Registry.h:44
size_t size() const
Definition: SmallVector.h:91
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
Register getReg() const
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
unsigned getID() const
Return the register class ID number.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char IsConst[]
Key for Kernel::Arg::Metadata::mIsConst.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition: ISDOpcodes.h:688
@ RRC
Y = RRC X, rotate right via carry.
@ SC
CHAIN = SC CHAIN, Imm128 - System call.
SmallVector< MachineInstr * > InstrList
bool isConst(unsigned Opc)
Reg
All possible values of the reg field in the ModR/M byte.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:450
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
std::set< RegisterRef > RegisterSet
Definition: RDFGraph.h:450
std::error_code remove(const Twine &path, bool IgnoreNonExisting=true)
Remove path.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1751
bool isEqual(const GCNRPTracker::LiveRegSet &S1, const GCNRPTracker::LiveRegSet &S2)
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition: MathExtras.h:228
FunctionPass * createHexagonBitSimplify()
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1738
void initializeHexagonBitSimplifyPass(PassRegistry &Registry)
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:428
constexpr uint32_t Hi_32(uint64_t Value)
Return the high 32 bits of a 64 bit value.
Definition: MathExtras.h:136
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1745
constexpr uint32_t Lo_32(uint64_t Value)
Return the low 32 bits of a 64 bit value.
Definition: MathExtras.h:141
FunctionPass * createHexagonLoopRescheduling()
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
void initializeHexagonLoopReschedulingPass(PassRegistry &)
auto count(R &&Range, const E &Element)
Wrapper function around std::count to count the number of times an element Element occurs in the give...
Definition: STLExtras.h:1923
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
Definition: APFixedPoint.h:293
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1758
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1888
Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
bool is(unsigned T) const
Definition: BitTracker.h:209
static BitValue self(const BitRef &Self=BitRef())
Definition: BitTracker.h:280
bool has(unsigned Reg) const
Definition: BitTracker.h:352
const RegisterCell & lookup(unsigned Reg) const
Definition: BitTracker.h:357
bool reached(const MachineBasicBlock *B) const
void trace(bool On=false)
Definition: BitTracker.h:50
void put(RegisterRef RR, const RegisterCell &RC)
Definition: BitTracker.cpp:994
void visit(const MachineInstr &MI)
RegisterCell get(RegisterRef RR) const
Definition: BitTracker.cpp:990